JPH0544776Y2 - - Google Patents

Info

Publication number
JPH0544776Y2
JPH0544776Y2 JP1986125210U JP12521086U JPH0544776Y2 JP H0544776 Y2 JPH0544776 Y2 JP H0544776Y2 JP 1986125210 U JP1986125210 U JP 1986125210U JP 12521086 U JP12521086 U JP 12521086U JP H0544776 Y2 JPH0544776 Y2 JP H0544776Y2
Authority
JP
Japan
Prior art keywords
sheet
sheet sample
value
propagation time
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986125210U
Other languages
Japanese (ja)
Other versions
JPS6331366U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986125210U priority Critical patent/JPH0544776Y2/ja
Publication of JPS6331366U publication Critical patent/JPS6331366U/ja
Application granted granted Critical
Publication of JPH0544776Y2 publication Critical patent/JPH0544776Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、超音波を利用して、非破壊で、紙の
ごときシートの物性を測定するシートテスタに関
する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a sheet tester that uses ultrasonic waves to non-destructively measure the physical properties of a sheet such as paper.

従来の技術 超音波を利用して紙のごときシートの物性を測
定するシートテスタに関しては、実公昭50−6772
号、実公昭50−36998号、実公昭51−21758号、特
公昭53−26516号、特公昭54−25434号の各公報に
示されている。
Conventional technology Regarding a sheet tester that uses ultrasonic waves to measure the physical properties of sheets such as paper, the
No. 50-36998, Japanese Utility Model Publication No. 51-21758, Japanese Patent Publication No. 53-26516, and Japanese Patent Publication No. 54-25434.

考案が解決しようとする問題点 従来のシートテスタは、1組の超音波の送波振
動子及び受波振動子を用い、該両振動子を所定の
間隔で支持盤に配置し、該支持盤を昇降可能と
し、また該支持盤下に試料支承体を設け、該試料
支承体を垂直軸回りに回転可能とし、所定回転角
毎のシート試料の特性を測定しうるものである
が、シート試料を回転角10°間隔で測定を行う場
合、1測定値毎に支持盤の昇降および試料支承体
の回動を行う必要があり、10°間隔で全方向即ち
180°の測定を行う場合少くとも約80秒を要し、幅
数米にもなる広幅のシートの全幅につきある間隔
で多数の測定個所での測定を行い度い場合には試
料の数も多くなり、所定の大きさ(例えば25cm
角)の試料の作成にも時間を要し、多大の測定時
間を要することとなり、測定時間の短縮、広幅シ
ートの全幅にわたる連続測定の要望が大であつ
た。
Problems to be Solved by the Invention Conventional sheet testers use a pair of ultrasonic transmitter and receiver transducers, both of which are arranged at a prescribed interval on a support plate, which can be raised and lowered, and a sample support body provided under the support plate, which can be rotated around a vertical axis, to measure the characteristics of a sheet sample at prescribed rotation angles. However, when measuring a sheet sample at 10° rotation angle intervals, it is necessary to raise and lower the support plate and rotate the sample support body for each measurement value, and it is difficult to measure the characteristics of the sheet sample at 10° intervals in all directions, i.e.
When measuring at 180°, it takes at least about 80 seconds. When measuring at multiple measurement points at intervals over the entire width of a wide sheet of several meters, the number of samples increases and it is necessary to measure a given size (e.g., 25 cm).
It takes time to prepare samples (such as squares) and therefore a great deal of measurement time is required, and there has been a strong demand for a reduction in measurement time and for continuous measurement across the entire width of wide sheets.

問題点を解決するための手段 本考案は、超音波用送受波振動子を用い、該送
波および受波の両振動子間のシート試料の超音波
の伝播速度を測定し、前記両振動子間のシート試
料の物性を求めるシートテスタにおいて、超音波
発振器と、送波切換回路と、複数対の送波振動子
および受波振動子と、受波切換回路と、超音波受
信器と、増幅器と、前記複数対の送波振動子およ
び受波振動子が同一円周上に所定の中心角間隔で
支持盤のセンサ面に配置突設されているセンサ体
と、前記センサ面と対峙して配設されるシート試
料支承体と、該シート試料支承体上の長尺のシー
ト試料を所定距離移動可能とするシート送り装置
と、前記シート試料を前記センサ体とシート試料
支承体との間で挟持および解放する挟持装置と、
出力装置と、ならびに、前記長尺のシート試料を
前記シート試料支承体上で長さ方向所定の距離だ
け送る前記シート送り装置作動手段、前記長尺の
シート試料を前記センサ体とシート試料支承体と
の間で挟持および解放する前記挟持装置作動手
段、前記発信器および受信器の作動手段、前記発
信器よりの超音波発信波を隣接する送波振動子へ
順次切換送信する前記送波切換回路の切換手段、
送波振動子と円周中心を挟んで対峙する受波振動
子および該受波振動子に隣接する受波振動子へ順
次切換える受波切換回路の切換手段、前記受信器
より増幅器を介して入力される受信波により前記
長尺のシート試料の同一の測定個所における切換
え選択された送波振動子と受波振動子との間の試
料シートの超音波伝播時間を順次同一距離間の伝
播時間に演算し、前記センサ体とシート試料との
関係位置を変えることなく、同一測定個所での
360°全方向の演算伝播時間を隣接振動子の中心角
間隔の1/2の角間隔の方向毎に前記複数対の送受
波振動子の対の数の2倍の数だけ求め、得られた
演算伝播時間群の最小値および最大値、前記最小
値の方向とシート製造方向(MD)との配向角、
前記最大値の方向と前記MDと直角方向(CD)
との配向角、前記最小値と最大値との比の値、お
よびMD方向の伝播時間値とCD方向の伝播時間
値との比の値を同一測定個所について演算し、引
続き別の測定個所について各360°全方向の演算伝
播時間について同様の演算を順次行い、各測定個
所におけるそれぞれの演算値をプロフアイルとし
て演算解析集計整理して前記出力装置への出力を
行う演算解析出力手段の各手段を有する電算装置
とよりなる超音波式シートテスタにより、前述の
問題点を解決することができたものである。
Means for Solving the Problems The present invention uses an ultrasonic transmitting/receiving transducer, measures the propagation velocity of ultrasonic waves in a sheet sample between the transmitting and receiving transducers, and A sheet tester for determining the physical properties of a sheet sample between the two components includes an ultrasonic oscillator, a transmitting switching circuit, multiple pairs of transmitting and receiving transducers, a receiving switching circuit, an ultrasonic receiver, and an amplifier. and a sensor body in which the plurality of pairs of transmitting transducers and receiving transducers are arranged and protruded from the sensor surface of the support board at predetermined center angular intervals on the same circumference, and a sensor body facing the sensor surface. A sheet sample support provided therein, a sheet feeding device that allows a long sheet sample on the sheet sample support to be moved a predetermined distance, and a sheet sample support that moves the sheet sample between the sensor body and the sheet sample support. a clamping device for clamping and releasing;
an output device, the sheet feeding device operating means for feeding the elongated sheet sample a predetermined distance in the longitudinal direction on the sheet sample support, and the elongated sheet sample being transferred to the sensor body and the sheet sample support. the clamping device operating means for clamping and releasing the clamping device between the transmitter and the receiver; the transmitting switching circuit that sequentially switches and transmits the ultrasonic transmission waves from the transmitter to the adjacent transmitting transducer; switching means,
A switching means of a receiving switching circuit that sequentially switches to a receiving transducer facing the transmitting transducer across the center of the circumference and a receiving transducer adjacent to the receiving transducer; input from the receiver via an amplifier; The ultrasonic propagation time of the sample sheet between the selected transmitting transducer and the receiving transducer is sequentially changed to the propagation time for the same distance at the same measurement point of the long sheet sample by the received wave. The calculation is performed at the same measurement point without changing the relative position between the sensor body and the sheet sample.
Calculated propagation times in all 360° directions are calculated for each direction with an angular spacing of 1/2 of the center angular spacing of adjacent oscillators, twice as many as the number of pairs of the plurality of transmitting/receiving oscillators. The minimum value and maximum value of the calculation propagation time group, the orientation angle between the direction of the minimum value and the sheet manufacturing direction (MD),
The direction of the maximum value and the direction perpendicular to the MD (CD)
Calculate the orientation angle with respect to Each means of the calculation analysis output means that sequentially performs similar calculations for calculation propagation times in all directions of 360 degrees, aggregates and organizes the calculation analysis as a profile with each calculation value at each measurement point, and outputs it to the output device. The above-mentioned problems could be solved by using an ultrasonic sheet tester comprising a computer device having the following functions.

作 用 本考案は、前述の構成とされているが故に、測
定すべき広幅シートから該シートの全幅にわたり
所定幅の長尺のシート試料のみを作成することに
より、該長尺のシート試料の長さ方向(シートの
幅方向)の任意の位置の物性を180°の方向即ち全
方向にわたり、且つ全長にわたり連続して自動的
に測定、演算、出力することが可能となり、測定
時間も極めて短縮されるに至つた。
Effect Since the present invention has the above-mentioned configuration, by creating only a long sheet sample with a predetermined width over the entire width of the wide sheet to be measured, it is possible to measure the length of the long sheet sample. It is now possible to automatically measure, calculate, and output the physical properties at any position in the width direction (width direction of the sheet) in a 180° direction, that is, in all directions, and continuously over the entire length, and the measurement time is also extremely shortened. I have reached the point where

実施例 以下図面に示す実施例につき説明する。Example The embodiments shown in the drawings will be described below.

測定原理は従来のものと同様である。 The measurement principle is the same as the conventional one.

シート試料の或る方向の超音波の伝播時間を測
定し、シート試料の測定方向の相対強度を求める
ものである。
The propagation time of ultrasonic waves in a certain direction of a sheet sample is measured, and the relative intensity of the sheet sample in the measurement direction is determined.

今、シート試料の或る方向のヤング率 ;E シート試料の密度 ;ρ 音速 ;C 伝播距離即ち振動子間隔 ;L 伝播時間 ;T とすれば E=ρC2=ρ(L/T)2 従つて一定距離L間の伝播時間Tを測定すれ
ば、測定試料の範囲内でρを一定と仮定すると、
Eが求まる。Tが大であればEが小さいこととな
る。
Now, if the Young's modulus of the sheet sample in a certain direction is ; E the density of the sheet sample ; ρ the sound velocity ; C the propagation distance, that is, the transducer spacing ; L the propagation time ; T, then E = ρC 2 = ρ (L/T) 2 Then, if we measure the propagation time T over a certain distance L, assuming that ρ is constant within the range of the measurement sample, we get
Find E. If T is large, E is small.

試料とセンサとの角度を順次変えながら測定す
ることにより該角度に対する測定値を集計整理し
たプロフイルが得られる。従つて試料強度の配向
性、縦横比等が求められる。
By performing measurements while sequentially changing the angle between the sample and the sensor, a profile is obtained in which the measured values for the angles are compiled and organized. Therefore, the orientation of the sample strength, aspect ratio, etc. are required.

従来のシートテスタの測定値例を述べる。振動
子間隔L=150mmとし、1組の振動子としてセラ
ミツクス製圧電素子を送波振動子および受波振動
子として用い、約20kHzの超音波を用い、或る組
成の紙シートを試料とし、紙の抄紙機の進行方向
(紙シートの抄紙方向)をMD(machine
direction)、該MDと直角の紙シートの幅方向を
CD(cross direction)とし、紙シートのCD方向
全幅から切り出した長尺のシート試料について、
MD方向から10°間隔で170°に至る各方向のTを測
定し演算すると次の表としてプリントアウトされ
第4図に示す如き線図が描かれる。なお下記
VALUEはMDを0°とする各角度方向の測定値で
ある。
An example of the measurement values of a conventional sheet tester will be described. The transducer spacing L = 150 mm, a pair of ceramic piezoelectric elements were used as the transmitting transducer and the receiving transducer, ultrasonic waves of about 20 kHz were used, and a paper sheet of a certain composition was used as the sample. MD (machine
direction), the width direction of the paper sheet perpendicular to the MD
For a long sheet sample cut from the full width of a paper sheet in the CD (cross direction) direction,
After measuring and calculating T in each direction up to 170° at 10° intervals from the MD direction, the following table is printed out and a line diagram as shown in FIG. 4 is drawn. In addition, below
VALUE is the measured value in each angular direction with MD as 0°.

《 0° TO 80° 》 ANGLE= 0° VALUE=41.200μS ANGLE=10° VALUE=42.200μS ANGLE=20° VALUE=44.700μS ANGLE=30° VALUE=47.600μS ANGLE=40° VALUE=51.300μS ANGLE=50° VALUE=55.000μS ANGLE=60° VALUE=58.200μS ANGLE=70° VALUE=60.700μS ANGLE=80° VALUE=62.000μS 《 90° TO 170° 》 ANGLE= 90° VALUE=62.200μS ANGLE=100° VALUE=60.900μS ANGLE=110° VALUE=58.600μS ANGLE=120° VALUE=55.400μS ANGLE=130° VALUE=51.800μS ANGLE=140° VALUE=48.000μS ANGLE=150° VALUE=44.900μS ANGLE=160° VALUE=42.200μS ANGLE=170° VALUE=41.000μS DIRECTIONAL ANGLE(MD)=−4.66° ……(MDと最小値方向との配向角) DIRECTIONAL ANGLE(CD)=−4.36° ……(CDと最大値方向との配向角) CROSS−LENGTH RATIO(D:D)=1.510 ……(CD方向とMD方向との測定値の比) PEAK(MD)=40.922μs……(最小値) PEAK(CD)=62.207μs……(最大値) CROSS−LENGTH RATIO(P:P)=1.520 ……(最大値と最小値との比) 従つてMD方向より−4.66°の方向に強度最大値が CD方向より−4.36°の方向に強度最小値が 求められたことになる。従来は測定結果の出力迄
に多大の時間を要していた。
《 0° TO 80° 》 ANGLE= 0° VALUE=41.200μS ANGLE=10° VALUE=42.200μS ANGLE=20° VALUE=44.700μS ANGLE=30° VALUE=47.600μS ANGLE=40° VALUE=51.300μS ANGLE=50 ° VALUE=55.000μS ANGLE=60° VALUE=58.200μS ANGLE=70° VALUE=60.700μS ANGLE=80° VALUE=62.000μS 《90° TO 170°》 ANGLE= 90° VALUE=62.200μS ANGLE=100° VALUE= 60.900μS ANGLE=110° VALUE=58.600μS ANGLE=120° VALUE=55.400μS ANGLE=130° VALUE=51.800μS ANGLE=140° VALUE=48.000μS ANGLE=150° VALUE=44.900μS ANGLE=160° VALUE=42. 200μS ANGLE=170° VALUE=41.000μS DIRECTIONAL ANGLE (MD) = -4.66° ... (Orientation angle between MD and minimum value direction) DIRECTIONAL ANGLE (CD) = -4.36° ... (Orientation between CD and maximum value direction) CROSS−LENGTH RATIO (D:D) = 1.510 ... (ratio of measured values in CD direction and MD direction) PEAK (MD) = 40.922 μs ... (minimum value) PEAK (CD) = 62.207 μs ... (Maximum value) CROSS-LENGTH RATIO (P:P) = 1.520 ... (ratio between maximum value and minimum value) Therefore, the maximum intensity value is in the direction -4.66° from the MD direction and -4.36° from the CD direction This means that the minimum intensity value has been found. Conventionally, it took a long time to output the measurement results.

本考案においては、第1図、第2図に示す如
く、複数の振動子1,1を超音波送波用振動およ
び同受波用振動子として用い、各振動子1,1が
中心をOとする同一円周上に所定の中心角間隔で
(図示例では45°間隔で計8個、4対)支持盤2の
センサ面3に突設されている。従つて各振動子
1,1間の距離は一定である。
In the present invention, as shown in Figs. 1 and 2, a plurality of transducers 1, 1 are used as ultrasonic wave transmitting and ultrasonic wave receiving transducers, and each transducer 1, 1 has its center centered at O. They are provided protruding from the sensor surface 3 of the support plate 2 at predetermined center angle intervals (in the illustrated example, a total of 8 pieces, 4 pairs at 45° intervals) on the same circumference. Therefore, the distance between each vibrator 1, 1 is constant.

第2図に示す如く振動子1,1のうち送波側の
振動子1をT1,T2,T3,T4,受波側の振動子1
をR1,R2,R3,R4とする。尚送波振動子T1は受
波振動子R5を兼ねるものとする。
As shown in FIG .
Let be R 1 , R 2 , R 3 , and R 4 . It is assumed that the transmitting transducer T 1 also serves as the receiving transducer R 5 .

前記円周の直径をdとすれば前記各振動子T1
R1,T2R2,T3R3,T4R4間の距離はいずれもd
である。
If the diameter of the circumference is d, each vibrator T 1
The distances between R 1 , T 2 R 2 , T 3 R 3 , and T 4 R 4 are all d
It is.

第1図においてはセンサ体4は水平な支持盤2
の下面がセンサ面3とされ双矢印Aの垂直方向に
昇降可能とされている。尚センサ体4を双矢印A
方向に昇降しうる挟持装置は図示されていない。
In FIG. 1, the sensor body 4 is placed on a horizontal support plate 2.
The lower surface of the sensor surface 3 serves as a sensor surface 3, and is movable up and down in the direction perpendicular to the double arrow A. In addition, the sensor body 4 is indicated by the double arrow A.
A clamping device that can be raised and lowered in the directions is not shown.

前記支持盤2下に前記センサ面3と対峙してシ
ート試料支承体5が配設されている。該シート試
料支承体5は、前記センサ体4が降下し、シート
試料支承体5上に載置されている長尺のシート試
料6への各振動子1,1の当接を確実とし、且つ
測定値に影響を与えないため、ゴム体スポンジ体
の如き弾性且つ吸音性のある平板体であるのが望
ましい。前記シート試料支承体5上の長尺のシー
ト試料6の測定を希望する個所の中央を前記支持
盤2の中心Oの直下迄順次移動可能とするシート
送り装置7が設けられている。図示例では該シー
ト送り装置7は上下にロールがスタツクされたピ
ンチロールタイプのものであり、該ロールはシー
ト試料6を挟持し、後述するCPUの如き電算装
置により所定距離前記シート試料6を矢印B方向
に回転移動可能とされている。尚前記シート試料
6はガイドロール8により導入案内される。前述
の通りシート試料6はシート試料支承体5上でセ
ンサ体4の各振動子1,1に当接挟持せしめられ
るが、前記挟持作動はセンサ体4のみの昇降によ
つても、シート試料支承体5のみの昇降によつて
も、また両者4,5の昇降によつてもよい。前記
シート試料6を挟持する挟持装置は、前述の通り
図示されていない。装置には、第3図に示す如
く、CPUの如き電算装置が装着され、また発信
器、送波切換回路、送波振動子、受波振動子、受
信器、増幅器、および出力器、表示器等の出力装
置が設けられており、前記CPUには、第5図に
示すごとく、超音波の発信器の作動手段、発信器
よりの発信を送波振動子T1,T2,T3,T4……に
順次切換えて送る送波切換回路の切換作動手段、
前記送波振動子T1,T2,T3,T4……等よりの超
音波を受波振動子R1,R2,R3,R4,R5……等の
いずれかにより受波せしめる受波切換回路の切換
作動手段、切換受信された超音波の受信波を受信
器より増幅器を介して受容する受信器の作動手
段、受信された測定値を後述するごとく演算解析
する演算解析作動、および測定演算結果を出力装
置である表示器や別設の出力器に送りデスプレイ
表示、プリントアウト等の出力作動を行う演算解
析出力手段、シート送り装置作動手段、挟持装置
作動手段の各手段が設けられ、前記CPUの挟持
装置作動手段およびシート送り装置作動手段の操
作信号により前記挟持装置の挟持解放作動、シー
ト送り装置7による所定距離だけシート試料6を
移動せしめるシート送り作動、前記挟持装置によ
るシート試料6の次の位置の挟持作動が行われ、
挟持完了後引続いて新しい測定個所でのシート試
料6の前述同様の超音波測定、出力作動が繰返さ
れる。
A sheet sample support 5 is disposed below the support plate 2 and facing the sensor surface 3. The sheet sample support 5 ensures that the sensor body 4 descends and the vibrators 1, 1 come into contact with the elongated sheet sample 6 placed on the sheet sample support 5, and In order not to affect the measured values, it is desirable to use a flat plate body with elasticity and sound absorbing properties, such as a rubber sponge body. A sheet feeding device 7 is provided that can sequentially move the center of a desired point of the long sheet sample 6 on the sheet sample support 5 to just below the center O of the support plate 2. In the illustrated example, the sheet feeding device 7 is of a pinch roll type in which rolls are stacked vertically, and the rolls sandwich the sheet sample 6, and a computer device such as a CPU, which will be described later, moves the sheet sample 6 a predetermined distance along the arrows. It is possible to rotate and move in the B direction. The sheet sample 6 is introduced and guided by a guide roll 8. As mentioned above, the sheet sample 6 is held in contact with each vibrator 1, 1 of the sensor body 4 on the sheet sample support 5, but the clamping operation can also be performed by lifting and lowering only the sensor body 4. It may be done by raising and lowering only the body 5 or by raising and lowering both 4 and 5. The clamping device that clamps the sheet sample 6 is not shown as described above. As shown in Figure 3, the device is equipped with a computer device such as a CPU, and also includes a transmitter, a transmitting switching circuit, a transmitting oscillator, a receiving oscillator, a receiver, an amplifier, an output device, and a display. As shown in FIG. 5, the CPU is provided with output devices such as an ultrasonic transmitter operating means and transmitter transducers T 1 , T 2 , T 3 , T 4 . . . switching operation means for a transmission switching circuit that sequentially switches and transmits signals;
The ultrasonic waves from the transmitting transducers T 1 , T 2 , T 3 , T 4 , etc. are received by any of the receiving transducers R 1 , R 2 , R 3 , R 4 , R 5 , etc. switching operation means of a wave reception switching circuit that causes waves, operation means of a receiver that receives the received ultrasonic waves from the receiver via an amplifier, and arithmetic analysis that calculates and analyzes the received measurement values as described later. Each means includes arithmetic analysis output means, sheet feeding device operating means, and clamping device operating means that sends the operation and measurement calculation results to a display device that is an output device or a separate output device, and performs output operations such as display, printout, etc. are provided, in response to operation signals of the clamping device operating means and the sheet feeding device operating means of the CPU, the clamping release operation of the clamping device, the sheet feeding operation to move the sheet sample 6 by a predetermined distance by the sheet feeding device 7, and the clamping device The clamping operation of the next position of the sheet sample 6 is performed by
After the clamping is completed, the same ultrasonic measurement and output operations as described above are repeated for the sheet sample 6 at a new measurement location.

第2図、第3図に示す如く、振動子T1R1間、
T2R2間、T3R3間、T4R4間の各方向の測定のみ
に限らず、T1R2間、T2R3間、T3R4間、T4R5
の如く方向を異にする測定も実施可能である。こ
の場合、第2図に示すごとく、∠R1OR2は円弧
R1R2の中心角、∠R1T1R2は同円周角であるか
ら、∠R1T1R2=1/2∠R1OR2となり、振動子の
数を増加することなく、中心角間隔を半分とす
る、従つて2倍の数の方向を異にする振動子数の
倍の方向の測定値を、測定精度を倍にして、一測
定個所毎に、極めて短時間(僅か数秒)で得るこ
とができる。
As shown in FIGS. 2 and 3, between the transducers T 1 R 1 ,
Not limited to measurements in each direction between T 2 R 2 , T 3 R 3 , and T 4 R 4 , but also between T 1 R 2 , T 2 R 3 , T 3 R 4 , and T 4 R 5 . It is also possible to perform measurements in different directions. In this case, as shown in Figure 2, ∠R 1 OR 2 is an arc
Since the central angle of R 1 R 2 and ∠R 1 T 1 R 2 are the same circumferential angle, ∠R 1 T 1 R 2 = 1/2∠R 1 OR 2 , and the number of oscillators can be increased. Instead, the center angular spacing is halved, which means that twice as many different directions are measured in twice the number of transducers, and the measurement precision is doubled, making it possible to measure each measurement point in an extremely short time. It can be obtained in just a few seconds.

前記T1R1間……等の距離は円周直径dに等し
いが、T1R2間……等の距離は、dcos∠R1T1R2
前記dより短い定距離であり(第2図の図示例で
は∠R1T1R2=22.5°)、測定結果は前記CPUによ
り距離dの場合に換算演算される。すなわち前記
演算解析出力手段は、前記受信器より増幅器を介
して入力される受信波により前記長尺のシート試
料の同一の測定個所における切換え選択された送
波振動子と受波振動子との間の試料シートの超音
波伝播時間を順次同一距離間の伝播時間に演算
し、前記センサ体とシート試料との関係位置を変
えることなく、同一測定個所での360°全方向の演
算伝播時間を隣接振動子の中心角間隔の1/2の角
間隔の方向毎に前記複数対の送受波振動子の対の
数の2倍の数だけ求め、得られた演算伝播時間群
の最小値および最大値、前記最小値の方向とシー
ト製造方向(MD)との配向角、前記最大値の方
向と前記MDと直角方向(CD)との配向角、前
記最小値と最大値との比の値、およびMD方向の
伝播時間値とCD方向の伝播時間値との比の値を
同一測定個所について演算し、引続き別の測定個
所について各360°全方向の演算伝播時間について
同様の演算を順次行い、各測定個所におけるそれ
ぞれの演算値をプロフアイルとして演算解析集計
整理して前記出力装置への出力を行う演算解析出
力手段である。
The distance between T 1 R 1 , etc. is equal to the circumferential diameter d, but the distance between T 1 R 2 , etc. is a constant distance shorter than the above d of dcos∠R 1 T 1 R 2 ( In the illustrated example of FIG. 2, ∠R 1 T 1 R 2 =22.5°), and the measurement result is converted into a distance d by the CPU. That is, the arithmetic analysis output means is configured to perform switching between a selected transmitting transducer and a receiving transducer at the same measurement point of the long sheet sample using received waves inputted from the receiver via an amplifier. The ultrasonic propagation time of the sample sheet is calculated sequentially into the propagation time over the same distance, and the calculated propagation time in all 360° directions at the same measurement point is calculated adjacently without changing the relative position between the sensor body and the sheet sample. The minimum and maximum values of the calculated propagation time group obtained by calculating twice the number of pairs of the plurality of pairs of transmitting and receiving transducers for each direction with an angular spacing of 1/2 of the center angular spacing of the transducers. , an orientation angle between the direction of the minimum value and the sheet manufacturing direction (MD), an orientation angle between the direction of the maximum value and a direction perpendicular to the MD (CD), a value of the ratio between the minimum value and the maximum value, and The value of the ratio between the propagation time value in the MD direction and the propagation time value in the CD direction is calculated for the same measurement point, and then the same calculation is performed sequentially for the calculated propagation time in each 360° direction for another measurement point, and each It is an arithmetic analysis output means that aggregates and organizes the arithmetic analysis of each calculated value at a measurement point as a profile and outputs it to the output device.

前記振動子1(T1,T2……,R1,R2……)の
数は必要に応じ増加することができ、増加した数
だけ、異つた方向のシート試料の物性測定が可能
であり、また測定振動子T1,R2の如く送波振動
子T1,T2……と受波振動子R1,R2……との組合
せを異にすることによつても異なる方向、異る位
置のシート試料の物性測定が可能となり測定精度
が向上する。
The number of the transducers 1 (T 1 , T 2 ..., R 1 , R 2 ...) can be increased as necessary, and the physical properties of the sheet sample in different directions can be measured by the increased number. Also, different directions can be obtained by different combinations of transmitting transducers T 1 , T 2 . . . and receiving transducers R 1 , R 2 . , it becomes possible to measure the physical properties of sheet samples at different positions, improving measurement accuracy.

考案の効果 本考案により超音波用送受波振動子をセンサ体
の支持盤のセンサ面に同一円周上に多数配設する
ことにより広幅のシート全幅により切出された長
尺のシート試料の一端をシート送り装置に挟持せ
しめ、測定開始(スタート)スイツチを押すのみ
で、一測定個所における測定中に支持盤等を昇
降、回動する必要がなく、かつ振動子を倍増する
ことなくシート試料の前述のごとく振動子対の2
倍の数の測定方向を異にする物性測定および出力
が一測定個所毎に数秒以内で行うことができ、長
尺のシート試料の異なる測定個所における測定も
測定値の演算、解析も自動的に連続測定解析が可
能となり、長尺のシート試料全長の一端から他端
にわたる多数の測定個所の物性測定が極めて短時
間で可能となり、広幅のシートの製造装置での幅
方向各位置での物性を均一化せんとするシート製
造条件の変更等のフイードバツクの自動化も可能
にする等、従来のものにない高精度で迅速にプロ
フアイルを得るという独自の効果を奏するに至つ
たものである。
Effects of the invention By arranging a large number of ultrasonic wave transmitting and receiving transducers on the same circumference on the sensor surface of the support plate of the sensor body, one end of a long sheet sample is cut out by the entire width of the wide sheet. By simply holding the sheet sample between the sheet feeding device and pressing the measurement start switch, there is no need to raise/lower or rotate the support plate etc. during measurement at a single measurement point, and the sheet sample can be moved without doubling the number of transducers. As mentioned above, two of the oscillator pairs
Double the number of physical property measurements and outputs in different measurement directions can be performed for each measurement point within a few seconds, and measurements at different measurement points of a long sheet sample as well as measurement value calculation and analysis can be performed automatically. Continuous measurement and analysis is now possible, making it possible to measure the physical properties of a large number of measurement points over the entire length of a long sheet sample from one end to the other in an extremely short time. It also enables automation of feedback such as changes in sheet manufacturing conditions to achieve uniformity, and has achieved the unique effect of obtaining profiles quickly and with high precision unparalleled by conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の略示側面図、第2図は同上セ
ンサ面の振動子配置底面図、第3図は同上操作系
統回路図、第4図は出力例線図、第5図はクレー
ム対応図である。 1……振動子、2……支持盤、3……センサ
面、4……センサ体、5……シート試料支承体、
6……シート試料、7……シート送り装置。
Fig. 1 is a schematic side view of the embodiment, Fig. 2 is a bottom view of the vibrator arrangement on the sensor surface, Fig. 3 is a circuit diagram of the operation system, Fig. 4 is an output example diagram, and Fig. 5 is a claim. It is a correspondence diagram. 1... Vibrator, 2... Support plate, 3... Sensor surface, 4... Sensor body, 5... Sheet sample support,
6... Sheet sample, 7... Sheet feeding device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超音波用送受波振動子を用い、該送波および受
波の両振動子間のシート試料の超音波の伝播速度
を測定し、前記両振動子間のシート試料の物性を
求めるシートテスタにおいて、超音波発信器と、
送波切換回路と、複数対の送波振動子および受波
振動子と、受波切換回路と、超音波受信器と、増
幅器と、前記複数対の送波振動子および受波振動
子が同一円周上に所定の中心角間隔で支持盤のセ
ンサ面に配置突設されているセンサ体と、前記セ
ンサ面と対峙して配設されるシート試料支承体
と、該シート試料支承体上の長尺のシート試料を
所定距離移動可能とするシート送り装置と、前記
シート試料を前記センサ体とシート試料支承体と
の間で挟持および解放する挟持装置と、出力装置
と、ならびに、前記長尺のシート試料を前記シー
ト試料支承体上で長さ方向所定の距離だけ送る前
記シート送り装置作動手段、前記長尺のシート試
料を前記センサ体とシート試料支承体との間で挟
持および解放する前記挟持装置作動手段、前記発
信器および受信器の作動手段、前記発信器よりの
超音波発信波を隣接する送波振動子へ順次切換送
信する前記送波切換回路の切換手段、送波振動子
と円周中心を挟んで対峙する受波振動子および該
受波振動子に隣接する受波振動子へ順次切換える
受波切換回路の切換手段、前記受信器より増幅器
を介して入力される受信波により前記長尺のシー
ト試料の同一の測定個所における切換え選択され
た送波振動子と受波振動子との間の試料シートの
超音波伝播時間を順次同一距離間の伝播時間に演
算し、前記センサ体とシート試料との関係位置を
変えることなく、同一測定個所での360°全方向の
演算伝播時間を隣接振動子の中心角間隔の1/2の
角間隔の方向毎に前記複数対の送受波振動子の対
の数の2倍の数だけ求め、得られた演算伝播時間
群の最小値および最大値、前記最小値の方向とシ
ート製造方向(MD)との配向角、前記最大値の
方向と前記MDと直角方向(CD)との配向角、
前記最小値と最大値との比の値、およびMD方向
の伝播時間値とCD方向の伝播時間値との比の値
を同一測定個所について演算し、引続き別の測定
個所について各360°全方向の演算伝播時間につい
て同様の演算を順次行い、各測定個所におけるそ
れぞれの演算値をプロフアイルとして演算解析集
計整理して前記出力装置への出力を行う演算解析
出力手段の各手段を有する電算装置とよりなるこ
とを特徴とする超音波式シートテスタ。
In a sheet tester that uses an ultrasonic transmitting/receiving transducer to measure the propagation velocity of ultrasonic waves in a sheet sample between both the transmitting and receiving transducers, and to determine the physical properties of the sheet sample between the two transducers, an ultrasonic transmitter,
The transmitting switching circuit, the plurality of pairs of transmitting transducers and receiving transducers, the receiving switching circuit, the ultrasonic receiver, the amplifier, and the plurality of pairs of transmitting transducers and receiving transducers are the same. A sensor body protruding from the sensor surface of the support plate at predetermined central angular intervals on the circumference, a sheet sample support disposed facing the sensor surface, and a sensor body on the sheet sample support. a sheet feeding device that can move a long sheet sample a predetermined distance; a holding device that clamps and releases the sheet sample between the sensor body and the sheet sample support; an output device; the sheet feeding device actuating means for feeding the sheet sample by a predetermined distance in the longitudinal direction on the sheet sample support; A clamping device operating means, an operating means for the transmitter and the receiver, a switching means for the wave transmission switching circuit that sequentially switches and transmits the ultrasonic waves from the transmitter to an adjacent wave transmission transducer, and a transmission transducer; A switching means of a reception switching circuit that sequentially switches to a reception oscillator facing each other across the center of a circumference and a reception oscillator adjacent to the reception oscillator; The ultrasonic propagation time of the sample sheet between the selected transmitting transducer and the receiving transducer at the same measurement point of the long sheet sample is calculated sequentially into the propagation time for the same distance, and the sensor The calculated propagation time in all directions of 360° at the same measurement point is transmitted and received by the plurality of pairs in each direction at an angular interval of 1/2 of the center angular interval of adjacent vibrators, without changing the relative position between the body and the sheet sample. A number twice as many as the number of pairs of wave oscillators is calculated, and the minimum and maximum values of the calculated propagation time group obtained, the orientation angle between the direction of the minimum value and the sheet manufacturing direction (MD), and the maximum value direction and the orientation angle between the MD and the perpendicular direction (CD),
The value of the ratio between the minimum value and the maximum value and the value of the ratio of the propagation time value in the MD direction and the propagation time value in the CD direction are calculated for the same measurement point, and then for each other measurement point in all 360° directions. a computer device having respective means of an arithmetic analysis output means for sequentially performing similar arithmetic operations on the arithmetic propagation time of , and calculating and organizing the arithmetic analysis results as a profile of each calculated value at each measurement location and outputting the arithmetic analysis output means to the output device; An ultrasonic sheet tester characterized by:
JP1986125210U 1986-08-15 1986-08-15 Expired - Lifetime JPH0544776Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986125210U JPH0544776Y2 (en) 1986-08-15 1986-08-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986125210U JPH0544776Y2 (en) 1986-08-15 1986-08-15

Publications (2)

Publication Number Publication Date
JPS6331366U JPS6331366U (en) 1988-02-29
JPH0544776Y2 true JPH0544776Y2 (en) 1993-11-15

Family

ID=31017914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986125210U Expired - Lifetime JPH0544776Y2 (en) 1986-08-15 1986-08-15

Country Status (1)

Country Link
JP (1) JPH0544776Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221654A (en) * 1983-05-31 1984-12-13 Chiyoda Chem Eng & Constr Co Ltd Method and device for transmission type ultrasonic flaw detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221654A (en) * 1983-05-31 1984-12-13 Chiyoda Chem Eng & Constr Co Ltd Method and device for transmission type ultrasonic flaw detection

Also Published As

Publication number Publication date
JPS6331366U (en) 1988-02-29

Similar Documents

Publication Publication Date Title
US5398538A (en) On-line measurement of ultrasonic velocities in web manufacturing processes
JPH0612272B2 (en) Hybrid analytical test equipment
US4790188A (en) Method of, and an apparatus for, evaluating forming capabilities of solid plate
US5299458A (en) Nondestructive ultrasonic evaluation of formability of metallic sheets
JP2550377B2 (en) Improved probe for hybrid analytical test equipment
JPH0544776Y2 (en)
CN208366915U (en) It is a kind of to calibrate the test block of A type for the system performance of phased array supersonic instrument and probe
CN208140644U (en) Nonmetallic ultrasound computed tomography detection system
JPH0854378A (en) Method for evaluating surface crack of concrete
Craik The measurement of the material properties of building structures
CN212409597U (en) Measuring tool for measuring ultrasonic wave detection angle deflection value of sound beam of angle probe
JP2626361B2 (en) Ultrasonic phase velocity curve determination method and apparatus
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
JPS5960256A (en) Ultrasonic flaw detector
SU391469A1 (en) DEVICE FOR DETERMINATION OF COEFFICIENT
SU1578847A1 (en) Method of determining directional pattern of ultrasound converter in solid body
CN107632074B (en) Multipurpose portable test block for ultrasonic detection
JPH0712965U (en) Rolled material tightness measuring device
SU1350609A1 (en) Method of acoustic flaw detection of multilayer articles
CN114152226A (en) Rapid nondestructive testing method and device for thickness of rapid-hardening high-strength inorganic formwork
Pei et al. Plate thickness and transducer distance dual inversion with dry contact ultrasonic Lamb wave transducers
SU1381328A1 (en) Device for checking nonflatness and thickness of plates
JP2002054901A (en) Measuring device for thickness of core material
JPS6139287Y2 (en)
JPS63222228A (en) Apparatus for measuring propagation velocity of ultrasonic wave in object to be inspected