JPH0544176B2 - - Google Patents

Info

Publication number
JPH0544176B2
JPH0544176B2 JP57012301A JP1230182A JPH0544176B2 JP H0544176 B2 JPH0544176 B2 JP H0544176B2 JP 57012301 A JP57012301 A JP 57012301A JP 1230182 A JP1230182 A JP 1230182A JP H0544176 B2 JPH0544176 B2 JP H0544176B2
Authority
JP
Japan
Prior art keywords
sample stage
time
sampling
charged beam
beam exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012301A
Other languages
Japanese (ja)
Other versions
JPS58212134A (en
Inventor
Kyomi Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57012301A priority Critical patent/JPS58212134A/en
Publication of JPS58212134A publication Critical patent/JPS58212134A/en
Publication of JPH0544176B2 publication Critical patent/JPH0544176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、荷電ビーム露光装置に用いられる高
精度試料台の特性を測定し、評価解析する荷電ビ
ーム露光装置用試料台の特性評価方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for evaluating the characteristics of a sample stage for a charged beam exposure apparatus, which measures and evaluates and analyzes the characteristics of a high-precision sample stage used in a charged beam exposure apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

荷電ビーム露光装置でマスクやウエーハ等に高
精度のパターンを高速度で描画するためには、試
料台が加減速特性、定常走行特性および振動特性
等の点で厳しい条件を満たす必要がある。このた
め、荷電ビーム露光装置の立上げ時の調整や稼動
開始後の保守等には、試料台のこれらの特性を測
定評価することが不可欠となる。
In order to draw highly accurate patterns on masks, wafers, etc. at high speed with a charged beam exposure device, the sample stage must meet strict conditions in terms of acceleration/deceleration characteristics, steady running characteristics, vibration characteristics, etc. For this reason, it is essential to measure and evaluate these characteristics of the sample stage for adjustment at the time of starting up the charged beam exposure apparatus, maintenance after the start of operation, and the like.

従来、荷電ビーム露光装置の試料台の特性を測
定するには、加速度計、電気マイクロメータおよ
びスペクトラムアナライザ等の測定器が用いられ
る。測定に際してこれらの測定器やセンサは、約
10-7〔torr〕の高真空に保たれた試料室中の試料
台に直接固定される。便宜的に試料室外の駆動機
構部に取り付けることもあるが、この場合、伝達
機構やベローを介した試料台とは機構特性が変化
する可能性が考えられるため、試料台に直付けす
る方法が一般的にはとられる。そして、上述した
測定器やセンサを直付けする方法にあつては次の
3つの問題があつた。
Conventionally, measuring instruments such as an accelerometer, an electric micrometer, and a spectrum analyzer are used to measure the characteristics of a sample stage of a charged beam exposure apparatus. When measuring, these measuring instruments and sensors
It is directly fixed to a sample stage in a sample chamber maintained at a high vacuum of 10 -7 [torr]. For convenience, it may be attached to the drive mechanism outside the sample chamber, but in this case, there is a possibility that the mechanical characteristics will be different from the sample table via the transmission mechanism or bellows, so it is recommended to attach it directly to the sample table. Generally taken. The following three problems arose with the above-mentioned method of directly attaching measuring instruments and sensors.

第1は、測定器やセンサを取り付けるために試
料室の真空を破つて試料台を開放しなければなら
ないことである。これには、通常荷電ビーム照射
系鏡筒の分解、取外しといつた人手を要する作業
が伴なう。また、測定終了後試料室を高真空状態
に回復するには多くの時間を要し、荷電ビーム照
射系に絡んだパラメータの測定や調整が必要にな
つて来る場合もある。
First, in order to attach measuring instruments and sensors, the vacuum in the sample chamber must be broken and the sample stage must be opened. This usually involves manual work such as disassembly and removal of the charged beam irradiation system barrel. Furthermore, it takes a lot of time to restore the sample chamber to a high vacuum state after the measurement is completed, and it may become necessary to measure and adjust parameters related to the charged beam irradiation system.

第2には、加速度計、電気マイクロメータおよ
びスペクトラムアナライザ等の従来の測定器が何
れも単能型であるため、測定の項目に合わせてそ
れぞれに測定器を用意し、測定の前準備を図る必
要がある。荷電ビーム露光装置の試料台の特性評
価には多種類の項目の測定を必要とするから、測
定器を集めて準備するのに多くの人手と時間がか
かる。以上の2つは、保守効率の悪さから荷電ビ
ーム露光装置のダウンタイムを長びかせ、稼動率
を低下させる問題に直結する。
Second, because conventional measuring instruments such as accelerometers, electric micrometers, and spectrum analyzers are all single-function types, it is necessary to prepare each measuring instrument according to the measurement item and prepare for the measurement. There is a need. Characteristic evaluation of the sample stage of a charged beam exposure apparatus requires measurement of many types of items, so it takes a lot of manpower and time to collect and prepare measuring instruments. The above two problems directly lead to the problem of prolonging the downtime of the charged beam exposure apparatus due to poor maintenance efficiency and reducing the operating rate.

第3は、従来の測定器を使つた測定では雰囲気
が変化し、試料台の稼動時そのままの特性評価が
困難なことである。試料室を分解して大気に晒
し、荷電ビーム照射系鏡筒を取外した状態での試
料台は、高真空中にあつて試料室に荷電ビーム照
射系鏡筒が載置した状態とは別の特性を示す。従
つて、従来の測定では稼動状態での試料台特性の
評価を厳密に行なうことはできなかつた。
Third, in measurements using conventional measuring instruments, the atmosphere changes, making it difficult to evaluate the characteristics as they are when the sample stage is in operation. The sample stage with the sample chamber disassembled and exposed to the atmosphere and the charged beam irradiation system barrel removed is different from the sample stage in a high vacuum with the charged beam irradiation system barrel mounted in the sample chamber. Show characteristics. Therefore, conventional measurements have not been able to accurately evaluate the characteristics of the sample stage in the operating state.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の測定器による試料台の
特性評価では測定や準備に人手と時間がかかり、
稼動時と同一の条件での測定が行えないという問
題を解決し、短時間に効率よく稼動時そのままの
測定を可能にする荷電ビーム露光装置用試料台の
特性評価方法を提供することにある。
The purpose of the present invention is to evaluate the characteristics of a sample stage using conventional measuring instruments, which requires labor and time for measurement and preparation.
It is an object of the present invention to provide a method for evaluating the characteristics of a sample stage for a charged beam exposure apparatus, which solves the problem of not being able to perform measurements under the same conditions as during operation, and enables efficient measurement under the same conditions as during operation in a short period of time.

〔発明の概要〕[Summary of the invention]

本発明は、試料台を駆動制御する試料台駆動制
御部および試料台の位置を測定する試料台位置測
定部を具備した荷電ビーム露光装置の上記試料台
位置測定部から、指定の時間間隔で連続的にクロ
ツク信号を発生する基準クロツク発生器の出力信
号を基準に、前記試料台の位置データを時系列的
に抽出して計算機メモリに採り込み、上記メモリ
に採り込みまれた位置データ情報を演算処理して
前記試料台の時間領域(具体的には速度ムラ、加
速度ムラ)および周波数領域(具体的には振動の
周波数成分)の特性解析データ(具体的には試料
台の動特性)を得るようにした方法である。
The present invention continuously detects the sample stage at specified time intervals from the sample stage position measuring section of a charged beam exposure apparatus, which is equipped with a sample stage drive control section that drives and controls the sample stage and a sample stage position measuring section that measures the position of the sample stage. Based on the output signal of a reference clock generator that generates a clock signal periodically, the position data of the sample stage is extracted in chronological order and stored in a computer memory, and the position data information stored in the memory is calculated. Processing to obtain characteristic analysis data (specifically, dynamic characteristics of the sample platform) in the time domain (specifically, velocity unevenness, acceleration unevenness) and frequency domain (specifically, frequency components of vibration) of the sample platform. This is how I did it.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次の(1)〜(7)に示すような効果
が得られる。
According to the present invention, the following effects (1) to (7) can be obtained.

(1) 荷電ビーム露光装置の測長系(レーザ干渉
計、モアレ縞、etc.)がそのまま使えるため、
他に測定器を必要としない。測定器の用意や測
定のための準備が不要である。
(1) The length measurement system (laser interferometer, moire fringes, etc.) of the charged beam exposure device can be used as is.
No other measuring equipment required. There is no need to prepare a measuring device or prepare for measurement.

(2) 荷電ビーム露光装置に組込まれた測長系を使
うから、試料室の分解および電子照射系鏡筒の
分解等の人手と時間のかかる作業が不要であ
る。
(2) Since the length measurement system built into the charged beam exposure device is used, manual and time-consuming work such as disassembling the sample chamber and electron irradiation system barrel is unnecessary.

(3) 荷電ビーム露光装置に組込まれた測長系を使
つて、測定雰囲気を何ら変えることなく稼動状
態での特性評価が正しく行える。
(3) By using the length measurement system built into the charged beam exposure system, characteristics can be evaluated correctly in the operating state without changing the measurement atmosphere.

(4) 計算機メモリにデータを採り込んで処理する
ため、同一のデータを多角的な解析に繰り返し
利用できる。
(4) Data is loaded into computer memory and processed, so the same data can be used repeatedly for multifaceted analysis.

(5) ソフトウエアプログラムでデータ処理を行な
うため、処理機能が豊富で融通性に富み、また
処理機能の拡張、変更も容易である。
(5) Since data processing is performed using a software program, the processing functions are rich and flexible, and the processing functions can be easily expanded and changed.

(6) 荷電ビーム露光装置測長系が持つ高い解像度
で試料台の特性評価が行える。
(6) Characteristics of the sample stage can be evaluated with the high resolution of the length measurement system of the charged beam exposure device.

(7) グラフ表示や記録フアイルの作成に計算機の
豊富な周辺機器が利用できる。
(7) A wide variety of computer peripherals can be used to display graphs and create record files.

〔発明の実施例〕[Embodiments of the invention]

第1図は荷電ビーム露光装置の試料台まわりの
構成を示すブロツク図である。なお、発明に関係
しない部分は省略している。計算機1とインタフ
エース2を介して接続されたX試料台駆動御回路
3およびY試料台駆動制御回路4がそれぞれXモ
ータ5およびYモータ6の起動、停止をコントロ
ールしてX−Y試料台7を動かす。この試料台7
の動きはレーザ干渉計から成る位置測定系でリア
ルタイムに測定される。レーザ発振器(図示せ
ず)から発射されたレーザビームがミラー8,9
で反射し、インタフエロメータ10,11に入り
干渉光をつくり、これをXレシーバ12およびY
レシーバ13で受けて光信号から電気信号に変換
し、X試料台位置測定回路14、Y試料台位置測
定回路15に送つて、位置情報に変える。荷電ビ
ーム露光装置によつては位置測定系にモアレ縞を
使つたり、試料台駆動制御回路をXとYで共用し
て切換えてそれぞれのモータをコントロールした
りするものがある。しかし、本発明は試料台の動
きをコントロールしたり、位置をモニタする機能
を持つ回路が計算機とのインターフエースを持
ち、計算機制御が可能な場合、構成上の方法や手
段の違いを越えて全てに適用することができる。
従つて、以降の説明ではX,Yの試料台駆動制御
回路3,4,X,Yのモータ5,6等をまとめて
試料台駆動制御部、X,Yの試料台位置測定回路
14,15や関連する機器類をまとめて試料台位
置測定部と呼ぶ。
FIG. 1 is a block diagram showing the configuration around a sample stage of a charged beam exposure apparatus. Note that parts not related to the invention are omitted. An X sample stage drive control circuit 3 and a Y sample stage drive control circuit 4, which are connected to the computer 1 via an interface 2, control the start and stop of the X motor 5 and Y motor 6, respectively, and control the X-Y sample stage 7. move. This sample stage 7
The movement of is measured in real time by a position measurement system consisting of a laser interferometer. A laser beam emitted from a laser oscillator (not shown) hits mirrors 8 and 9.
and enters the interferometers 10 and 11 to create interference light, which is transmitted to the X receiver 12 and the Y receiver.
The signal is received by the receiver 13, converted from an optical signal to an electrical signal, and sent to the X sample stage position measurement circuit 14 and the Y sample stage position measurement circuit 15, where it is converted into position information. Some charged beam exposure apparatuses use moiré fringes as a position measurement system, or share a sample stage drive control circuit for X and Y and switch between them to control each motor. However, if the circuit that has the function of controlling the movement of the sample stage and monitoring the position has an interface with a computer and can be controlled by the computer, the present invention can be used regardless of the differences in configuration methods and means. It can be applied to
Therefore, in the following explanation, the X, Y sample stage drive control circuits 3, 4, X, Y motors 5, 6, etc. will be collectively referred to as the sample stage drive control section, and the X, Y sample stage position measurement circuits 14, 15. and related equipment are collectively called the sample stage position measurement section.

第2図は外部基準クロツク発生器の概略構成を
示すブロツク図である。発振器21(OSC)は
計算機からのスタート指令を受けてパルス信号を
出す。時刻カウンタ22(CTR)がこれを入力
してカウントを開始する。発振器2へのスタート
指令は試料台駆動制御回路へのモータ起動指令と
同時に出されるから、時刻カウンタ22はモータ
の起動時からの経過時間を示す。モータ停止時刻
レジスタ23(MST)には試料台駆動制御回路
にモータ停止指令を出すべき時刻が記録され、時
刻カウンタ22の内容と一致したときにコンパレ
ータ24(CMP)からモータ停止割り込み信号
Aが出される。サンプリング開始時刻レジスタ2
5(SST)には試料台位置測定回路からのデー
タサンプリングを開始する時刻が記録され、時刻
カウンタ22内容と一致したときにコンパレータ
26(CMP)からサンプリング周期カウンタ2
7(CTR)にカウントエネーブル(許可)信号
CEが出る。サンプリング終了時刻レジスタ28
(SET)には試料台位置測定回路からのデータサ
ンプリングを終了する時刻が記録され、時刻カウ
ンタCRT22の内容と一致したときにコンパレ
ータ29(CMP)からサンプリング終了割り込
み信号Bが出され、同時にサンプリング周期カウ
ンタ27にカウントデイスエーブル(禁止)信号
CDが出る。サンプリング周期カウンタ27は発
振器21の出力信号を入力し、コンパレータ26
からカウントエネーブル信号CEが来たときから
カウントを開始し、カウンタ内容がサンプリング
周期レジスタ30(SIT)と等しくなるとコンパ
レータ31(CMP)からクリア信号CLRが出て
サンプリング周期カウンタ27が0クリアされ、
同時にサンプリング割り込み信号Cが出される。
またコンパレータ29からカウントデイスエーブ
ル信号CDが来るとカウントを停止する。従つて、
コンパレータ31はサンプリング開始時刻レジス
タ25にセツトされたサンプリング開始時刻から
サンプリング終了時刻レジスタ28にセツトされ
たサンプリング終了時刻までサンプリング周期レ
ジスタ30のサンプリング周期で、サンプリング
割込み信号を連続的に発生することになる。計算
機からストツプ指令が出ると、発振器21はパル
ス信号の出力を止め、全ての動作が停止する。以
上の説明では、全ての割込み信号は計算機に対し
て送られる。
FIG. 2 is a block diagram showing a schematic configuration of an external reference clock generator. The oscillator 21 (OSC) receives a start command from the computer and outputs a pulse signal. The time counter 22 (CTR) receives this input and starts counting. Since the start command to the oscillator 2 is issued at the same time as the motor start command to the sample stage drive control circuit, the time counter 22 indicates the elapsed time from the start of the motor. The motor stop time register 23 (MST) records the time at which a motor stop command should be issued to the sample stage drive control circuit, and when the time matches the contents of the time counter 22, a motor stop interrupt signal A is issued from the comparator 24 (CMP). It will be done. Sampling start time register 2
5 (SST) records the time to start data sampling from the sample stage position measuring circuit, and when the time matches the contents of the time counter 22, the comparator 26 (CMP) records the time at which data sampling starts from the sample stage position measuring circuit.
Count enable signal at 7 (CTR)
CE comes out. Sampling end time register 28
(SET) records the time at which data sampling from the sample stage position measurement circuit ends, and when it matches the contents of the time counter CRT22, a sampling end interrupt signal B is issued from the comparator 29 (CMP), and at the same time the sampling period Counter disable signal to counter 27
CD comes out. The sampling period counter 27 inputs the output signal of the oscillator 21, and the comparator 26
Counting starts when the count enable signal CE is received from the counter, and when the contents of the counter become equal to the sampling period register 30 (SIT), a clear signal CLR is output from the comparator 31 (CMP) and the sampling period counter 27 is cleared to 0.
At the same time, a sampling interrupt signal C is issued.
Further, when a count disable signal CD is received from the comparator 29, counting is stopped. Therefore,
The comparator 31 continuously generates a sampling interrupt signal at the sampling period of the sampling period register 30 from the sampling start time set in the sampling start time register 25 to the sampling end time set in the sampling end time register 28. . When a stop command is issued from the computer, the oscillator 21 stops outputting pulse signals and all operations stop. In the above description, all interrupt signals are sent to the computer.

第3図に本発明の一実施例方法の原理を説明す
るためのブロツク図である。既に述べたように計
算機41は試料台駆動制御部42に指令を送つて
試料台の動きをコントロールし、試料台位置測定
部43からデータを入力して試料台の位置を知
る。また、基準クロツク発生器44も上に述べた
機能を持つ。先ず、計算機41から基準クロツク
発生器44内の各レジスタにサンプリング開始時
刻、モータ停止時刻、サンプリング終了時刻、サ
ンプリング周期の値をセツトする。次いで、試料
台駆動制御部42に対して駆動軸(XかYかな
ど)、方向(前進か後退か)等必要な設定を行な
う。試料台位置測定部43に対しても必要な初期
設定を済ませる。前準備が全て完了したら、試料
台駆動制御部42にモータの起動指令を出し、同
時に基準クロツク発生器44にスタート指令を出
す。指定の軸の試料台が指定の方向に動き出し、
同時に基準クロツク発生器44内の時刻カウンタ
がカウントを始める。この後計算機41は基準ク
ロツク発生器44からの割込み信号を持ち、サン
プリング割込み信号が来た場合には試料台位置測
定部43からのデータサンプリングを実行し、モ
ータ停止割込み信号が来た場合には試料台駆動制
御部42にモータ停止指令を出して試料台を止め
る。モータ停止割込み信号とサンプリング終了割
込み信号の両方を受付けた時点で基準クロツク発
生器44にストツプ指令を出す。
FIG. 3 is a block diagram for explaining the principle of a method according to an embodiment of the present invention. As described above, the computer 41 sends commands to the sample stage drive control section 42 to control the movement of the sample stage, and inputs data from the sample stage position measuring section 43 to know the position of the sample stage. Reference clock generator 44 also has the functions described above. First, the computer 41 sets the sampling start time, motor stop time, sampling end time, and sampling cycle values in each register in the reference clock generator 44. Next, necessary settings such as the drive axis (X or Y, etc.), direction (forward or backward), etc. are made to the sample stage drive control unit 42. Necessary initial settings are also completed for the sample stage position measuring section 43. When all preliminary preparations are completed, a motor start command is issued to the sample stage drive control section 42, and at the same time a start command is issued to the reference clock generator 44. The sample stage on the specified axis begins to move in the specified direction,
At the same time, the time counter within reference clock generator 44 begins counting. Thereafter, the computer 41 receives an interrupt signal from the reference clock generator 44, and when a sampling interrupt signal arrives, it executes data sampling from the sample stage position measuring section 43, and when a motor stop interrupt signal arrives, A motor stop command is issued to the sample stage drive control unit 42 to stop the sample stage. When both the motor stop interrupt signal and the sampling end interrupt signal are received, a stop command is issued to the reference clock generator 44.

以上の動作で、サンプリング開始時刻、モータ
停止時刻、サンプリング終了時刻を種々に変えて
設定すると、試料台の過渡状態、定常走行状態で
のデータが得られる。速度−時間の線図でこの例
を示したのが第4図である。第4図aでは起動か
ら停止までの全走行状態(t1=0,ta+td≪t1
t2)を、bでは加速状態(t1=0,ta<t3<t2
を、cでは定速走行状態(ta<t1<t3<t2)を、
dでは減速状態(t1<t2,t3+td<t2)をそれぞれ
データサンプリングしている。ただし、 (t1:サンプリング開始時刻 t2:モータ停止時刻 t3:サンプリング終了時刻 ta:モータ加速時間 td:モータ減速時間) である。
By performing the above operations and setting the sampling start time, motor stop time, and sampling end time variously, data for the transient state and steady running state of the sample stage can be obtained. FIG. 4 shows this example in a speed-time diagram. In Fig. 4a, the entire running state from start to stop (t 1 = 0, t a + t d ≪t 1 +
t 2 ), and in b the accelerated state (t 1 = 0, t a < t 3 < t 2 )
In c, constant speed running state (t a < t 1 < t 3 < t 2 ),
In d, data is sampled for each deceleration state (t 1 <t 2 , t 3 +t d <t 2 ). However, (t 1 : sampling start time t 2 : motor stop time t 3 : sampling end time t a : motor acceleration time t d : motor deceleration time).

こうして得た各状態での時系列データは計算機
41で速度や加速度のデータに変換し対時間、対
位置のグラフで表わすことができる。サンプリン
グ時に、例えばXとYのデータを同時に採取すれ
ば、片方の試料台を連続移動させた時の他方向か
ら見た蛇行が測定できる。また、これらのデータ
をフーリエ変換して周波数特性を調べることがで
きる。フーリエ変換後、特定周波数成分の振幅の
み残してフーリエ逆変換すれば、時間領域で、あ
る特定帯域の周波数成分を持つ信号の観察が選択
的に行える。さらに、特殊な器具が予め測長系に
設置してあれば、試料台のピツチング、ヨーイン
グの特性測定も可能となる。
The time-series data in each state thus obtained can be converted into velocity and acceleration data by the computer 41 and expressed as graphs of time versus position. If, for example, X and Y data are collected at the same time during sampling, the meandering seen from the other direction when one sample stage is continuously moved can be measured. Furthermore, the frequency characteristics can be investigated by Fourier transforming these data. After Fourier transform, by performing inverse Fourier transform while leaving only the amplitude of a specific frequency component, signals having frequency components in a specific band can be selectively observed in the time domain. Furthermore, if a special instrument is installed in the length measurement system in advance, it is also possible to measure the pitching and yawing characteristics of the sample stage.

なお、本発明は上述した実施例に限定されるも
のではなく、例えば第5図に示すような変形応用
が可能である。ここでは計算機41は試料台駆動
制御部42に駆動軸と駆動方向の指定をするがモ
ータの起動と停止の指令は基準クロツク発生器4
4から出される。即ち、計算機41からの基準ク
ロツク発生器44にスタート指令が出ると、この
信号は試料台駆動制御部42に送られてモータを
起動する。基準クロツク発生器44のモータ停止
割込み信号は試料台駆動制御部42に送られてモ
ータを停止させる。また、基準クロツク発生器4
4のサンプリング割込み信号は試料台位置測定部
43に送られて、データをラツチする信号として
使われる。このラツクデータはあとで計算機41
に読み込まれる。通常、試料台駆動制御部42や
試料台位置測定部43は計算機41のバスを通し
て計算機制御する設計になつているため、第5図
の変形応用例の構成にするには、これらの回路の
制御信号を外部信号として入力する端子を新たに
設ける必要がある。しかし、この構成が実現すれ
ば、データサンプリング時の計算機処理が簡単に
なる利点がある。
It should be noted that the present invention is not limited to the above-described embodiments, and can be modified as shown in FIG. 5, for example. Here, the computer 41 specifies the drive axis and drive direction to the sample stage drive control unit 42, but commands for starting and stopping the motor are sent to the reference clock generator 4.
Served from 4. That is, when a start command is issued from the computer 41 to the reference clock generator 44, this signal is sent to the sample stage drive control section 42 to start the motor. A motor stop interrupt signal from the reference clock generator 44 is sent to the sample stage drive control section 42 to stop the motor. In addition, the reference clock generator 4
The sampling interrupt signal No. 4 is sent to the sample stage position measuring section 43 and used as a signal for latching data. This easy data can be used later on calculator 41.
is loaded into. Normally, the sample stage drive control unit 42 and the sample stage position measurement unit 43 are designed to be controlled by a computer through the bus of the computer 41, so in order to configure the modified application example shown in FIG. 5, these circuits must be controlled. It is necessary to newly provide a terminal for inputting a signal as an external signal. However, if this configuration is realized, there is an advantage that computer processing during data sampling becomes simpler.

また、基準クロツク発生器として第6図に示す
構成のものを使う変形応用例が考えられる。ここ
では発振器61の出力をサンプル周期カウンタ6
2でカウントする。カウント値がサンプル周期レ
ジスタ63(SIT)の内容と一致する毎にコンパ
レータ64が働き、カウンタ62を0クリアする
と共に、サンプリング割込み信号cを計算機に送
る。計算機ではモータの起動時刻からサンプリン
グ割り込みの回数を数え、常に現在時刻を記録し
ておく。そして、現在時刻がサンプリング開始時
刻と一致したらデータサンプリングを開始し、サ
ンプリング終了時刻と一致したらこの動作を止め
る。モータ停止時刻と一致した場合はモータの停
止指令を出す。データサンプリングを実行する時
間や間隔は必ずしもサンプリング周期レジスタ6
3の内容と一致させる必要はなく、サンプリング
割込みがn回入る毎に実行してもよい。この変形
応用例は計算機が現在時刻の記録、サンプリング
開始・終了時刻等との比較処理を行なうため、ソ
フトウエア処理が煩雑になる嫌いがあるが、計算
機の標準のタイムベースを基準クロツクとして応
用できる利点がある。
Further, a modified example of application using the configuration shown in FIG. 6 as a reference clock generator can be considered. Here, the output of the oscillator 61 is measured by the sampling period counter 6.
Count by 2. Each time the count value matches the contents of the sampling period register 63 (SIT), the comparator 64 operates, clears the counter 62 to 0, and sends a sampling interrupt signal c to the computer. The computer counts the number of sampling interrupts from the motor startup time and always records the current time. Then, data sampling is started when the current time matches the sampling start time, and this operation is stopped when the current time matches the sampling end time. If the time matches the motor stop time, a motor stop command is issued. The time and interval at which data sampling is performed are not necessarily determined by the sampling period register 6.
It is not necessary to match the contents of step 3, and it may be executed every n times a sampling interrupt occurs. In this modified application example, the computer records the current time and performs comparison processing with sampling start and end times, etc., so the software processing tends to be complicated, but the standard time base of the computer can be used as the reference clock. There are advantages.

その他、本発明の要旨を逸脱しない範囲で、
種々変形して実施することができる。
In addition, without departing from the gist of the present invention,
Various modifications can be made.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は荷電ビーム露光装置の試料台まわりを
示すブロツク図、第2図は基準クロツク発生器の
概略構成を示すブロツク図、第3図は本発明の一
実施例方法の原理を説明するためのブロツク図、
第4図a〜dは上記実施例の作用を説明するため
の図、第5図および第6図はそれぞれ変形例を説
明するためのブロツク図である。 1……計算機、2……インタフエース、3……
X試料台駆動制御回路、4……Y試料台駆動制御
回路、5……Xモータ、6……Yモータ、7……
X−Y試料台、8,9……ミラー、10,11…
…インタフエロメータ、12……Xレシーバ、1
3……Yレシーバ、14……X試料台位置測定回
路、15……Y試料台位置測定回路、21……発
振器、22……時刻カウンタ、23……モータ停
止時刻レジスタ、24,26,29,31……コ
ンパレータ、25……サンプリング開始時刻レジ
スタ、27……サンプリング周期カウンタ、28
……サンプリング終了時刻レジスタ、30……サ
ンプリング間隔レジスタ、41……計算機、42
……試料台駆動制御部、43……試料台位置測定
部、44……基準クロツク発生器、61……発振
器、62……サンプリング周期カウンタ、63…
…サンプリング周期レジスタ、64……コンパレ
ータ。
FIG. 1 is a block diagram showing the surroundings of a sample stage of a charged beam exposure apparatus, FIG. 2 is a block diagram showing a schematic configuration of a reference clock generator, and FIG. 3 is for explaining the principle of a method according to an embodiment of the present invention. block diagram,
4a to 4d are diagrams for explaining the operation of the above embodiment, and FIGS. 5 and 6 are block diagrams for explaining modified examples, respectively. 1...Calculator, 2...Interface, 3...
X sample stage drive control circuit, 4...Y sample stage drive control circuit, 5...X motor, 6...Y motor, 7...
X-Y sample stage, 8, 9...Mirror, 10, 11...
...Interfacer meter, 12...X receiver, 1
3...Y receiver, 14...X sample stage position measurement circuit, 15...Y sample stage position measurement circuit, 21...oscillator, 22...time counter, 23...motor stop time register, 24, 26, 29 , 31...Comparator, 25...Sampling start time register, 27...Sampling period counter, 28
... Sampling end time register, 30 ... Sampling interval register, 41 ... Calculator, 42
... Sample stage drive control section, 43 ... Sample stage position measurement section, 44 ... Reference clock generator, 61 ... Oscillator, 62 ... Sampling period counter, 63 ...
...Sampling period register, 64...Comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 試料台を駆動制御する試料台駆動制御部およ
び試料台の位置を測定する試料台位置測定部を具
備した荷電ビーム露光装置の上記試料台位置測定
部から、指定の時間間隔で連続的にクロツク信号
を発生する基準クロツク発生器の出力信号を基準
に、前記試料台の位置データを時系列的に計算機
メモリに採り込み、上記メモリに採り込まれた位
置データ情報を演算処理して前記試料台の時間領
域および周波数領域の特性解析データを得ること
を特徴とする荷電ビーム露光装置用試料台の特性
評価方法。
1. The sample stage position measuring unit of the charged beam exposure apparatus is equipped with a sample stage drive control unit that drives and controls the sample stage, and a sample stage position measuring unit that measures the position of the sample stage, and the clock is continuously clocked at specified time intervals. Based on the output signal of the reference clock generator that generates the signal, the position data of the sample stage is taken into the computer memory in chronological order, and the position data information taken into the memory is arithmetic processed. A method for evaluating the characteristics of a sample stage for a charged beam exposure apparatus, characterized by obtaining characteristic analysis data in the time domain and frequency domain.
JP57012301A 1982-01-28 1982-01-28 Evaluating method for characteristics of specimen base for charged beam exposure apparatus Granted JPS58212134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012301A JPS58212134A (en) 1982-01-28 1982-01-28 Evaluating method for characteristics of specimen base for charged beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012301A JPS58212134A (en) 1982-01-28 1982-01-28 Evaluating method for characteristics of specimen base for charged beam exposure apparatus

Publications (2)

Publication Number Publication Date
JPS58212134A JPS58212134A (en) 1983-12-09
JPH0544176B2 true JPH0544176B2 (en) 1993-07-05

Family

ID=11801495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012301A Granted JPS58212134A (en) 1982-01-28 1982-01-28 Evaluating method for characteristics of specimen base for charged beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPS58212134A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333068A (en) * 1976-09-09 1978-03-28 Toshiba Corp Electron beam exposure apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333068A (en) * 1976-09-09 1978-03-28 Toshiba Corp Electron beam exposure apparatus

Also Published As

Publication number Publication date
JPS58212134A (en) 1983-12-09

Similar Documents

Publication Publication Date Title
EP0653072B1 (en) Apparatus for automatic testing of complex devices
JPH03218421A (en) Oscillation mode measuring device
JPH0544176B2 (en)
US3842661A (en) Shock spectrum analysis method and apparatus
US4527907A (en) Method and apparatus for measuring the settling time of an analog signal
JP3516778B2 (en) Frequency measurement method for semiconductor test equipment
JPS6321511A (en) Testing pulse oscillator
US5168220A (en) Method and apparatus for measuring motor speed using a constant sampling time
KR940004394B1 (en) Speed measuring method and device
Nogiec et al. Architecture of a multi-channel data streaming device with an FPGA as a coprocessor
Schreiber Improved method for precise shaft angle oscillation and angular velocity measurement:(With simultaneous sampling of other analog signals using NI DAQ Cards)
RU2050598C1 (en) Method and device for measuring characteristics of acoustic vibrations radiated by movable object
JPH04361130A (en) Method and device for recording engine performance in engine testing device
SU487353A1 (en) Measuring strobe electrical signal converter
JP2001274482A (en) Apparatus for measurement and calibration of frequency of laser beam and method for measurement and calibration of frequency of laser beam
CN105445687A (en) Evaluation system and evaluation method for real-time performance of frequency spectrum analyzer
JPH11142452A (en) Electromagnetic interference wave measuring device
JPS5924217A (en) Noise analyzer for vehicle
JPH04172271A (en) Virtual measuring device, digital-signal processing device, electronic-device adjusting apparatus and semiconductor testing apparatus
JP3055309B2 (en) Test pattern generator
SU802787A1 (en) Apparatus for determining run-out time of gyromotor
RU2125287C1 (en) Method for calculation of transfer function weights for non-linear dynamic objects
KR19990032133A (en) Apparatus and method for checking the speed control state of a rotating body
CN115901966A (en) Ultrasonic signal acquisition system based on time sequence control
JPH0527818A (en) Positioning deciding method and positioning controller using the same