JPH02159594A - Simulating method of snow coating on overhead transmission line - Google Patents

Simulating method of snow coating on overhead transmission line

Info

Publication number
JPH02159594A
JPH02159594A JP63313356A JP31335688A JPH02159594A JP H02159594 A JPH02159594 A JP H02159594A JP 63313356 A JP63313356 A JP 63313356A JP 31335688 A JP31335688 A JP 31335688A JP H02159594 A JPH02159594 A JP H02159594A
Authority
JP
Japan
Prior art keywords
snow
transmission line
torque
sample
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63313356A
Other languages
Japanese (ja)
Other versions
JPH0543986B2 (en
Inventor
Toshihiro Oka
敏博 岡
Osamu Kajita
梶田 収
Mitsuru Yasui
安井 充
Takao Naito
内藤 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Fujikura Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tokyo Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP63313356A priority Critical patent/JPH02159594A/en
Publication of JPH02159594A publication Critical patent/JPH02159594A/en
Publication of JPH0543986B2 publication Critical patent/JPH0543986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

PURPOSE:To enable accurate simulation of the process of formation of a snow tube or drop of snow in simulated manner by a method wherein the state of snow coating on an overhead transmission line being rotated by the snow coating is simulated by using a short wire sample. CONSTITUTION:A wire sample 1 is much shorter than a span length of a transmission line to be simulated. Even when the same snow coating as at the central position of a span, for instance, is given to the sample 1, therefore, only a much smaller rotational angle than an actual one is given to the sample 1 by the moment alone given by said snow coating. However, a torque by the moment is detected by a torque sensor 3, a rotational angle to the same torque as the above at a prescribed position of a prescribed transmission line, which is stored beforehand in a memory 10, is accessed by CPU 7, the value thereof is used as the number of pulses, and a pulse motor 4 is rotated to said rotational angle. The wire sample rotated thereby is put in the same state of rotation as with the one caused when the same amount of snow with that sticking to the sample is given to the prescribed position of the prescribed actual transmission line.

Description

【発明の詳細な説明】 [産業上の利用分野] 架空送電線の側面に雪が付着すると、そのモーメントで
電線が回転し、そこにさらに着雪する。
[Detailed Description of the Invention] [Industrial Field of Application] When snow adheres to the side of an overhead power transmission line, the electric wire rotates due to the moment, and further snow accumulates there.

この発明は、このような着雪によって回転される架空送
電線への着雪状況を、長い径間長の架空送電線よりも遥
かに短い電線サンプルで模擬的に得ようとする方法に関
するものである。
This invention relates to a method for simulating snow accretion on overhead power lines that are rotated due to snow accumulation using a wire sample that is much shorter than an overhead power line with a long span. be.

[従来の技術] 架空送電線の雪害には種々の形態があり、中でも重要な
ものは強風下での湿雪による電線着雪であって、主とし
て問題となるのは着雪荷重と電線のギヤロッピング振動
である。
[Prior Art] There are various forms of snow damage to overhead power transmission lines, and the most important one is snow accretion on electric lines due to wet snow under strong winds, and the main problems are the snow load and the gears of electric lines. Lopping vibration.

この着雪の堆積が最も大きくなるのは電線周囲に筒雪と
なる場合であって、その筒雪の発達の過程としては、1
つは、強風時に湿雪が電線の側面に付着し、そのモーメ
ントで電線が回転し、そこへの着雪と回転とが繰り返さ
れることにより筒雪にまで発達する場合と、もう1つは
、電線は一般的に支持点(鉄塔)付近ではカテナリー状
に傾斜しており、この部分の側面に着雪があると、その
着雪は電線の最外燃線層の撚りに沿って下方に向かうべ
く回転移動し、さらにそこへの着雪と回転移動が繰り返
されるために筒雪となる場合とがあると考えられている
The accumulation of snow becomes the largest when it forms a snow pile around the electric wires, and the process of the snow pile developing is as follows:
One is when wet snow adheres to the side of an electric wire during strong winds, the moment causes the electric wire to rotate, and the snow buildup and rotation are repeated, causing it to develop into a pipe of snow. Generally, the cable is inclined like a catenary near the support point (steel tower), and if snow falls on the side of this part, the snow will rotate downward along the twists of the outermost wire layer of the wire. It is thought that there are cases where snow can form due to repeated movement, snow accretion, and rotational movement.

しかしこれらの現象の生じる頻度は少なく、これを待っ
て現象の解明や対策の研究を行うのは極めて非効率的で
あるため、自然降雪を用いてこれを電線サンプルに吹き
付けて着雪させる模擬方法が開発されつつある。
However, these phenomena occur infrequently, and it is extremely inefficient to wait for them to elucidate the phenomenon and research countermeasures. Therefore, we have developed a simulation method that uses natural snowfall to blow snow onto electrical wire samples. is being developed.

[発明が解決しようとする課題] 上記の自然降雪を用いて実験室的較着雪状況を観察する
ために、上述の送電線の側面への、f雷による電線の回
転を模擬すべく手動で電線にねじりを加えて着雪状況を
観察するこきが試みられているが、実際の送電線の径間
長は数100鳳と長く、径間に一様に着雪があったとし
ても、径間の位置により回転角は異なり、まI;、電線
にはカテナリーがあるために、トルクと回転角の関係は
線形ではない。したがって上記の方法では、径間のどこ
かの一部の状況を捕らえることができても、それが正確
にどこの部分であるのかを知り、また他の部分の着雪状
況はそれとは異なることになるので、それからして各部
の状況がどうであるのか、を推定することは困難であっ
た。
[Problems to be Solved by the Invention] In order to observe a laboratory comparative snowfall situation using the above-mentioned natural snowfall, a manual test was carried out to simulate the rotation of the power line caused by f-lightning to the side of the above-mentioned power transmission line. Attempts have been made to observe snow accumulation by twisting power lines, but the actual spans of power transmission lines are as long as several 100 lines, and even if the span is evenly covered with snow, The rotation angle differs depending on the position of the wire, and since the electric wire has a catenary, the relationship between torque and rotation angle is not linear. Therefore, with the above method, even if it is possible to capture the situation in a part of the span, it is difficult to know exactly which part of the span it is, and the snow situation in other parts is different from that. Therefore, it was difficult to estimate what the situation was in each part.

[課題を解決するための手段] この発明は、模擬方法とはいえ、上記のような実状を正
確には把握することが困難である従来の方法を改善し、
線路の径間のどの位置の着雪状況であるのかを正確に把
握できる模擬方法を提供するものであって、架空送電線
の径間長に応じてその径間の各位置のトルクと回転角と
の関係を予めコンピュータに記憶させておき、上記架空
送電線を模擬する電線サンプルに人工着雪をさせて生じ
たトルクを検知し、このトルクと同じ上記コンピュータ
に記憶された所定径間長の所定位置におけるトルクに対
する回転角を上記電線サンプルに与えつつ、人工着雪を
行うものである。
[Means for Solving the Problems] This invention improves the conventional method, which is difficult to accurately grasp the actual situation as described above, even though it is a simulation method.
This method provides a simulation method that can accurately determine the snow accretion situation at which position in the span of the line, and calculates the torque and rotation angle at each position in the span according to the span length of the overhead power transmission line. A computer stores in advance the relationship between Artificial snow deposition is performed while giving the electric wire sample a rotation angle relative to the torque at a predetermined position.

[作用] 模擬用の電線サンプルに模擬の着雪を行ったとき、その
着雪で加えられたトルクによって電線サンプルに与えら
れる回転角は、実際の架空送電線において、長さ方向に
一様に着雪があった場合、例えば径間の中央部に上記と
同じトルクによって生じる回転角よりもかなり小さいが
、この発明では、この実際の回転角を常に電線サンプル
に与えながら着雪を行うので、着雪によって作り出され
る電線サンプルの回転は、常に実際の架空送電線の所定
径間長における所定位置に上記と同じ着雪があった場合
の回転角が与えられる。
[Effect] When simulated snow is deposited on a simulated electric wire sample, the rotation angle given to the wire sample by the torque applied by the snow accretion is uniform in the length direction of the actual overhead power transmission line. When snow accretes, for example, in the center of the span, the rotation angle is considerably smaller than the rotation angle caused by the same torque as described above. However, in this invention, snow accretion is carried out while always applying this actual rotation angle to the wire sample. The rotation of the wire sample caused by snow is always given the rotation angle that would occur if the same snow had fallen at a predetermined position in a predetermined span length of an actual overhead power transmission line.

[実施例] 第1図を参照して、この発明の模擬方法を説明する。第
1図はこの発明の方法を実施するためのコンピュータ回
路を含む装置であって、lは模擬用の電線サンプルで、
その構造例は第2図に示され、それは後述する。2は電
線サンプルlの両端を自由回転可能に支持する支持枠、
3および4は上記電線サンプルlの軸線上にあって、1
つの支持枠2に対して電線サンプル1とは反対側におい
て電線サンプルlに順次連結されたトルクセンサおよび
パルスモータ、5は電線サンプルlとトルクセンサ32
の接続具、6はトルクセンサ3とパルスモータ4との連
結体である。7はcpu、sはA/D変換器、9はI1
0ポートで、CPU7はA/D変換器8を介してトルク
センサ3に、またI10ポート9を介してパルスモータ
4にそれぞれ接続されている。10はCPU7にセット
されたメモリで、これは後述する第3図および第4図に
示された実際に架線されている架空送電線の径間のある
位置におけるトルク−回転角曲線をプロットした数値を
記憶させたものである。
[Example] A simulation method of the present invention will be described with reference to FIG. FIG. 1 shows an apparatus including a computer circuit for carrying out the method of the present invention, where l is a simulating wire sample;
An example of its structure is shown in FIG. 2 and will be described later. 2 is a support frame that supports both ends of the electric wire sample l in a freely rotatable manner;
3 and 4 are on the axis of the wire sample 1, and 1
A torque sensor and a pulse motor are sequentially connected to the wire sample 1 on the opposite side of the wire sample 1 to the support frame 2, and 5 is the wire sample 1 and the torque sensor 32.
The connector 6 is a connecting body between the torque sensor 3 and the pulse motor 4. 7 is CPU, s is A/D converter, 9 is I1
The CPU 7 is connected to the torque sensor 3 via the A/D converter 8 and to the pulse motor 4 via the I10 port 9 through the I10 port. 10 is a memory set in the CPU 7, and this is a numerical value plotting the torque-rotation angle curve at a certain position in the span of the overhead power transmission line actually installed as shown in FIGS. 3 and 4, which will be described later. is memorized.

第2図は、この発明の方法を実施するために用いられる
電線サンプル1の1つの構造例で、21はアルミパイプ
、22はその外周に撚合せられたアルミ線からなる撚線
層である。これは模擬される実際の架空送電線の構造と
同一であることが最も望ましいが、必ずしもそうする必
要はなく、少なくとも最外層の形状、材料、外径等が同
一であればよい。
FIG. 2 shows an example of the structure of the electric wire sample 1 used to carry out the method of the present invention, in which 21 is an aluminum pipe, and 22 is a twisted wire layer made of aluminum wire twisted around the outer circumference of the pipe. Although it is most desirable that this is the same structure as the actual overhead power transmission line to be simulated, it is not necessary to do so, as long as the shape, material, outer diameter, etc. of at least the outermost layer are the same.

第3図および第4図は、架空送電線として断面積240
 as’のAC5R(鋼心アルミ撚線)が架線された線
路において、送電線の側面に付着する雷は径間の送電線
の長さに沿って一様であるとし、また降雪強度も一様で
あるとした場合の、送電線の長さ方向のある位置におけ
るトルク−回転角曲線であって、第3図は送電線の長さ
方向のある位置が各径間長の中央位置である場合、第4
図はその左上に直線的に示された各径間長ごとにねじり
防止用カウンターウェイト11が取り付けられた送電線
であって、上記の長さ方向のある位置が各径間長ごとに
位置P t 、P z 、P sおよびP、である場合
が示されている。横軸は送電線に加えられるトルク (
墓・C■/思)、縦軸はそのトルクによって送電線に与
えられる回転角(度)で、各図の曲線Aは径間長S=4
00m、曲線Bは径間長$−300m、曲線Cは径間長
S−250層、および曲線りは径間長S=200mの場
合である。
Figures 3 and 4 show an overhead power transmission line with a cross-sectional area of 240 mm.
Assume that on a railway line with AS' AC5R (steel core aluminum stranded wire) overhead lines, the lightning that attaches to the side of the transmission line is uniform along the length of the transmission line in the span, and the intensity of snowfall is also uniform. The torque-rotation angle curve at a certain position along the length of the transmission line when , 4th
The figure shows a power transmission line in which a counterweight 11 for preventing twisting is attached to each span length shown linearly in the upper left, and a certain position in the above length direction is a position P for each span length. The cases where t , P z , P s and P are shown. The horizontal axis is the torque applied to the transmission line (
The vertical axis is the rotation angle (degrees) given to the power transmission line by the torque, and the curve A in each figure is the span length S = 4.
00m, curve B is for the span length $-300m, curve C is for the span length S-250 layer, and the curve is for the span length S=200m.

第3図には、各径間の中央位置における曲線を代表的に
示し、また第4図では位置P1〜P、を代表的に示した
が、これは径間長を適当な数に等分割例えば単位長さに
等分割し、その中のある位置ごとにトルク−回転角曲線
を予め求めておくとよい。
Figure 3 representatively shows the curve at the center position of each span, and Figure 4 representatively shows the curves at positions P1 to P, which are calculated by dividing the span length into an appropriate number of equal parts. For example, it is preferable to equally divide the length into unit lengths and obtain a torque-rotation angle curve in advance for each position within the unit length.

第2図において、いま電線サンプル1に対してその長さ
方向に一様に側面に雪を付着させる。そこへの積雪にし
たがって電線サンプルlにモーメントが与えられ、電線
サンプル1はその軸の周囲に回転する。この時のモーメ
ントをトルクセンサ3で測定する。その値はA/D変換
器を通してCPU7に送られる。CPU7には第3図お
よび第4図に示した各種径間長のトルク−回転角曲線の
プロットされた値のメモリ10を予めセットしておき、
前記トルクセンサ3からのトルクの値がCPU7にイン
プットされると、そのトルりの値と同一の模擬しようと
する所定の径間長の位置のトルクに対する回転角が呼び
出され、これがI10ボート9を通してパルスモータ4
にパルスで伝達され、そのパルス数に応じた回転角まで
パルスモータ4は回転される。その回転と共にトルクセ
ンサ3および電線サンプルlも回転する。こうして電線
サンプル1には、そこに着雪したのと同一の着雪が所定
の送電線の径間長の所定の位置にあった時に生じる回転
角と同一の回転角が与えられ、さらにそこへの順次の着
雪は、あたかも上記の所定の送電線の所定の位置におけ
る着雪状況と同一の状況が作り出されたことになる。
In FIG. 2, snow is now applied to the sides of the wire sample 1 uniformly along its length. A moment is applied to the wire sample 1 according to the snow accumulation thereon, and the wire sample 1 rotates around its axis. The moment at this time is measured by the torque sensor 3. The value is sent to the CPU 7 through the A/D converter. A memory 10 containing plotted values of torque-rotation angle curves for various span lengths shown in FIGS. 3 and 4 is preset in the CPU 7.
When the torque value from the torque sensor 3 is input to the CPU 7, the rotation angle for the torque at the position of a predetermined span length to be simulated, which is the same as the torque value, is called, and this is transmitted through the I10 boat 9. Pulse motor 4
is transmitted in the form of pulses, and the pulse motor 4 is rotated to a rotation angle corresponding to the number of pulses. Along with the rotation, the torque sensor 3 and the electric wire sample l also rotate. In this way, electric wire sample 1 is given the same rotation angle that would occur if the same snow that had landed on it was at a predetermined position in a predetermined span length of the transmission line, and furthermore, The successive snowfall is as if the same situation as the snowfall situation at the predetermined position of the above-mentioned predetermined power transmission line has been created.

[発明の効果] この発明の着雪模擬方法によれば、電線サンプルlは、
模擬しようとする送電線の径間長より遥かに短く、例え
ば径間の中央位置での着雪と同じ着雪を電線サンプルl
に与えても、それによるモーメントだけでは、電線サン
プル1には実際の回転角よりも非常に小さな回転角しか
与えられないが、そqモーメントによるトルりをトルク
センサ3で検知し、予めメモリ10に記憶させである所
定の送電線の所定の位置の上記と同じトルクに対する回
転角をCPU7で呼び出し、その値をパルス数としてそ
の回転角までパルスモータ4を回転させるので、それに
よって回転させられた電線サンプルは、そこに付着され
た積雪量と同一の積雪量が実際の所定の送電線の所定の
位置に与えられた時に生じる回転と同じ状況となる。
[Effect of the invention] According to the snow accretion simulating method of the present invention, the electric wire sample l is
A wire sample l that is much shorter than the span length of the transmission line to be simulated, and has the same snow accretion as snow accretion at the center of the span, for example.
However, the torque sensor 3 detects the torque due to the q moment and stores it in the memory 10 in advance. The CPU 7 calls up the rotation angle for the same torque as above at a predetermined position of a predetermined power transmission line, and uses that value as the number of pulses to rotate the pulse motor 4 to that rotation angle. The electric wire sample undergoes the same rotation that would occur if the same amount of snow as the amount of snow deposited thereon was applied to a predetermined position of an actual power transmission line.

したがって、さらにこれに着雪が継続されても、それに
応じて実際の送電線と同じ回転状況が得られることにな
り、雪が次第に堆積し、それがどのような経過をたどっ
て筒雪となるのか、どのような状態になつt;時に堆積
した雪が落下するのかなと、実験室的にかなり正確に模
擬することができる。
Therefore, even if snow continues to accumulate on this line, the same rotational situation as the actual power transmission line will be obtained accordingly, and the snow will gradually accumulate, and how it will turn into pipe snow. It is possible to simulate quite accurately in the laboratory the conditions in which accumulated snow sometimes falls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の着雪模擬方法を説明するためのコン
ピュータ回路を含む装置の側面図、第2図は送電線を模
擬する電線サンプルの構造例を示す断面図、第3図およ
び第4図は模擬しようとする各種径間長の送電線の長さ
方向のある位置におけるトルク−回転角曲線である。 1;電線サンプル、2:支持枠、3; トルクセンサ、
4;パルスモータ、7;CPU、8.A/D変換器、9
;I10ポート、10;メモリ、11;ねじれ防止用カ
ウンターウェイト、21;アルミパイプ、22;アルミ
線の撚線層、S:径間長、曲線A%B、C,D、各種径
間長におけるある位置のトルク−回転角曲線、PI〜P
、; トルク−回転角の測定点。
FIG. 1 is a side view of a device including a computer circuit for explaining the snow accretion simulating method of the present invention, FIG. The figure shows torque-rotation angle curves at certain positions along the length of power transmission lines with various span lengths to be simulated. 1; Electric wire sample, 2: Support frame, 3; Torque sensor,
4; pulse motor, 7; CPU, 8. A/D converter, 9
; I10 port, 10; Memory, 11; Counterweight for preventing twisting, 21; Aluminum pipe, 22; Twisted aluminum wire layer, S: Span length, curve A% B, C, D, at various span lengths Torque-rotation angle curve at a certain position, PI~P
, ; Torque-rotation angle measurement point.

Claims (1)

【特許請求の範囲】[Claims] 架空送電線の径間の各位置のトルクと回転角との関係を
予めコンピュータに記憶させておき、上記架空送電線を
模擬する電線サンプルに人工着雪をさせて生じたトルク
を検知し、このトルクと同じ上記コンピュータに記憶さ
れた所定径間長の所定位置におけるトルクに対する回転
角を上記電線サンプルに与えつつ、人工着雪を行うこと
を特徴とする架空送電線の着雪模擬方法。
The relationship between torque and rotation angle at each position in the span of an overhead power transmission line is stored in advance in a computer, and the torque generated by artificially depositing snow on a wire sample simulating the above-mentioned overhead power transmission line is detected. A method for simulating snow accretion on an overhead power transmission line, characterized in that artificial snow accretion is performed while giving the electric wire sample a rotation angle corresponding to the torque at a predetermined position of a predetermined span length stored in the computer.
JP63313356A 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line Granted JPH02159594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313356A JPH02159594A (en) 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313356A JPH02159594A (en) 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line

Publications (2)

Publication Number Publication Date
JPH02159594A true JPH02159594A (en) 1990-06-19
JPH0543986B2 JPH0543986B2 (en) 1993-07-05

Family

ID=18040271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313356A Granted JPH02159594A (en) 1988-12-12 1988-12-12 Simulating method of snow coating on overhead transmission line

Country Status (1)

Country Link
JP (1) JPH02159594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706388A (en) * 2012-06-01 2012-10-03 湖南省电力公司科学研究院 Conducting wire ice coating increase regularity testing device for electric transmission line
CN108695806A (en) * 2018-08-24 2018-10-23 四川大学 Embedded heating material is from ice-melt conducting wire anti-icing control method online
CN109103806A (en) * 2018-08-24 2018-12-28 四川大学 Insulating materials is embedded in from ice-melt conducting wire anti-icing control method online
CN109449852A (en) * 2018-03-23 2019-03-08 国网浙江省电力公司丽水供电公司 A kind of distribution line de-icing method of non-power loss mode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706388A (en) * 2012-06-01 2012-10-03 湖南省电力公司科学研究院 Conducting wire ice coating increase regularity testing device for electric transmission line
CN109449852A (en) * 2018-03-23 2019-03-08 国网浙江省电力公司丽水供电公司 A kind of distribution line de-icing method of non-power loss mode
CN109449852B (en) * 2018-03-23 2021-01-26 国网浙江省电力公司丽水供电公司 Distribution line ice melting method in non-power-loss mode
CN108695806A (en) * 2018-08-24 2018-10-23 四川大学 Embedded heating material is from ice-melt conducting wire anti-icing control method online
CN109103806A (en) * 2018-08-24 2018-12-28 四川大学 Insulating materials is embedded in from ice-melt conducting wire anti-icing control method online
CN108695806B (en) * 2018-08-24 2020-01-03 四川大学 Online anti-icing control method for self-melting ice wire embedded with heating material
CN109103806B (en) * 2018-08-24 2020-01-24 四川大学 Online anti-icing control method for self-melting ice wire embedded with insulating material

Also Published As

Publication number Publication date
JPH0543986B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
CN104655171B (en) Electric transmission line simulation de-icing method based on concentrated load
JPH02159594A (en) Simulating method of snow coating on overhead transmission line
CN105203297B (en) The vortex vibration testing device of marine riser beam space arrangement can be changed
CN107036796A (en) The comprehensive test device and its method of testing of vehicular fire-fighting capstan winch
JPH0752150B2 (en) Electric wire / cable insulation deterioration diagnosis method and measuring device used therefor
JPH03170807A (en) Measurement of twisted pitch of electric wire and cable
CN113741569A (en) Line-changing construction robot and tension control device and method thereof
CN113624765A (en) Visual monitoring experiment device for filling slurry pipeline transportation and use method
CN206804291U (en) The comprehensive test device of vehicular fire-fighting capstan winch
Makkonen et al. Spacing of icicles
CN206020406U (en) A kind of water quality profile monitoring system
CN204389083U (en) A kind of model test suspension cable anchoring and cable tension test device
CN204792199U (en) Optic fibre is put around packing
CN108645372B (en) Large-span transmission conductor suspension point dynamic bending strain measurement method
CN108563609A (en) The method that hanging point displacement nibbling method accurately solves overhead transmission line unbalanced tensile force
CN113836730A (en) Method for calculating diameter of rotating multi-circle conductor for icing monitoring
CN209673539U (en) A kind of photovoltaic module exit strength test device
Huo et al. Theoretical analysis and experimental validation on galloping of iced transmission lines in a moderating airflow
CN208206698U (en) A kind of experimental rig suitable for the test of multiple fission conductor torsion stiffness
CN208103539U (en) A kind of cable unwinding device
JP2592409Y2 (en) Wire rope for balancer
US3137988A (en) Method and apparatus for stabilizing cables
JPH0216084B2 (en)
CN109870633A (en) A kind of pilot system deicing the Study on Fault suitable for multi gear transmission pressure
CN218628189U (en) Crack detection equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees