JPH0543968A - Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode - Google Patents

Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode

Info

Publication number
JPH0543968A
JPH0543968A JP3225011A JP22501191A JPH0543968A JP H0543968 A JPH0543968 A JP H0543968A JP 3225011 A JP3225011 A JP 3225011A JP 22501191 A JP22501191 A JP 22501191A JP H0543968 A JPH0543968 A JP H0543968A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
storage alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3225011A
Other languages
Japanese (ja)
Inventor
Shoichiro Tateishi
昭一郎 立石
Shuichi Wada
秀一 和田
Kozo Kajita
耕三 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3225011A priority Critical patent/JPH0543968A/en
Publication of JPH0543968A publication Critical patent/JPH0543968A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To facilitate the activation of a hydrogen occluding alloy by synthesizing a rhombic alloy contg. Ti, Zr and Ni and having specified lattice constants (a), (b), (c) as the hydrogen occluding alloy. CONSTITUTION:A rhombic alloy contg. Ti, Zr and Ni and having 9Angstrom + or -20% lattice constant (a), 26Angstrom + or -20% lattice constant (b) and 7Angstrom + or -20% lattice constant (c) is synthesized as a hydrogen occluding alloy. This hydrogen occluding alloy is easily activated and has a high rate of reaction with hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金、上記水
素吸蔵合金を用いた水素吸蔵合金電極および上記水素吸
蔵合金電極を用いたニッケル−水素電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy, a hydrogen storage alloy electrode using the hydrogen storage alloy, and a nickel-hydrogen battery using the hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】水素吸蔵合金は、単位体積あたり液体水
素に匹敵する密度の水素を吸蔵することが可能なため、
近年、非常に注目されていて、水素貯蔵容器や電池の電
極への利用、また水素の吸蔵・放出時に大量の熱を出し
入れできることから蓄熱材としての利用が研究されてい
る。
2. Description of the Related Art Hydrogen storage alloys are capable of storing hydrogen at a density equivalent to that of liquid hydrogen per unit volume.
In recent years, much attention has been paid to its use in hydrogen storage containers and electrodes of batteries, and its use as a heat storage material because a large amount of heat can be taken in and out when hydrogen is absorbed and released.

【0003】この水素吸蔵合金を実用化するにあたって
は、次のような性質が求められる。
In order to put this hydrogen storage alloy into practical use, the following properties are required.

【0004】水素吸蔵量が多いこと。 活性化が容易であること。 水素との反応速度が大きいこと。 水素の吸蔵・放出反応が可逆的であること。 水素吸蔵能力が酸素やメタンガスなどによって劣化し
にくいこと。 水素の吸蔵・放出を繰り返す時の微粉化が起こりにく
いこと 安価であること。 などである。
High hydrogen storage capacity. Easy to activate. The reaction rate with hydrogen is high. Reversible hydrogen absorption and desorption reactions. The hydrogen storage capacity is not easily deteriorated by oxygen or methane gas. It is inexpensive because it does not easily atomize when hydrogen is repeatedly stored and released. And so on.

【0005】しかし、これまでにも多くの水素吸蔵合金
が検討されてきたが、それらは特性に一長一端があり、
上記〜の性質すべてに優れた水素吸蔵合金はいまだ
開発されていない。
However, many hydrogen storage alloys have been studied so far, but they have advantages and disadvantages in their characteristics.
A hydrogen storage alloy excellent in all of the above properties (1) to (3) has not yet been developed.

【0006】たとえば、常温で使用する水素吸蔵合金と
しては、現在、Cl4型ラーベス相系合金やCl5型ラ
ーベス相系合金と、MmNi5 系合金(Mmは希土類元
素)とが代表的であるが、両者を比較した場合、一般的
にCl4型ラーベス相系合金やCl5型ラーベス相系合
金の方が上記およびの性質に優れているが、上記
およびの性質に関しては、MmNi5 系合金の方が優
れている。
[0006] For example, the hydrogen storage alloy used at normal temperature, current, and Cl4-type Laves phase alloy or Cl5-type Laves phase alloy, but (in Mm rare earth element) MmNi 5 alloy is a representative manner, when comparing the two, although the general public to Cl4 type Laves phase alloy or Cl5-type Laves phase system alloy is excellent in the above and the properties with respect to the nature of the and, superior to the MmNi 5 system alloy ing.

【0007】また、Niは反応性が高い元素なので、一
般に合金中にNiが多く含まれるほど上記およびの
性質が良くなるといわれてる。
Further, since Ni is a highly reactive element, it is generally said that the more Ni contained in the alloy, the better the above properties.

【0008】たとえば、Ti−Fe系合金にNiを添加
すると水素との反応性が向上することが、須田精二郎著
「水素吸蔵合金」、応用技術出版社発行、(198
4),pp.3−4に記載されている。
For example, the addition of Ni to a Ti-Fe alloy improves the reactivity with hydrogen. Seijiro Suda, "Hydrogen Storage Alloy," published by Applied Technology Publishing Co., Ltd. (198
4), pp. 3-4.

【0009】また、Ti−Zr−V−Ni系水素吸蔵合
金のNi量を増加させると、水素吸蔵量は減少するもの
の、水素との反応性が向上することが、Haruo S
awa and Shinjiro Wakao、“M
aterialsTransactions JI
M”、No.6,(1990),pp.487−492
に記載されている。
[0009] Further, increasing the Ni content of the Ti-Zr-V-Ni hydrogen storage alloy reduces the hydrogen storage capacity, but improves the reactivity with hydrogen.
awa and Shinjiro Wakao, “M
materialsTransactions JI
M ", No. 6, (1990), pp. 487-492.
It is described in.

【0010】さらに、LaNi5 系の水素吸蔵合金にお
いては、合金表面に薄いNiの膜が形成されており、こ
のNiの膜が水素と反応する際の触媒になっていること
が知られている〔L.Schlapbach et a
l ,“Int.J.Hydrogen Energ
y”,No.4,(1979),p.21 など〕。
Further, in the LaNi 5 type hydrogen storage alloy, a thin Ni film is formed on the alloy surface, and it is known that this Ni film serves as a catalyst when reacting with hydrogen. [L. Schlapbach et a
l, "Int. J. Hydrogen Energ.
y ", No. 4, (1979), p. 21, etc.].

【0011】ところで、Ti−Zr−Ni系合金は、水
素吸蔵量の多い、Cl4型ラーベス相またはCl5型ラ
ーベス相の金属間化合物をつくる。TiとZrとNiの
3種の元素がCl4型ラーベス相またはCl5型ラーベ
ス相を形成する場合、Ti+ZrとNiの比率は1:2
であり、このときの合金のNi含有率は66.7原子%
になる。
By the way, the Ti--Zr--Ni alloy forms a Cl4 type Laves phase or Cl5 type Laves phase intermetallic compound having a large hydrogen storage capacity. When three elements of Ti, Zr and Ni form a Cl4 type Laves phase or a Cl5 type Laves phase, the ratio of Ti + Zr to Ni is 1: 2.
And the Ni content of the alloy at this time is 66.7 atomic%.
become.

【0012】しかし、Ti−Zr−Ni系水素吸蔵合金
を実用化するにあたっては、ラーベス相の固溶域を広げ
たり、合金の容量を増加させたり、耐食性の向上をはか
るため、Niの一部をMn、Co、Fe、Al、V、C
rなどの元素で置換する必要があり、その結果、合金中
のNi含有率が低下する。
However, in the practical application of the Ti-Zr-Ni-based hydrogen storage alloy, a part of Ni is used in order to widen the solid solution region of the Laves phase, increase the capacity of the alloy, and improve the corrosion resistance. To Mn, Co, Fe, Al, V, C
It is necessary to substitute with an element such as r, and as a result, the Ni content in the alloy decreases.

【0013】そのため、Ti−Zr−Ni系水素吸蔵合
金を実用化する場合、Niの含有率を仕込量に対して5
0原子%以上確保することが困難になり、その結果、合
金と水素との反応性が低下する。
Therefore, when a Ti-Zr-Ni-based hydrogen storage alloy is put to practical use, the Ni content is 5 relative to the charged amount.
It becomes difficult to secure 0 atomic% or more, and as a result, the reactivity between the alloy and hydrogen decreases.

【0014】[0014]

【発明が解決しようとする課題】上記のように、これま
で検討されてきた水素吸蔵合金は、その特性に一長一短
があり、前記〜の性質すべてに優れたものがなく、
また、常温で使用可能で、かつ上記およびの性質が
優れたC14型ラーベス相系合金やC15型ラーベス相
系合金は、前記およびの性質が充分とはいえなかっ
た。
As described above, the hydrogen storage alloys that have been studied so far have advantages and disadvantages in their characteristics, and none of them are excellent in all of the above properties.
Further, the C14 type Laves phase type alloy and the C15 type Laves phase type alloy which can be used at room temperature and are excellent in the above-mentioned properties are not sufficient in the above-mentioned properties.

【0015】そこで、本発明は、Ti−Zr−Ni系合
金で、上記およびの性質が優れた水素吸蔵合金、す
なわち活性化が容易であり、水素との反応速度が大きい
水素吸蔵合金を提供することを目的とする。
Therefore, the present invention provides a Ti-Zr-Ni-based alloy which is excellent in the above properties and is a hydrogen storage alloy which is easy to activate and has a high reaction rate with hydrogen. The purpose is to

【0016】さらに、本発明は、上記の活性化が容易
で、かつ水素との反応速度が大きい水素吸蔵合金を、容
量(水素吸蔵量)が多いTi−Zr−Ni系でかつ結晶
型がCl4型ラーベス相またはCl5型ラーベス相の水
素吸蔵合金と同時に析出させることにより、容量が大き
く、かつ活性化が容易であり、しかも水素との反応速度
が大きい水素吸蔵合金を提供することを目的とする。
Further, according to the present invention, the hydrogen storage alloy, which is easily activated and has a high reaction rate with hydrogen, is a Ti--Zr--Ni system having a large capacity (hydrogen storage amount) and a crystal form of Cl4. It is intended to provide a hydrogen storage alloy that has a large capacity, is easy to activate, and has a high reaction rate with hydrogen by co-precipitating with a hydrogen storage alloy of a Laves phase type or a Laves phase of Cl5 type. ..

【0017】[0017]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意研究を行った結果、Ti−Zr−N
i系で、格子定数aが9ű20%、格子定数bが26
ű20%、格子定数cが7ű20%である斜方晶系
の結晶構造を有する水素吸蔵合金が、活性化が容易で、
かつ水素との反応速度が大きいことを見出し、本発明を
完成するにいたった。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that Ti--Zr--N
In i-system, lattice constant a is 9Å ± 20%, lattice constant b is 26
A hydrogen storage alloy having an orthorhombic crystal structure with Å ± 20% and a lattice constant c of 7Å ± 20% is easy to activate,
Moreover, they have found that the reaction rate with hydrogen is high, and have completed the present invention.

【0018】上記水素吸蔵合金は、その組成が実質的に
(Tix Zry 2 Ni3 (ただし、x+y=1)で表
わされ、この水素吸蔵合金のNi含有率は60原子%で
あり、種々の水素吸蔵合金のうちNi含有率の多い部類
に入る。
The composition of the above hydrogen storage alloy is substantially represented by (Ti x Zr y ) 2 Ni 3 (where x + y = 1), and the Ni content of this hydrogen storage alloy is 60 atomic%. Of the various hydrogen storage alloys, it is in the category of high Ni content.

【0019】また、上記水素吸蔵合金のTi、Zrの一
部は、他の元素、たとえばAl、Co、Cr、Fe、M
n、Vなどで置換することもできる。
Further, a part of Ti and Zr of the above hydrogen storage alloy is other elements such as Al, Co, Cr, Fe and M.
Substitution with n, V, etc. is also possible.

【0020】さらにまた、本発明者らは、容量の大きい
Cl4型ラーベス相またはCl5型ラーベス相を主体と
するTi−Zr−Ni系水素吸蔵合金に、上記斜方晶系
の水素吸蔵合金相を析出させ得ることを見出した。
Furthermore, the present inventors have added the above-mentioned orthorhombic hydrogen storage alloy phase to a Ti-Zr-Ni system hydrogen storage alloy mainly composed of a Cl4 type Laves phase or a Cl5 type Laves phase having a large capacity. It was found that it can be precipitated.

【0021】すなわち、Ti−Zr−Ni系合金におい
て、たとえばVを15原子%以上、特に20原子%以上
(30原子%程度まで)添加すると、Cl4型ラーベス
相やCl5型ラーベス相が不安定になり、固溶体領域が
狭くなるために、Cl4型ラーベス相またはCl5型ラ
ーベス相と、上記特定の格子定数を持つ斜方晶系の水素
吸蔵合金の相とが同時に析出するようになるのである。
That is, in a Ti-Zr-Ni alloy, for example, when V is added in an amount of 15 atomic% or more, particularly 20 atomic% or more (up to about 30 atomic%), the Cl4 type Laves phase and the Cl5 type Laves phase become unstable. Since the solid solution region is narrowed, the Cl4 type Laves phase or the Cl5 type Laves phase and the phase of the orthorhombic hydrogen storage alloy having the above-mentioned specific lattice constant are simultaneously precipitated.

【0022】さらに、化学量論的なTi−Zr−Ni系
Cl4型ラーベス相またはCl5型ラーベス相における
Ti+Zrの割合は33.3原子%であるが、合金の仕
込み組成におけるTi+Zrの割合はこの値に対して2
原子%以上、特に5原子%以上、大きい方、あるいは小
さい方にずらすと、ラーベス相が不安定になり、斜方晶
系の水素吸蔵合金の相が析出しやすくなる。
Further, the proportion of Ti + Zr in the stoichiometric Ti—Zr—Ni type Cl4 type Laves phase or Cl5 type Laves phase is 33.3 atomic%, but the proportion of Ti + Zr in the alloy composition is this value. Against 2
If the atomic percentage is shifted to the atomic percentage or higher, especially 5 atomic percentage or higher, to the larger or smaller one, the Laves phase becomes unstable and the phase of the orthorhombic hydrogen storage alloy tends to precipitate.

【0023】また、このとき水素吸蔵合金にCrやAl
を添加すると、斜方晶系の水素吸蔵合金の相の析出量を
多くすることができる。
Further, at this time, the hydrogen storage alloy contains Cr or Al.
By adding, the amount of precipitation of the phase of the orthorhombic hydrogen storage alloy can be increased.

【0024】水素吸蔵量の多いラーベス相を主体とする
水素吸蔵合金に、上記斜方晶系の水素吸蔵合金相が析出
していると、合金と水素との反応は主として斜方晶系の
水素吸蔵合金相で速やかに起こるので、この複相の水素
吸蔵合金は容量が大きく、かつ活性化が容易であり、水
素との反応速度が大きい水素吸蔵合金となる。
When the orthorhombic hydrogen storage alloy phase is precipitated in the hydrogen storage alloy mainly composed of the Laves phase having a large hydrogen storage capacity, the reaction between the alloy and hydrogen is mainly orthorhombic hydrogen. Since this occurs rapidly in the storage alloy phase, this double-phase hydrogen storage alloy has a large capacity, is easily activated, and becomes a hydrogen storage alloy having a high reaction rate with hydrogen.

【0025】[0025]

【発明の効果】本発明によれば、活性化が容易で、水素
との反応速度が大きい斜方晶系の水素吸蔵合金が提供さ
れる。
According to the present invention, an orthorhombic hydrogen storage alloy which is easy to activate and has a high reaction rate with hydrogen is provided.

【0026】また、上記活性化が容易で、かつ水素との
反応速度が大きい斜方晶系の水素吸蔵合金を、C14型
ラーベス相系合金またはC15型ラーベス相系合金に析
出させることにより、容量が大きく、かつ活性化が容易
で、しかも水素との反応速度が大きい水素吸蔵合金が提
供される。
Further, the capacity is obtained by precipitating an orthorhombic hydrogen storage alloy which is easy to activate and has a high reaction rate with hydrogen into a C14 type Laves phase alloy or a C15 type Laves phase system alloy. A hydrogen storage alloy having a large size, easy activation, and a large reaction rate with hydrogen is provided.

【0027】[0027]

【実施例】合金の原料には、市販の純度99.9%のT
i、純度99.5%のNi、純度99%のZr、純度9
9.9%のV、純度99.9%のCrを用いた。
[Example] As a raw material of an alloy, commercially available T having a purity of 99.9% was used.
i, 99.5% pure Ni, 99% pure Zr, 9 pure
V of 9.9% and Cr of 99.9% purity were used.

【0028】この各原料金属を所定の組成となるように
秤量し、アーク溶解炉の水冷銅るつぼに入れ、約200
0℃で10回繰り返し溶解した。得られた合金の全体の
組成を分析したところ、Ti15Zr16Ni4021Cr8
であった。
Each of the raw material metals was weighed so as to have a predetermined composition, put into a water-cooled copper crucible of an arc melting furnace, and then heated to about 200
It was repeatedly dissolved 10 times at 0 ° C. Analysis of the entire composition of the obtained alloy revealed that Ti 15 Zr 16 Ni 40 V 21 Cr 8
Met.

【0029】この水素吸蔵合金を走査型電子顕微鏡と透
過型電子顕微鏡で分析したところ、全体の約70体積%
がCl4型ラーベス相で構成されており、また実質的に
TiZrNi3 で表される斜方晶系の水素吸蔵合金の相
が約15体積%含まれていた。残りは、2種類の体心立
方晶のものと最密六方晶のものとであった。
When this hydrogen storage alloy was analyzed by a scanning electron microscope and a transmission electron microscope, it was about 70% by volume of the whole.
Was composed of a Cl4 type Laves phase, and substantially 15 vol% of the orthorhombic hydrogen storage alloy phase represented by TiZrNi 3 was contained. The rest were two types of body-centered cubic crystals and a close-packed hexagonal one.

【0030】上記、斜方晶系の水素吸蔵合金における格
子定数は、格子定数aが9.07Å、格子定数bが2
6.2Å、格子定数cが7.32Åであった。
Regarding the lattice constants of the above orthorhombic hydrogen storage alloy, the lattice constant a is 9.07Å and the lattice constant b is 2.
The value was 6.2Å and the lattice constant c was 7.32Å.

【0031】この水素吸蔵合金に純度7Nの水素ガスを
3気圧で加えると、約5分間で、すみやかに活性化が始
まり、水素を吸蔵しだした。この活性化は、電極に使用
可能な水素吸蔵合金としては最も速い部類に属するもの
であった。
When hydrogen gas having a purity of 7N was added to this hydrogen storage alloy at 3 atm, activation was promptly started in about 5 minutes and hydrogen was stored. This activation belongs to the fastest category of hydrogen storage alloys that can be used for electrodes.

【0032】水素の吸蔵が止まった後、室温で真空引き
を1時間行い、その後、再び水素を吸蔵させる操作を活
性化が終わるまで繰り返した。
After the absorption of hydrogen was stopped, vacuuming was performed at room temperature for 1 hour, and then the operation of absorbing hydrogen again was repeated until the activation was completed.

【0033】活性化終了後、300℃で10Paの真空
下で脱水素化した後、ジーベルツ法により、この水素吸
蔵合金の30℃における水素吸蔵量と水素平衡圧との関
係を調べた。その結果を図1に示す。
After completion of the activation, dehydrogenation was carried out at 300 ° C. under a vacuum of 10 Pa, and the relationship between the hydrogen storage amount at 30 ° C. and the hydrogen equilibrium pressure of this hydrogen storage alloy was investigated by the Sibelts method. The result is shown in FIG.

【0034】図1に示すように、この水素吸蔵合金は、
たとえば1気圧の水素雰囲気のもとで0.9重量%の水
素(230mAh/g相当)、5気圧の水素雰囲気のも
とで1.1重量%の水素(290mAh/g相当)を吸
蔵することができる。
As shown in FIG. 1, this hydrogen storage alloy is
For example, occlude 0.9 wt% of hydrogen (equivalent to 230 mAh / g) under a hydrogen atmosphere of 1 atm and 1.1 wt% of hydrogen (equivalent to 290 mAh / g) under a hydrogen atmosphere of 5 atm. You can

【0035】つぎに、上記水素吸蔵合金の粉末0.5g
をニッケル粉末0.5gと混合し、直径18mmの大き
さのペレットにプレスした電極を作製し、さらにこの水
素吸蔵合金電極と水酸化ニッケル電極とを組み合わせ、
電解液には30重量%水酸化カリウム水溶液(ただし、
水酸化リチウムを17g/l含有している)を用いて、
ニッケル−水素電池を作製した。
Next, 0.5 g of the above hydrogen storage alloy powder
Was mixed with 0.5 g of nickel powder to prepare an electrode pressed into a pellet having a diameter of 18 mm, and the hydrogen storage alloy electrode and the nickel hydroxide electrode were combined,
The electrolyte is a 30 wt% potassium hydroxide aqueous solution (however,
Containing 17 g / l lithium hydroxide),
A nickel-hydrogen battery was made.

【0036】この電池を30mAの電流で7時間充電し
た後に、30mAの電流で放電させた。その際の放電時
間と電圧との関係を図2に示す。
This battery was charged at a current of 30 mA for 7 hours and then discharged at a current of 30 mA. The relationship between the discharge time and the voltage at that time is shown in FIG.

【0037】図2に示すように、この電池は、ニッケル
−水素電池を用いる電気機器で一般に要求される放電電
圧の1.1Vよりも、0.15〜0.2V高い電圧で放
電することができる。
As shown in FIG. 2, this battery can be discharged at a voltage higher by 0.15 to 0.2 V than the discharge voltage of 1.1 V generally required for electric equipment using a nickel-hydrogen battery. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の水素吸蔵合金の30℃におけ
る水素吸蔵量と水素平衡圧との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a hydrogen storage amount at 30 ° C. and a hydrogen equilibrium pressure of a hydrogen storage alloy of an example of the present invention.

【図2】本発明の水素吸蔵合金を用いたニッケル−水素
電池の放電特性図である。
FIG. 2 is a discharge characteristic diagram of a nickel-hydrogen battery using the hydrogen storage alloy of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ti、ZrおよびNiを含み、格子定数
aが9ű20%、格子定数bが26ű20%および
格子定数cが7ű20%である斜方晶系の結晶構造を
有することを特徴とする水素吸蔵合金。
1. An orthorhombic crystal structure containing Ti, Zr and Ni, having a lattice constant a of 9Å ± 20%, a lattice constant b of 26Å ± 20% and a lattice constant c of 7Å ± 20%. A hydrogen storage alloy characterized by the above.
【請求項2】 Al、Co、Cr、Fe、MnおよびV
よりなる群から選ばれた少なくとも1種の元素を含むこ
とを特徴とする請求項1記載の水素吸蔵合金。
2. Al, Co, Cr, Fe, Mn and V
The hydrogen storage alloy according to claim 1, comprising at least one element selected from the group consisting of:
【請求項3】 複数の相から形成される水素吸蔵合金で
あって、請求項1記載の水素吸蔵合金の相を含むことを
特徴とする水素吸蔵合金。
3. A hydrogen storage alloy formed from a plurality of phases, comprising the phase of the hydrogen storage alloy according to claim 1.
【請求項4】 Ti、ZrおよびNiを含み、かつA
l、Co、Cr、Fe、MnおよびVよりなる群から選
ばれた少なくとも1種の元素を含み、合金全体中のNi
の占める割合が50原子%以下であり、かつC14型ラ
ーベス相またはC15型ラーベス相が主体の水素吸蔵合
金であって、請求項1記載の水素吸蔵合金の相を含むこ
とを特徴とする水素吸蔵合金。
4. Including Ti, Zr and Ni, and A
Ni in the entire alloy containing at least one element selected from the group consisting of 1, Co, Cr, Fe, Mn and V.
The hydrogen storage alloy is a hydrogen storage alloy having a C14 type Laves phase or a C15 type Laves phase as a main component, the hydrogen storage alloy containing the phase of the hydrogen storage alloy according to claim 1. alloy.
【請求項5】 請求項1記載の水素吸蔵合金を用いたこ
とを特徴とする水素吸蔵合金電極。
5. A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to claim 1.
【請求項6】 請求項4記載の水素吸蔵合金を用いたこ
とを特徴とする水素吸蔵合金電極。
6. A hydrogen storage alloy electrode using the hydrogen storage alloy according to claim 4.
【請求項7】 請求項5記載の水素吸蔵合金電極を用い
たことを特徴とするニッケル−水素電池。
7. A nickel-hydrogen battery comprising the hydrogen storage alloy electrode according to claim 5.
【請求項8】 請求項6記載の水素吸蔵合金電極を用い
たことを特徴とするニッケル−水素電池。
8. A nickel-hydrogen battery comprising the hydrogen storage alloy electrode according to claim 6.
JP3225011A 1991-08-09 1991-08-09 Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode Pending JPH0543968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225011A JPH0543968A (en) 1991-08-09 1991-08-09 Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225011A JPH0543968A (en) 1991-08-09 1991-08-09 Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode

Publications (1)

Publication Number Publication Date
JPH0543968A true JPH0543968A (en) 1993-02-23

Family

ID=16822680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225011A Pending JPH0543968A (en) 1991-08-09 1991-08-09 Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode

Country Status (1)

Country Link
JP (1) JPH0543968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253654A4 (en) * 1999-12-27 2004-06-09 Toshiba Kk Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253654A4 (en) * 1999-12-27 2004-06-09 Toshiba Kk Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
CN1320670C (en) * 1999-12-27 2007-06-06 株式会社东芝 Alloy for hydrogen storage, secondary battery, hybrid car and delectric vehicle

Similar Documents

Publication Publication Date Title
EP0765531B1 (en) ELECTROCHEMICAL HYDROGEN STORAGE ALLOYS AND BATTERIES FABRICATED FROM Mg CONTAINING BASE ALLOYS
JP3241047B2 (en) Improved electrochemical hydrogen storage alloy for nickel metal hydride batteries
JP2609463B2 (en) Hydrogen storage method and hydride electrode material
JP3741714B2 (en) Electrochemical hydrogen storage alloys and batteries made from these alloys
US5006328A (en) Method for preparing materials for hydrogen storage and for hydride electrode applications
US4744946A (en) Materials for storage of hydrogen
JP2935806B2 (en) Hydrogen storage material
JPH101731A (en) Hydrogen storage alloy and its production
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
US5922146A (en) Hydrogen-absorbing alloy of ultra high capacity for electrode of secondary battery
JPH0543968A (en) Hydrogen occluding alloy, hydrogen occluding alloy electrode using the same alloy and nickel-hydrogen cell using the same electrode
JPH05247568A (en) Hydrogen storage alloy electrode and battery using them
JPS626739B2 (en)
JPS61199045A (en) Hydrogen occluding alloy
JPH06196164A (en) Material capable of being hydrogenated for formation of negative electrode of nickel- hydride storage battery
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2896433B2 (en) Magnesium hydrogen storage alloy
JP3123800B2 (en) Hydrogen storage alloy electrode
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPH10298681A (en) Hydrogen storage alloy
JP3416727B2 (en) Hydrogen storage materials and new metal hydrides
JP2002540575A (en) Metal-containing electrode material and its manufacturing method
JPS6220267B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010704