JPH0544820B2 - - Google Patents

Info

Publication number
JPH0544820B2
JPH0544820B2 JP59238109A JP23810984A JPH0544820B2 JP H0544820 B2 JPH0544820 B2 JP H0544820B2 JP 59238109 A JP59238109 A JP 59238109A JP 23810984 A JP23810984 A JP 23810984A JP H0544820 B2 JPH0544820 B2 JP H0544820B2
Authority
JP
Japan
Prior art keywords
thin film
electrode
frequency power
high frequency
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59238109A
Other languages
Japanese (ja)
Other versions
JPS61116826A (en
Inventor
Kunio Nishimura
Takehisa Nakayama
Kazunaga Tsushimo
Yoshihisa Oowada
Hisanori Hirata
Masanobu Izumina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59238109A priority Critical patent/JPS61116826A/en
Publication of JPS61116826A publication Critical patent/JPS61116826A/en
Publication of JPH0544820B2 publication Critical patent/JPH0544820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はグロー放電を用いて太陽電池などに用
いる光導電膜、半導体膜、無機絶縁膜あるいは有
機樹脂膜などを形成するのに有効な薄膜形成方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a thin film that is effective for forming photoconductive films, semiconductor films, inorganic insulating films, organic resin films, etc. used in solar cells etc. using glow discharge. Regarding the forming method.

〔従来の技術〕[Conventional technology]

薄膜形成方法の1つに横プラズマ法がある。 One of the thin film forming methods is the lateral plasma method.

減圧にしうる堆積室内に膜形成用の原料ガスを
導入し、グロー放電によるプラズマ現象を利用し
て所定の支持体上に薄膜形成を行なうばあい、と
くに太陽電池に用いる光導電膜を形成するばあい
には、えられる膜の光電特性の点から横プラズマ
法を用いた薄膜形成方法が有効に利用されてきて
いる。横プラズマ法を用いると、電極間で発生す
るプラズマの外部に膜を形成する基板を配置する
ため、基板および基板上に堆積される膜へのプラ
ズマ・ダメージを軽減するからである。
When a film-forming raw material gas is introduced into a deposition chamber that can be reduced in pressure and a plasma phenomenon caused by glow discharge is used to form a thin film on a predetermined support, this is especially true when forming a photoconductive film for use in solar cells. In addition, a thin film forming method using a transverse plasma method has been effectively used from the viewpoint of the photoelectric properties of the resulting film. This is because when the lateral plasma method is used, the substrate on which the film is formed is placed outside the plasma generated between the electrodes, which reduces plasma damage to the substrate and the film deposited on the substrate.

実験用の横プラズマ法に用いる小型横プラズマ
薄膜形成折置は、たとえば第4図に示すように、
直径約10〜15cm程度のガラスベルジヤー1の内側
または外側に半円弧型の電極2を対向するように
配置し、その下部に試料載置台3を設けて基板4
を置き、半円弧型の電極2間にグロー放電により
プラズマを発生させ、基板4上に膜を形成させる
ものである。グロー放電を生ぜせしめる電力とし
ては、通常13.56MHzの高周波電源が用いられる
が、負極との電気的整合をとるため、通常、第5
図に示すようなマツチング・ネツトワーク5を経
て供給される。その結果、2つの電極2の電位が
異なり、生起されるプラズマもグランド側の電極
付近と高周波側電極付近では異なる。とくに高周
波側電極付近の暗部の電位が大きく、したがつて
プラズマの様子も明らかに非対称となり、基板4
に堆積される膜の厚さもその膜の光電特性も試料
載置台3上の基板4に位置によつて異なる。これ
らの膜厚および性能の分布を解消するため、基板
4を載置する試料載置台3を適当な速さで回転す
る方法がとられている。
For example, as shown in Fig. 4, the small horizontal plasma thin film formation arrangement used in the experimental horizontal plasma method is as follows.
Semicircular arc-shaped electrodes 2 are arranged to face each other on the inside or outside of a glass bell jar 1 with a diameter of approximately 10 to 15 cm, and a sample mounting table 3 is provided below the substrate 4.
is placed between the semicircular arc-shaped electrodes 2 to generate plasma by glow discharge, thereby forming a film on the substrate 4. A high frequency power source of 13.56 MHz is normally used as the power to generate the glow discharge, but in order to maintain electrical matching with the negative electrode, the fifth
It is supplied via a matching network 5 as shown in the figure. As a result, the potentials of the two electrodes 2 are different, and the generated plasma is also different in the vicinity of the ground side electrode and in the vicinity of the high frequency side electrode. In particular, the potential in the dark area near the high-frequency side electrode is large, so the plasma appearance is clearly asymmetric, and the substrate 4
The thickness of the film deposited and the photoelectric properties of the film vary depending on the position on the substrate 4 on the sample stage 3. In order to eliminate these distributions in film thickness and performance, a method is used in which the sample mounting table 3 on which the substrate 4 is mounted is rotated at an appropriate speed.

このような横プラズマ法による薄膜の形成方法
を利用して、工業生産に適する大きな面積に高性
能な光導電膜を形成するには、つぎのような問題
がある。
There are the following problems in forming a high-performance photoconductive film on a large area suitable for industrial production using such a thin film forming method using the horizontal plasma method.

すなわち、2つの電極間グロー放電を生起せし
めなければならないため、2つの電極間距離には
限界があり、むやみに間隔を広くとり、放電領域
の巾を広くできないため、薄膜を形成する面積が
限られる。さらに、グランド側電極付近と高周波
側電極付近に堆積される薄膜の膜厚、光電特性な
どが異なるため、試料載置台を回転させて堆積す
る薄膜の均一化をはからなければならない、など
の問題がある。
In other words, since glow discharge must be generated between the two electrodes, there is a limit to the distance between the two electrodes, and it is not possible to make the gap unnecessarily wide and widen the discharge area, which limits the area on which the thin film can be formed. It will be done. Furthermore, because the thickness and photoelectric properties of the thin films deposited near the ground side electrode and the high frequency side electrode are different, there are problems such as the need to rotate the sample mounting table to make the deposited thin film uniform. There is.

これらの問題を解決するために、本発明者らは
第2図に示すように、複数の横プラズマ電極9a
〜9eを用いて薄膜の形成領域を複数の放電領域
に分割して大面積化をはかり、各放電領域間での
プラズマの対称性をえ、形成される膜厚の均一化
をはかるため、第3図に示すようないずれの電極
も直接グランドにアースされない、2次側が絶縁
されたフロート型のマツチング・ネツトワーク1
2を採用することによつて、電極間に対称のプラ
ズマをうることができ、したがつて大面積の薄膜
形成を可能にするにいたつている。
In order to solve these problems, the present inventors proposed a method using a plurality of horizontal plasma electrodes 9a as shown in FIG.
~9e is used to divide the thin film formation region into multiple discharge regions to increase the area, and in order to achieve plasma symmetry between each discharge region and to make the thickness of the formed film uniform. 3 Float-type matching network 1 with insulated secondary side where neither electrode is directly connected to ground as shown in Figure 3.
By adopting No. 2, a symmetrical plasma can be obtained between the electrodes, thus making it possible to form a thin film over a large area.

なお第2図における6は真空槽、7は基板加熱
ヒーター、8は基板ホルダー、10は高周波電力
供給装置である。
In FIG. 2, 6 is a vacuum chamber, 7 is a substrate heater, 8 is a substrate holder, and 10 is a high frequency power supply device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがこのような複数電極大型横プラズマ法
を用いる薄膜形成では、電極が複数有ること、1
つの高周波電源と1つのマツチング・ネツトワー
クとを用いて電力を供給すること、電極の配置に
より各々の電極が必ずしも電気的に等価な条件に
ならないことなどにより、薄膜形成領域で均一な
厚さの膜がえられないという問題がある。
However, in thin film formation using such a multi-electrode large-scale horizontal plasma method, there are two problems:
Because power is supplied using two high-frequency power sources and one matching network, and because each electrode does not necessarily have electrically equivalent conditions due to the arrangement of the electrodes, it is difficult to maintain a uniform thickness in the thin film formation area. There is a problem that a film cannot be obtained.

すなわち、第2図に示すように電極が5本のば
あいを例にとると、両端の9a,9eの電極の片
側は放電領域であるが反対側は真空槽壁あるいは
ダークスペースシールドであるため、電極の両端
で非対称な条件に置かれることになる。また、両
端の電極9a,9eと中央の電極9cには同一の
高周波電力が供給され、その間の電極9b,9d
には同一の高周波電力が供給される。そのため2
本組と3本組のそれぞれ1個当りの電極に供給さ
れる高周波電力は異なる。さらに各電極への高周
波電力供給線11は1個の高周波電源15と1個
のマツチング・ネツトワーク12をへて接続され
ているため、各供給線11a,11b,11c,
11d,11eの長さと空間配置および形状は大
きく異なり、さまざまになる。これらの高周波電
力供給線は高周波電力にとつては抵抗として働く
ため、各々の電極に実際に供給される高周波電力
は異なる。
In other words, if we take the case where there are five electrodes as shown in Figure 2, one side of the electrodes 9a and 9e at both ends is the discharge area, but the other side is the vacuum chamber wall or dark space shield. , resulting in asymmetric conditions at both ends of the electrode. Further, the same high frequency power is supplied to the electrodes 9a and 9e at both ends and the central electrode 9c, and the electrodes 9b and 9d between them are supplied with the same high frequency power.
are supplied with the same high frequency power. Therefore 2
The high frequency power supplied to each electrode of the main set and the three-piece set is different. Furthermore, since the high frequency power supply line 11 to each electrode is connected through one high frequency power supply 15 and one matching network 12, each supply line 11a, 11b, 11c,
The length and spatial arrangement and shape of 11d and 11e can vary widely. Since these high frequency power supply lines act as a resistance for high frequency power, the high frequency power actually supplied to each electrode is different.

以上のごとく各電極に供給される高周波電力が
異なること、電極配置により各電極の条件が異な
ること、などにより各放電領域における放電によ
るプラズマの強度が微妙に異なり、そのため各放
電領域上部に置かれた基板上に堆積する薄膜の厚
さが異なることとなる。このような膜厚分布、す
なわち各放電領域におけるプラズマの強度分布
は、第3図に示すようなマツチング・ネツトワー
ク12のみでは制御しえず、薄膜形成領域全般に
わたる膜厚が一定にならないという問題は解決さ
れていない。
As mentioned above, the intensity of the plasma caused by the discharge in each discharge area is slightly different due to the difference in the high frequency power supplied to each electrode and the difference in the conditions of each electrode depending on the electrode arrangement. The thickness of the thin film deposited on the substrate will differ. Such a film thickness distribution, that is, the plasma intensity distribution in each discharge region, cannot be controlled only by the matching network 12 as shown in FIG. 3, and there is a problem that the film thickness is not constant over the entire thin film formation region. is not resolved.

本発明の目的は、上記第2図、第3図に示すよ
うな装置を用いた本発明者らによる方法において
も解決しえなかつた欠点を解消した新規な薄膜形
成方法を提供することにある。
An object of the present invention is to provide a new thin film forming method that eliminates the drawbacks that could not be solved even with the method of the present inventors using the apparatus shown in FIGS. 2 and 3. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、少なくとも3個、好ましくは3〜5
個の電極からなる電極列を有し、電極列の端から
奇数番目の電極組と偶数番目の電極組の各電極に
1台の高周波電源からマツチング・ネツトワーク
を経て高周波電力を供給し、各領域にて放電を生
ぜせしめ、該放電領域の外部に置いた基板上に薄
膜を形成する際に、マツチング・ネツトワークか
らRF電極への接続の少なくとも1箇所に電気素
子を接続し、この電気素子の電気定数を変えるこ
とにより、各電極に供給される高周波電力あるい
は各放電領域の放電強さを調節しながら薄膜を形
成することを特徴とする薄膜形成方法に関し、全
薄膜形成領域において実質的に均一な厚さの薄膜
を形成する方法を与えるものである。
The present invention provides at least 3, preferably 3 to 5
One high-frequency power supply supplies high-frequency power to each odd-numbered electrode group and even-numbered electrode group from the end of the electrode row through a matching network. When generating a discharge in a region and forming a thin film on a substrate placed outside the discharge region, an electrical element is connected to at least one of the connections from the matching network to the RF electrode; Regarding a thin film forming method characterized by forming a thin film while adjusting the high frequency power supplied to each electrode or the discharge intensity of each discharge region by changing the electric constant of This provides a method for forming a thin film of uniform thickness.

〔実施例〕〔Example〕

本発明の方法を図面にもとづいて説明する。 The method of the present invention will be explained based on the drawings.

本発明に用いる薄膜形成装置の高周波電源〜電
極部分に関する一実施態様を説明するための第1
図において、マツチング・ネツトワーク12の2
本組電極用の端子12aおよび3本組電極用の端
子12bから各電極9a〜9eへ高周波供給線1
1a〜11eが配線されており、その途中に電気
素子13a〜13eが接続されている。該電気素
子としては、可変あるいは固定コンデンサ、可変
あるいは固定コイル、または可変あるいは固定コ
ンデンサーと可変あるいは固定コイルとを組み合
わせたものながあげられ、任意に選択きる。電気
素子の接続としては、第6図a,bに示すよう
に、高周波供給線11に直列に接続したもの、並
列にグランドに接続したものなどがあげられ、適
宜選択すればよい。また、これらの電気素子は必
ずしも電極に高周波電力を供給する高周波供給線
すべてに接続する必要はなく、各放電領域の放電
が均一となるように、接続する方法、位置、電気
素子の種類などを任意に選べばよい。各々の電気
素子は同一のものでなくてもよい。また、高周波
供給線には高周波抵抗の低い銅板や銅板に銀メツ
キを施したものを使用するのが一般的である。こ
れら高周波供給線の形状や長さを変えることによ
り、かなりの程度高周波電力の供給を変えること
ができるため、これを電気素子と併用することも
有効である。
A first embodiment for explaining an embodiment regarding the high frequency power supply to electrode portion of the thin film forming apparatus used in the present invention.
In the figure, matching network 12-2
High frequency supply line 1 from the terminal 12a for the main electrode set and the terminal 12b for the 3-piece electrode set to each electrode 9a to 9e.
1a to 11e are wired, and electric elements 13a to 13e are connected along the way. The electric element may be a variable or fixed capacitor, a variable or fixed coil, or a combination of a variable or fixed capacitor and a variable or fixed coil, and can be arbitrarily selected. As shown in FIGS. 6a and 6b, the electric elements may be connected in series to the high frequency supply line 11 or connected in parallel to the ground, and may be selected as appropriate. In addition, these electric elements do not necessarily need to be connected to all the high-frequency supply lines that supply high-frequency power to the electrodes, but the connection method, position, type of electric element, etc. should be determined so that the discharge in each discharge area is uniform. You can choose arbitrarily. Each electrical element does not have to be identical. Further, for the high frequency supply line, it is common to use a copper plate with low high frequency resistance or a copper plate plated with silver. By changing the shape and length of these high frequency supply lines, it is possible to change the supply of high frequency power to a considerable extent, so it is also effective to use this in combination with an electric element.

薄膜形成時には真空槽中に原料ガスを導入し、
高周波電力を各電極に供給し、電極間にプラズマ
を生成させる。このプラズマを目視あるいは
OES(Optical Emission Spectroscopy)などの
プラズマ監視装置にてプラズマ強度を測定し、各
領域の放電強さが均一となるように電気素子を調
節したり、あるいは基板上に薄膜を一定時間形成
し、触針式または光学的方法などで膜厚を測定し
たのち、膜厚が均一化するように電気素子を選定
あるいは調節するなどすればよい。このため電気
素子としては調節機能を有するという意味から、
可変コンデンサー、可変コイルなどの可変電気素
子を用いることが望ましい。
When forming a thin film, raw material gas is introduced into the vacuum chamber,
High frequency power is supplied to each electrode to generate plasma between the electrodes. Visually check this plasma or
The plasma intensity can be measured using a plasma monitoring device such as OES (Optical Emission Spectroscopy), and the electrical elements can be adjusted so that the discharge intensity in each area is uniform, or a thin film can be formed on the substrate for a certain period of time and then touched. After measuring the film thickness using a needle method or an optical method, electric elements may be selected or adjusted so that the film thickness becomes uniform. Therefore, in the sense that it has an adjustment function as an electric element,
It is desirable to use variable electrical elements such as variable capacitors and variable coils.

本発明の横プラズマ薄膜形成方法を用いること
により、複数の放電領域を有する横プラズマ法に
よる薄膜形成においても、各領域で均一な膜厚の
薄膜をうることがきる。
By using the lateral plasma thin film forming method of the present invention, even when forming a thin film by the lateral plasma method having a plurality of discharge regions, a thin film having a uniform thickness in each region can be obtained.

以下、本発明の方法を実施例にもとづき説明す
る。
The method of the present invention will be explained below based on examples.

参考例 1 本発明者らの開発した第2図および第3図に示
すような複数電極を有する横プラズマ薄膜形成方
法に用いる装置を用いて、500×500mmの領域に薄
膜の形成を行なつた。各電極の中心距離は125mm、
電極上面と基板間距離は20mmに保つた。真空槽6
中にSiH4およびH2をそれぞれ20sccmおよび
180sccmの混合ガスとして供給し、圧力調節装置
(図示せず)によつて0.5Torrに保持した。第3
図に示すような高周波電源15とマツチング・ネ
ツトワーク12を用いて、銅板の高周波供給線1
1a〜11eにより各電極9a〜9eに高周波電
力を供給し、各放電領域にプラズマを生成させ
た。マツチング・ネツトワーク12中のチユーニ
ングバリコンとしてマツチング・バリコン14
b、バランス・バリコン14cを調整し、各プラ
ズマが均一となるように調整し、放電を60分間継
続し、ガラス基板上に薄膜の形成を行なつた。こ
の間ガラス基板は基板加熱ヒーター17により加
熱し、250℃に保つた。
Reference Example 1 A thin film was formed in an area of 500 x 500 mm using an apparatus developed by the present inventors and used for a horizontal plasma thin film forming method having multiple electrodes as shown in FIGS. 2 and 3. . The center distance of each electrode is 125mm,
The distance between the top surface of the electrode and the substrate was kept at 20 mm. Vacuum chamber 6
SiH4 and H2 in 20sccm and
It was supplied as a mixed gas of 180 sccm and maintained at 0.5 Torr by a pressure regulator (not shown). Third
Using a high frequency power supply 15 and a matching network 12 as shown in the figure, a high frequency supply line 1 of a copper plate is connected.
High frequency power was supplied to each electrode 9a to 9e by 1a to 11e to generate plasma in each discharge region. Matching variable capacitor 14 as a tuning variable capacitor in matching network 12
b. The balance variable capacitor 14c was adjusted so that each plasma was uniform, and the discharge was continued for 60 minutes to form a thin film on the glass substrate. During this time, the glass substrate was heated by a substrate heating heater 17 and maintained at 250°C.

薄膜形成後、ガラス基板上の膜厚を光学的方法
により測定したところ、第7図に示すように電極
の両端付近で厚く、電極の中央付近薄く、その比
は約2.6倍もあつた。
After the thin film was formed, the film thickness on the glass substrate was measured by an optical method, and as shown in Figure 7, it was thicker near both ends of the electrode and thinner near the center of the electrode, and the ratio was about 2.6 times higher.

実施例 1 参考例1と同様の装置、方法で、各高周波供給
線の途中に第1図に示すように、絶縁耐圧15kV、
容量10〜500pFの可変真空バリコン13a〜13
eを直列に接続した装置を用いた。
Example 1 Using the same equipment and method as in Reference Example 1, a dielectric breakdown voltage of 15 kV,
Variable vacuum variable capacitors 13a to 13 with a capacity of 10 to 500 pF
A device was used in which 2.e were connected in series.

参考例1と同様の条件、同様の方法にて各放電
領域にプラズマを発生させ、目視にて放電の強さ
を確認し、放電の強さが均一となるようにチユー
ニング・バリコン14a、マツチング・バリコン
14b、バランス・バリコン14cおよび可変真
空バリコン13a〜13eを調整した。
Plasma was generated in each discharge area under the same conditions and in the same manner as in Reference Example 1, and the strength of the discharge was visually confirmed. The variable capacitor 14b, balance variable capacitor 14c, and variable vacuum variable capacitors 13a to 13e were adjusted.

放電の強さが均一になる条件にて60分間放電を
持続し、ガラス基板上に薄膜を形成した。
The discharge was continued for 60 minutes under conditions that the intensity of the discharge was uniform, and a thin film was formed on the glass substrate.

えられた膜厚を光学的方法により測定したとこ
ろ、第7図に示すように薄膜形成領域にて±10%
以内の均一な膜厚がえられた。さらにこの薄膜の
光学特性として、太陽電池などの光起電力素子に
重要な光電導度を測定したところ、第8図に示す
ように均一な光学特性の薄膜がえられた。
When the obtained film thickness was measured by an optical method, it was found that it was ±10% in the thin film formation area as shown in Figure 7.
A uniform film thickness within the range of Furthermore, as an optical property of this thin film, the photoconductivity, which is important for photovoltaic devices such as solar cells, was measured, and a thin film with uniform optical properties was obtained as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、複数の放電領域を有す
る横プラズマ法による薄膜形成においても、各領
域で均一な膜厚、光電特性の薄膜をうることがで
きる。
According to the method of the present invention, even when forming a thin film using a horizontal plasma method having a plurality of discharge regions, a thin film with uniform thickness and photoelectric properties can be obtained in each region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる薄膜形成装置の高周波
電源〜電極部分に関する一実施態様を示す説明
図、第2図は電気素子を用いていない薄膜形成装
置の一実施態様に関する説明図、第3図は第2図
に示す薄膜形成装置の高周波電源〜電極部分に関
する説明図、第4図は従来の横プラズマ法に用い
る装置に関する説明図、第5図は第4図に示すご
とき従来の横プラズマ法に用いる装置に通常使用
されているマツチング・ネツトワークに関する説
明図、第6図は本発明に用いる電気素子を接続す
る実施態様に関する説明図、第7図は参考例1、
実施例1でえられた薄膜の膜厚と用いた装置の電
極位置との関係を示すグラフ、第8図は実施例1
でえられた薄膜の光電導度と用いた装置の電極位
置との関係を示すグラフである。 (図面の主要符号)、9a〜9e:電極(RF電
極)、10:高周波電力供給装置、12:マツチ
ング・ネツトワーク、13a〜13e:電気素
子、15:高周波電源。
FIG. 1 is an explanatory diagram showing an embodiment of the thin film forming apparatus used in the present invention from a high frequency power source to an electrode section, FIG. 2 is an explanatory diagram of an embodiment of the thin film forming apparatus that does not use electric elements, and FIG. is an explanatory diagram of the high frequency power supply to electrode portion of the thin film forming apparatus shown in Fig. 2, Fig. 4 is an explanatory diagram of the apparatus used for the conventional horizontal plasma method, and Fig. 5 is an explanatory diagram of the conventional horizontal plasma method as shown in Fig. 4. FIG. 6 is an explanatory diagram of an embodiment for connecting electric elements used in the present invention, and FIG. 7 is an explanatory diagram of a matching network commonly used in devices used in the present invention.
A graph showing the relationship between the film thickness of the thin film obtained in Example 1 and the electrode position of the device used, FIG. 8 is Example 1
It is a graph showing the relationship between the photoconductivity of the obtained thin film and the electrode position of the device used. (Main symbols in the drawings), 9a to 9e: electrode (RF electrode), 10: high frequency power supply device, 12: matching network, 13a to 13e: electric element, 15: high frequency power source.

Claims (1)

【特許請求の範囲】 1 少なくとも3個の電極からなる電極列を有
し、電極列の端から奇数番目の電極組と偶数番目
の電極組の各電極に1台の高周波電源からマツチ
ング・ネツトワークを経て高周波電力を供給し、
各領域にて放電を生ぜせしめ、該放電領域の外部
に置いた基板上に薄膜を形成する際に、マツチン
グ・ネツトワークからRF電極への接続の少なく
とも1箇所に電気素子を接続し、この電気素子の
電気定数を変えることにより、各電極に供給され
る高周波電力あるいは各放電領域の放電強さを調
節しながら薄膜を形成することを特徴とする薄膜
形成方法。 2 電気素子が可変または固定コンデンサーであ
る特許請求の範囲第1項記載の方法。 3 電気素子が可変または固定コイルである特許
請求の範囲第1項記載の方法。 4 電気素子が可変または固定コンデンサーおよ
び可変または固定コイルである特許請求の範囲第
1項記載の方法。 5 電極数Nが3≦N≦5である特許請求の範囲
第1項記載の方法。 6 電気素子の接続が直列接続である特許請求の
範囲第1項記載の方法。 7 電気素子の接続が並列接続である特許請求の
範囲第1項記載の方法。
[Scope of Claims] 1. A matching network having an electrode array consisting of at least three electrodes, with one high-frequency power supply applied to each of the odd-numbered electrode groups and the even-numbered electrode groups from the end of the electrode array. high frequency power is supplied through
When a discharge is generated in each region and a thin film is formed on a substrate placed outside the discharge region, an electrical element is connected to at least one connection from the matching network to the RF electrode. A thin film forming method characterized by forming a thin film while adjusting the high frequency power supplied to each electrode or the discharge intensity of each discharge region by changing the electric constant of the element. 2. The method according to claim 1, wherein the electrical element is a variable or fixed capacitor. 3. The method of claim 1, wherein the electrical element is a variable or fixed coil. 4. The method of claim 1, wherein the electrical elements are variable or fixed capacitors and variable or fixed coils. 5. The method according to claim 1, wherein the number N of electrodes is 3≦N≦5. 6. The method according to claim 1, wherein the electrical elements are connected in series. 7. The method according to claim 1, wherein the electrical elements are connected in parallel.
JP59238109A 1984-11-12 1984-11-12 Formation of thin film Granted JPS61116826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238109A JPS61116826A (en) 1984-11-12 1984-11-12 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238109A JPS61116826A (en) 1984-11-12 1984-11-12 Formation of thin film

Publications (2)

Publication Number Publication Date
JPS61116826A JPS61116826A (en) 1986-06-04
JPH0544820B2 true JPH0544820B2 (en) 1993-07-07

Family

ID=17025307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238109A Granted JPS61116826A (en) 1984-11-12 1984-11-12 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS61116826A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836038B2 (en) * 2008-03-26 2011-12-14 正剛 大嶋 Road runoff control drainage works
WO2009142187A1 (en) * 2008-05-22 2009-11-26 株式会社カネカ Thin film photoelectric conversion device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737821A (en) * 1980-08-20 1982-03-02 Kokusai Electric Co Ltd Vapor phase reaction device
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737821A (en) * 1980-08-20 1982-03-02 Kokusai Electric Co Ltd Vapor phase reaction device
JPS5842226A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacturing device for plasma semiconductor

Also Published As

Publication number Publication date
JPS61116826A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US4634601A (en) Method for production of semiconductor by glow discharge decomposition of silane
KR100436072B1 (en) Device for Fabricating Film for Plasma-Forming Thin Film
JP5668957B2 (en) Capacitively coupled plasma reactor
US4664890A (en) Glow-discharge decomposition apparatus
US4933203A (en) Process for depositing amorphous hydrogenated silicon in a plasma chamber
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
KR101854738B1 (en) Thin Film Deposition Apparatus, Plasma Generation Apparatus, And Thin Film Deposition Method
JPS60111419A (en) Method of coating amorphous semiconductor material layer from gas in positive column of glow discharge
JPH0544820B2 (en)
US4461239A (en) Reduced capacitance electrode assembly
KR20110018996A (en) Plasma generation apparatus
JPS618914A (en) Glow discharge type film formation equipment
US7582185B2 (en) Plasma-processing apparatus
US5945353A (en) Plasma processing method
JPS6115321A (en) Formation of film
JPS6066422A (en) Manufacture of semiconductor
JP6703198B2 (en) Electrode unit having internal electrical network for supplying high frequency voltage and carrier device for plasma processing apparatus
JPS61116825A (en) Formation of multiple electrode thin film
KR101952126B1 (en) Thin Film Deposition Apparatus, Plasma Generation Apparatus, And Thin Film Deposition Method
JPS641958Y2 (en)
KR20110012167A (en) Internal antenna structure and plasma generation apparatus
DE2149606B2 (en) Device for coating substrates by high-frequency cathode sputtering
CN105039936A (en) Electric transmission feed structure and PECVD device with same
JP2004221571A (en) Plasma processing apparatus
TW201621968A (en) Large-area plasma processing device and homogeneous plasma generation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees