JPH0543986B2 - - Google Patents

Info

Publication number
JPH0543986B2
JPH0543986B2 JP63313356A JP31335688A JPH0543986B2 JP H0543986 B2 JPH0543986 B2 JP H0543986B2 JP 63313356 A JP63313356 A JP 63313356A JP 31335688 A JP31335688 A JP 31335688A JP H0543986 B2 JPH0543986 B2 JP H0543986B2
Authority
JP
Japan
Prior art keywords
snow
torque
transmission line
rotation angle
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63313356A
Other languages
Japanese (ja)
Other versions
JPH02159594A (en
Inventor
Toshihiro Oka
Osamu Kajita
Mitsuru Yasui
Takao Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Fujikura Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tokyo Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP63313356A priority Critical patent/JPH02159594A/en
Publication of JPH02159594A publication Critical patent/JPH02159594A/en
Publication of JPH0543986B2 publication Critical patent/JPH0543986B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 架空送電線の側面に雪が付着すると、そのモー
メントで電線が回転し、そこにさらに着雪する。
この発明は、このような着雪によつて回転される
架空送電線への着雪状況を、長い径間長の架空送
電線よりも遥かに短に電線サンプルで模擬的に得
ようとする方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] When snow adheres to the side of an overhead power transmission line, the electric wire rotates due to the moment, and further snow accumulates there.
This invention is a method for simulating snow accretion on overhead power lines that rotate due to snow accumulation using wire samples that are much shorter than overhead power lines with long spans. It is related to.

〔従来の技術〕[Conventional technology]

架空送電線の雪害には種々の形態があり、中で
も重要なものは強風下での湿雪による電線着雪で
あつて、主として問題となるのは着雪荷重と電線
のギヤロツピング振動である。
There are various forms of snow damage to overhead power transmission lines, and the most important one is snow accretion on electric wires due to wet snow under strong winds, and the main problems are the snow load and gearing vibration of electric wires.

この着雪の堆積が最も大きくなるのは電線周囲
に筒雪となる場合であつて、その筒雪の発達の過
程としては、1つは、強風時に湿雪が電線の側面
に付着し、そのモーメントで電線が回転し、そこ
への着雪と回転とが繰り返されることにより筒雪
にまで発達する場合と、もう1つは、電線は一般
的に支持点(鉄塔)付近ではカテナリー状に傾斜
しており、この部分の側面に着雪があると、その
着雪は電線の最外撚線層の撚りに沿つて下方に向
かうべく回転移動し、さらにそこへの着雪と回転
移動が繰り返されるために筒雪となる場合とがあ
ると考えられている。
The accumulation of snow becomes the largest when it forms a snow pile around the electric wires, and one of the processes by which this snow pile develops is when wet snow adheres to the sides of the electric wires during strong winds, and the moment In one case, the electric wire rotates and snow accumulates on it and rotates repeatedly, causing it to develop into a pipe of snow.The other is that the electric wire generally slopes like a catenary near the support point (steel tower). When snow accretes on the side of this part, the accreted snow rotates downward along the twists of the outermost stranded wire layer of the wire, and then the snow accretes there and rotates repeatedly. It is thought that there may be cases where snow falls.

しかしこれらの現象の生じる頻度は少なく、こ
れを待つて現象の解明や対策の研究を行うのは極
めて非効率的であるため、自然降雪を用いてこれ
を電線サンプルに吹き付けて着雪させる模擬方法
が開発されつつある。
However, these phenomena occur infrequently, and it would be extremely inefficient to wait for them to elucidate the phenomenon or research countermeasures, so we developed a simulation method that uses natural snowfall to blow snow onto wire samples. is being developed.

〔発明が解決しようとする課題〕 上記の自然降雪を用いて実験室的に着雪状況を
観察するために、上述の送電線の側面への着雪に
よる電線の回転を模擬すべく手動で電線にねじり
を加えて着雪状況を観察することが試みられてい
るが、実際の送電線の径間長は数100mと長く、
径間に一様に着雪があつたとしても、径間の位置
により回転角は異なり、また、電線にはカテナリ
ーがあるために、トルクと回転角の関係は線形で
はない。したがつて上記の方法では、径間のどこ
かの一部の状況を捕らえることができても、それ
が正確にどこの部分であるのかを知り、また他の
部分の着雪状況はそれとは異なることになるの
で、それからして各部の状況がどうであるのか、
を推定することは困難であつた。
[Problem to be Solved by the Invention] In order to observe snow accretion conditions in a laboratory using the natural snowfall described above, electric wires were manually moved to simulate the rotation of the electric wires due to snow accretion on the sides of the power transmission lines described above. Attempts have been made to observe snow accretion by twisting the cable, but the actual span length of power transmission lines is several hundred meters long.
Even if snow is uniformly deposited on the span, the rotation angle differs depending on the position of the span, and since the electric wire has a catenary, the relationship between torque and rotation angle is not linear. Therefore, with the above method, even if it is possible to capture the situation in a part of the span, it is difficult to know exactly which part of the span it is, and the snow situation in other parts is different from that. Since it will be different, what is the situation of each part?
It was difficult to estimate.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、模擬方法とはいえ、上記のような
実状を正確には把握することが困難である従来の
方法を改善し、線路の径間のどの位置の着雪状況
であるのかを正確に把握できる模擬方法を提供す
るものであつて、架空送電線の径間長に応じてそ
の径間の各位置のトルクと回転角との関係を予め
コンピユータに記憶させておき、上記架空送電線
を模擬する電線サンプルに人工着雪をさせて生じ
たトルクを検知し、このトルクと同じ上記コンピ
ユータに記憶された所定径間長の所定位置におけ
るトルクに対する回転角を上記電線サンプルに与
えつつ、人工着雪を行うものである。
Although this invention is a simulation method, it is an improvement over the conventional method in which it is difficult to accurately grasp the actual situation as described above. This method provides a simulation method that can be used to grasp the above-mentioned overhead power transmission line by storing the relationship between torque and rotation angle at each position in the span in advance in a computer according to the span length of the overhead power transmission line. The torque generated by artificially depositing snow on a wire sample to be simulated is detected, and the rotation angle corresponding to the torque at a predetermined position of a predetermined span length, which is the same as this torque and stored in the computer, is applied to the wire sample, and the artificial snow is deposited on the wire sample. It is something that does snow.

〔作 用〕[Effect]

模擬用の電線サンプルに模擬の着雪を行つたと
き、その着雪で加えられたトルクによつて電線サ
ンプルに与えられる回転角は、実際の架空送電線
において、長さ方向に一様に着雪があつた場合、
例えば径間の中央部に上記と同じトルクによつて
生じる回転角よりもかなり小さいが、この発明で
は、この実際の回転角を常に電線サンプルに与え
ながら着雪を行うので、着雪によつて作り出され
る電線サンプルの回転は、常に実際の架空送電線
の所定径間長における所定位置に上記と同じ着雪
があつた場合の回転角が与えられる。
When simulated snow is deposited on a simulated wire sample, the rotation angle given to the wire sample by the torque applied by the snow deposit is similar to that of an actual overhead power transmission line, which is uniformly deposited in the length direction. If it snows,
For example, it is much smaller than the rotation angle caused by the same torque as above in the center of the span, but in this invention, snow is deposited while always applying this actual rotation angle to the wire sample, so snow accretion The rotation of the generated wire sample is always given the rotation angle that would occur if the same snow had fallen at a predetermined position in a predetermined span length of an actual overhead power transmission line.

〔実施例〕〔Example〕

第1図を参照して、この発明の模擬方法を説明
する。第1図はこの発明の方法を実施するための
コンピユータ回路を含む装置であつて、1は模擬
用の電線サンプルで、その構造例は第2図に示さ
れ、それは後述する。2は電線サンプル1の両端
を自由回転可能に支持する支持枠、3および4は
上記電線サンプル1の軸線上にあつて、1つの支
持枠2に対して電線サンプル1とは反対側におい
て電線サンプル1に順次連結されたトルクセンサ
およびパルスモータ、5は電線サンプル1とトル
クセンサ3との接続具、6はトルクセンサ3とパ
ルスモータ4との連結体である。7はCPU、8
はA/D変換器、9はI/Oポートで、CPU7
はA/D変換器8を介してトルクセンサ3に、ま
たI/Oポート9を介してパルスモータ4にそれ
ぞれ接続されている。10はCPU7にセツトさ
れたメモリで、これは後述する第3図および第4
図に示された実際に架線されている架空送電線の
径間のある位置におけるトルク−回転角曲線をプ
ロツトした数値を記憶させたものである。
The simulation method of the present invention will be explained with reference to FIG. FIG. 1 shows an apparatus including a computer circuit for carrying out the method of the present invention, in which numeral 1 is a simulating wire sample, an example of its structure is shown in FIG. 2, and will be described later. 2 is a support frame that supports both ends of the wire sample 1 in a freely rotatable manner; 3 and 4 are on the axis of the wire sample 1; 1 is a torque sensor and a pulse motor connected in sequence; 5 is a connector between the electric wire sample 1 and the torque sensor 3; and 6 is a connection between the torque sensor 3 and the pulse motor 4. 7 is CPU, 8
is the A/D converter, 9 is the I/O port, and CPU7
are connected to the torque sensor 3 via the A/D converter 8 and to the pulse motor 4 via the I/O port 9, respectively. 10 is the memory set in the CPU 7, which is shown in Figures 3 and 4 below.
It stores numerical values plotting the torque-rotation angle curve at a certain position in the span of the overhead power transmission line actually installed in the figure.

第2図は、この発明の方法を実施するために用
いられる電線サンプル1の1つの構造例で、21
はアルミパイプ、22はその外周に撚合せられた
アルミ線からなる撚線層である。これは模擬され
る実際の架空送電線の構造と同一であることが最
も望ましいが、必ずしもそうする必要はなく、少
なくとも最外層の形状、材料、外径等が同一であ
ればよい。
FIG. 2 shows an example of the structure of the electric wire sample 1 used to carry out the method of the present invention.
2 is an aluminum pipe, and 22 is a twisted wire layer made of aluminum wires twisted around the outer periphery of the pipe. Although it is most desirable that this is the same structure as the actual overhead power transmission line to be simulated, it is not necessary to do so, as long as the shape, material, outer diameter, etc. of at least the outermost layer are the same.

第3図および第4図は、架空送電線として断面
積240mm2のACSR(鋼心アルミ撚線)が架線された
線路において、送電線の側面に付着する雪は径間
の送電線の長さに沿つて一様であるとし、また降
雪強度も一様であるとした場合の、送電線の長さ
方向のある位置におけるトルク−回転角曲線であ
つて、第3図は送電線の長さ方向のある位置が各
径間長の中央位置である場合、第4図はその左上
に直線的に示された各径間長ごとにねじり防止用
カウンタ−ウエイト11が取り付けられた送電線
であつて、上記の長さ方向にある位置が各径間長
ごとに位置P1,P2,P3およびP4である場合が示
されている。横軸は送電線に加えられるトルク
(g・cm/m)、縦軸はそのトルクによつて送電線
に与えられる回転角(度)で、各図の曲線Aは径
間長S=400m、曲線Bは径間長S=300m、曲線
Cは径間長S=250m、および曲線Dは径間長S
=200mの場合である。
Figures 3 and 4 show that on a line where ACSR (steel core aluminum stranded wire) with a cross-sectional area of 240 mm 2 is installed as an overhead power transmission line, the snow that adheres to the side of the power line is the same as the length of the power line between the spans. Figure 3 shows the torque-rotation angle curve at a certain position along the length of the transmission line, assuming that the snowfall intensity is also uniform along the length of the transmission line. If a certain position in the direction is the center position of each span length, then FIG. A case is shown in which the positions in the length direction are positions P 1 , P 2 , P 3 and P 4 for each span length. The horizontal axis is the torque applied to the power transmission line (g cm/m), and the vertical axis is the rotation angle (degrees) given to the power transmission line by the torque. Curve A in each figure is the span length S = 400 m, Curve B has a span length S = 300 m, curve C has a span length S = 250 m, and curve D has a span length S
= 200m.

第3図には、各径間の中央位置における曲線を
代表的に示し、また第4図では位置P1〜P4を代
表的に示したが、これは径間長を適当な数に等分
割例えば単位長さに等分割し、その中のある位置
ごとにトルク−回転角曲線を予め求めておくとよ
い。
Fig. 3 shows representative curves at the center position of each span, and Fig. 4 shows representative curves at positions P 1 to P 4 , but this is done by equating the span length to an appropriate number. For example, it is preferable to equally divide into unit lengths and obtain a torque-rotation angle curve in advance for each position therein.

第2図において、いま電線サンプル1に対して
その長さ方向に一様に側面に雪を付着させる。そ
こへの積雪にしたがつて電線サンプル1にモーメ
ントが与えられ、電線サンプル1はその軸の周囲
に回転する。この時のモーメントをトルクセンサ
3で測定する。その値はA/D変換器を通して
CPU7に送られる。CPU7には第3図および第
4図に示した各種径間長のトルク−回転角曲線の
プロツトされた値のメモリ10を予めセツトして
おき、前記トルクセンサ3からのトルクの値が
CPU7にインプツトされると、そのトルクの値
と同一の模擬しようとする所定の径間長の位置の
トルクに対する回転角が呼び出され、これがI/
Oポート9を通じてパルスモータ4にパルスで伝
達され、そのパルス数に応じた回転角までパルス
モータ4は回転される。その回転と共にトルクセ
ンサ3および電線サンプル1も回転する。こうし
て電線サンプル1には、そこに着雪したのと同一
の着雪が所定の送電線の径間長の所定の位置にあ
つた時に生じる回転角と同一の回転角が与えら
れ、さらにそこへの順次の着雪は、あたかも上記
の所定の送電線の所定の位置における着雪状況と
同一の状況が作り出されたことになる。
In FIG. 2, snow is now applied to the sides of the wire sample 1 uniformly along its length. A moment is applied to the wire sample 1 as snow accumulates thereon, causing the wire sample 1 to rotate around its axis. The moment at this time is measured by the torque sensor 3. The value is passed through the A/D converter
Sent to CPU7. A memory 10 containing plotted values of torque-rotation angle curves for various span lengths shown in FIGS. 3 and 4 is preset in the CPU 7, and the torque value from the torque sensor 3 is stored in advance.
When input to the CPU 7, the rotation angle for the torque at the position of the predetermined span length to be simulated is called, which is the same as the torque value, and this is
The pulses are transmitted to the pulse motor 4 through the O port 9, and the pulse motor 4 is rotated to a rotation angle corresponding to the number of pulses. Along with the rotation, the torque sensor 3 and the electric wire sample 1 also rotate. In this way, electric wire sample 1 is given the same rotation angle that would occur if the same snow that had landed on it was at a predetermined position in a predetermined span length of the transmission line, and furthermore, The successive snowfall is as if the same situation as the snowfall situation at the predetermined position of the above-mentioned predetermined power transmission line has been created.

〔発明の効果〕〔Effect of the invention〕

この発明の着雪模擬方法によれば、電線サンプ
ル1は、模擬しようとする送電線の径間長より遥
かに短く、例えば径間の中央位置での着雪と同じ
着雪を電線サンプル1に与えても、それによるモ
ーメントだけでは、電線サンプル1には実際の回
転角よりも非常に小さな回転角しか与えられない
が、そのモーメントによるトルクをトルクセンサ
3で検知し、予めメモリ10に記憶させてある所
定の送電線の所定の位置の上記と同じトルクに対
する回転角をCPU7で呼び出し、その値をパル
ス数としてその回転角までパルスモータ4を回転
させるので、それによつて回転させられた電線サ
ンプルは、そこに付着された積雪量と同一の積雪
量が実際の所定の送電線の所定の位置に与えられ
た時に生じる回転と同じ状況となる。
According to the snow accretion simulating method of the present invention, the electric wire sample 1 is much shorter than the span length of the transmission line to be simulated, and for example, the electric wire sample 1 has the same snow accretion as the snow accretion at the center of the span. Even if the moment is applied, the electric wire sample 1 will only be given a rotation angle that is much smaller than the actual rotation angle, but the torque due to the moment is detected by the torque sensor 3 and stored in the memory 10 in advance. The CPU 7 calls the rotation angle for the same torque as above at a predetermined position of a predetermined power transmission line, and uses that value as the number of pulses to rotate the pulse motor 4 to that rotation angle. The situation is the same as the rotation that occurs when the same amount of snow is applied to a predetermined position of an actual power transmission line.

したがつて、さらにこれに着雪が継続されて
も、それに応じて実際の送電線と同じ回転状況が
得られることになり、雪が次第に堆積し、それが
どのような経過をたどつて筒雪となるのか、どの
ような状態になつた時に堆積した雪が落下するの
かなど、実験室的にかなり正確に模擬することが
できる。
Therefore, even if snow continues to accumulate on this line, the same rotational situation as the actual power transmission line will be obtained, and the snow will gradually accumulate, and it will be difficult to see how it develops into pipe snow. It is possible to simulate fairly accurately in the laboratory, such as how the snow will fall and what conditions will occur before the accumulated snow will fall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の着雪模擬方法を説明するた
めのコンピユータ回路を含む装置の側面図、第2
図は送電線を模擬する電線サンプルの構造例を示
す断面図、第3図および第4図は模擬しようとす
る各種径間長の送電線の長さ方向のある位置にお
けるトルク−回転角曲線である。 1;電線サンプル、2;支持枠、3;トルクセ
ンサ、4;パルスモータ、7;CPU、8;A/
D変換器、9;I/Oポート、10;メモリ、1
1;ねじり防止用カウンタ−ウエイト、21;ア
ルミパイプ、22;アルミ線の撚線層、S;径間
長、曲線A,B,C,D;各種径間長におけるあ
る位置のトルク−回転角曲線、P1〜P4;トルク
−回転角の測定点。
Fig. 1 is a side view of a device including a computer circuit for explaining the snow accretion simulating method of the present invention;
The figure is a cross-sectional view showing an example of the structure of a wire sample simulating a power transmission line, and Figures 3 and 4 are torque-rotation angle curves at a certain position in the length direction of a power transmission line with various span lengths to be simulated. be. 1; Electric wire sample, 2; Support frame, 3; Torque sensor, 4; Pulse motor, 7; CPU, 8; A/
D converter, 9; I/O port, 10; memory, 1
1: Counterweight for preventing twisting, 21: Aluminum pipe, 22: Twisted aluminum wire layer, S: Span length, curves A, B, C, D: Torque-rotation angle at a certain position at various span lengths Curves, P 1 to P 4 ; torque-rotation angle measurement points.

Claims (1)

【特許請求の範囲】[Claims] 1 架空送電線の径間の各位置のトルクと回転角
との関係を予めコンピユータに記憶させておき、
上記架空送電線を模擬する電線サンプルに人工着
雪をさせて生じたトルクを検知し、このトルクと
同じ上記コンピユータに記憶された所定径間長の
所定位置におけるトルクに対する回転角を上記電
線サンプルに与えつつ、人工着雪を行うことを特
徴とする架空送電線の着雪模擬方法。
1 The relationship between the torque and rotation angle at each position in the span of the overhead power transmission line is stored in advance in a computer,
The torque generated by artificially depositing snow on a wire sample simulating the above-mentioned overhead power transmission line is detected, and the rotation angle corresponding to the torque at a predetermined position of a predetermined span length, which is the same as this torque and stored in the above-mentioned computer, is applied to the above-mentioned wire sample. A method for simulating snow accretion on an overhead power transmission line, characterized by performing artificial snow accretion while applying snow.
JP63313356A 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line Granted JPH02159594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313356A JPH02159594A (en) 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313356A JPH02159594A (en) 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line

Publications (2)

Publication Number Publication Date
JPH02159594A JPH02159594A (en) 1990-06-19
JPH0543986B2 true JPH0543986B2 (en) 1993-07-05

Family

ID=18040271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313356A Granted JPH02159594A (en) 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line

Country Status (1)

Country Link
JP (1) JPH02159594A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706388A (en) * 2012-06-01 2012-10-03 湖南省电力公司科学研究院 Conducting wire ice coating increase regularity testing device for electric transmission line
CN109449852B (en) * 2018-03-23 2021-01-26 国网浙江省电力公司丽水供电公司 Distribution line ice melting method in non-power-loss mode
CN109103806B (en) * 2018-08-24 2020-01-24 四川大学 Online anti-icing control method for self-melting ice wire embedded with insulating material
CN108695806B (en) * 2018-08-24 2020-01-03 四川大学 Online anti-icing control method for self-melting ice wire embedded with heating material

Also Published As

Publication number Publication date
JPH02159594A (en) 1990-06-19

Similar Documents

Publication Publication Date Title
JPH0543986B2 (en)
JPH0752150B2 (en) Electric wire / cable insulation deterioration diagnosis method and measuring device used therefor
JPH03170807A (en) Measurement of twisted pitch of electric wire and cable
Makkonen et al. Spacing of icicles
Chadha et al. Influence of turbulence on the galloping instability of iced conductors
JP3217205B2 (en) Galloping detection device
Tebo Measrement and control of conductor vibration
JPS63119110A (en) Aerial cable
US3137988A (en) Method and apparatus for stabilizing cables
JPS5879414A (en) Method of installing aerial wire of large size
JP2592409Y2 (en) Wire rope for balancer
CN117371149A (en) Power transmission line simulation method and application
CN114492126A (en) Dynamic inhaul cable control numerical simulation method for emergency anti-galloping of power transmission line
JPH066917A (en) Cassette type cable laying device
JPH0635123Y2 (en) Cable extension measuring device for cable extension
CN206562222U (en) A kind of optical cable spiral stranding device
Matsumiya et al. Field observations of snow damage to overhead transmission lines at the Kushiro test line
McComber et al. Atmospheric icing on cables of different flexibilities
WO2001076034A2 (en) Method and apparatus for controlling oscillations in overhead transmission lines
NO164564B (en) ELECTRIC LEADER FOR EFFECTIVE SUBSTANCE CABLE AND PROCEDURE FOR MANUFACTURING SUCH LEADERS.
JPH0520926A (en) Overhead conductor
SU1331568A1 (en) Apparatus for automatic monitoring of foam layer height and pulp level in flotation machine chamber
JPS54102593A (en) Method of installing void type acsr
CN117969010A (en) Device and method for simulating movement of waving wire in cross-middle plane
JPS5842318B2 (en) twist cable

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees