JPH0543963B2 - - Google Patents

Info

Publication number
JPH0543963B2
JPH0543963B2 JP29086787A JP29086787A JPH0543963B2 JP H0543963 B2 JPH0543963 B2 JP H0543963B2 JP 29086787 A JP29086787 A JP 29086787A JP 29086787 A JP29086787 A JP 29086787A JP H0543963 B2 JPH0543963 B2 JP H0543963B2
Authority
JP
Japan
Prior art keywords
light
measured
component
film thickness
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29086787A
Other languages
Japanese (ja)
Other versions
JPH01131404A (en
Inventor
Toshihiko Ide
Kosei Aikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP62290867A priority Critical patent/JPH01131404A/en
Publication of JPH01131404A publication Critical patent/JPH01131404A/en
Publication of JPH0543963B2 publication Critical patent/JPH0543963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光の干渉を利用して膜厚を測定す
る装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for measuring film thickness using optical interference.

[従来の技術] 光の干渉を利用して被測定対象の膜厚を測定す
るには、被測定対象に光源よりの光を投光し、そ
の透過光または反射光を分光して干渉縞(干渉波
形)を検出器で検出し、被測定対象の膜厚を測定
している。
[Prior Art] In order to measure the film thickness of an object to be measured using optical interference, light from a light source is projected onto the object to be measured, and the transmitted or reflected light is separated into interference fringes ( The interference waveform) is detected by a detector and the film thickness of the object to be measured is measured.

[この発明が解決しようとする問題点] しかしながら、被測定対象の膜厚を測定するに
は、あらかじめ屈折率が既知であることが必要で
あり、被測定対象の種類が変更となり、屈折率が
変わると、これに応じて測定系の屈折率等の設定
値の変更が必要となり、非常に不便であつた。ま
た、操業中に屈折率が変動するような膜(たとえ
ばシリコン拡散膜)の測定は不可能であつた。
[Problems to be Solved by the Invention] However, in order to measure the film thickness of the object to be measured, it is necessary to know the refractive index in advance. If the value changes, it is necessary to change the refractive index settings of the measurement system accordingly, which is very inconvenient. Furthermore, it has been impossible to measure a film whose refractive index changes during operation (for example, a silicon diffusion film).

この発明の目的は、以上の点に鑑み、透明膜の
ような被測定対象の屈折率を自動的に測定して補
正するようにした膜厚測定装置を提供することで
ある。
In view of the above points, an object of the present invention is to provide a film thickness measuring device that automatically measures and corrects the refractive index of an object to be measured such as a transparent film.

[問題点を解決するための手段] この発明は、被測定対象に一定角度で光源の光
を投光し、被測定対象からの透過光または反射光
のP成分およびS成分の偏光成分に分離された光
を分光手段で分光して検出器で干渉波形を検出
し、干渉波形の極小値の極値を与えるP成分とS
成分の出力比から屈折率を求め、この屈折率とP
成分またはS成分の極値を与える波長に基いて膜
厚を演算手段で行うようにした膜厚測定装置であ
る。
[Means for Solving the Problems] The present invention projects light from a light source onto an object to be measured at a constant angle, and separates the transmitted light or reflected light from the object to be measured into polarized light components of the P component and the S component. The resulting light is separated by a spectrometer, the interference waveform is detected by a detector, and the P component and S
The refractive index is determined from the output ratio of the components, and this refractive index and P
This is a film thickness measuring device in which the film thickness is measured by a calculating means based on the wavelength that gives the extreme value of the component or S component.

[実施例] 第1図は、この発明の一実施例を示す構成説明
図である。
[Embodiment] FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

図において、1は、光源で、光源1からの光
は、レンズ2により、透明フイルム膜のような被
測定対象3に投光され、被測定対象3を透過また
は反射した光は、図示しない駆動手段で回転する
偏光板のような偏光手段5によりP成分とS成分
の偏光成分に分離され、レンズ6を介して回折格
子やプリズムのような分光手段7で分光され、レ
ンズ8を介してCCDのようなイメージセンサの
検出器9に入射し、P成分、S成分についての第
2図で示すような干渉縞パターン(干渉波形)の
強度が検出される。この検出器9の出力は、図示
しない増幅器で増幅され、演算手段10で所定の
演算がなされ、被測定対象3の屈折率n、膜厚d
が演算される。なお、偏光手段5により分離され
た光がP成分かS成分かを識別する同期信号も演
算手段10に送られ、演算に利用される。
In the figure, reference numeral 1 denotes a light source, and the light from the light source 1 is projected by a lens 2 onto an object to be measured 3 such as a transparent film. The light is separated into P and S polarized components by a polarizing means 5 such as a polarizing plate rotated by a means, and separated into polarized light components through a lens 6 by a spectroscopic means 7 such as a diffraction grating or prism, and then transmitted through a lens 8 to a CCD. The light enters the detector 9 of an image sensor such as , and the intensity of the interference fringe pattern (interference waveform) as shown in FIG. 2 for the P component and the S component is detected. The output of this detector 9 is amplified by an amplifier (not shown), and predetermined calculations are performed by a calculation means 10 to determine the refractive index n and film thickness d of the object to be measured 3.
is calculated. Note that a synchronization signal for identifying whether the light separated by the polarization means 5 is a P component or an S component is also sent to the calculation means 10 and used for calculation.

第3図で示すように、光源1からの光Lは、入
射角i1、屈折角i2で被測定対象3の表面、裏面で
反射、透過する。反射光R、透過光Lとし、被測
定対象3の屈折率をn、厚さをdとすれば、たと
えば、S成分、P成分の透過率をTs,Tpとする
と干渉の結果、次式が成り立つ。
As shown in FIG. 3, the light L from the light source 1 is reflected and transmitted by the front and back surfaces of the object to be measured 3 at an incident angle i 1 and a refraction angle i 2 . If the reflected light R and the transmitted light L are the refractive index of the object to be measured 3 and the thickness is d, for example, if the transmittance of the S component and the P component are Ts and Tp, as a result of interference, the following equation is obtained. It works.

Ts=C16n2θ1 2θ2 2 /{(θ1+nθ24+(θ1−nθ24 −2(θ1+nθ22・(θ1−nθ22 cos(ηn)} …(1) Tp=C16n2θ1 2θ2 2 /{(nθ1+θ24+(nθ1−θ24 −2(nθ1+θ22・(nθ1−θ22 cos(ηn)} …(2) ここで記号は次の通り。Ts=C16n 2 θ 1 2 θ 2 2 / {(θ 1 + nθ 2 ) 4 + (θ 1 − nθ 2 ) 4 −2 (θ 1 + nθ 2 ) 2・(θ 1 − nθ 2 ) 2 cos(ηn) } …(1) Tp=C16n 2 θ 1 2 θ 2 2 / {(nθ 12 ) 4 + (nθ 1 −θ 2 ) 4 −2(nθ 12 ) 2・(nθ 1 −θ 2 ) 2 cos(ηn)} …(2) Here, the symbols are as follows.

θ1=cosi1、θ2=cosi2、 η=4πdθ2/λ、λ:波長 C:光学系により決まる定数 (1)、(2)式は、cos(ηn)=−1のとき極小となり
次式が成り立つ。
θ 1 = cosi 1 , θ 2 = cosi 2 , η = 4πdθ 2 /λ, λ: wavelength C: constant determined by optical system Equations (1) and (2) become minimum when cos (ηn) = -1. The following formula holds.

Ts=C4n2θ1 2θ2 2/(θ1 2+n2θ2 22 …(3) Tp=C4n2θ1 2θ2 2/(n2θ1 2+θ2 22 …(4) Ts/Tp=(n2θ1 2+θ2 22/(θ1 2+n2θ2 22 …(5) 一方、スネルの法則等から、 nsini2=sini1 θ2=cosi2=cos{sin-1(sini1/n)}…(6) となる。Ts=C4n 2 θ 1 2 θ 2 2 / (θ 1 2 + n 2 θ 2 2 ) 2 …(3) Tp=C4n 2 θ 1 2 θ 2 2 / (n 2 θ 1 2 + θ 2 2 ) 2 …( 4) Ts/Tp=(n 2 θ 1 2 + θ 2 2 ) 2 / (θ 1 2 +n 2 θ 2 2 ) 2 …(5) On the other hand, from Snell's law etc., nsini 2 = sini 1 θ 2 = cosi 2 = cos {sin -1 (sini 1 /n)}...(6).

(5)式の左辺は、測定により求まり、i1は設定可
能で既知(θ1=cosi1も既知)、θ2は(7)式によりn
のみの関数である。(7)式を(5)式に代入して、nに
ついて解けば、屈折率nは求まる。
The left side of equation (5) can be found by measurement, i 1 is settable and known (θ 1 = cosi 1 is also known), and θ 2 is n based on equation (7).
It is a function of only . By substituting equation (7) into equation (5) and solving for n, the refractive index n can be found.

また、(1)式または(2)式の極値を与える適当な最
小波長λ1、最大波長λ2、干渉の各次数をm+N、
mとすると次式が成り立つ。
In addition, the appropriate minimum wavelength λ 1 and maximum wavelength λ 2 that give the extreme value of equation (1) or (2), and each order of interference are m+N,
When m is set, the following formula holds true.

(m+N)λ1=2nd/cosi2 …(7) mλ2=2nd/cosi2 …(8) (9)式によりmを求めて(8)式に代入して整理する
と次式となる。
(m+N) λ 1 = 2nd/cosi 2 (7) mλ 2 = 2nd/cosi 2 (8) m is obtained from equation (9), substituted into equation (8), and rearranged to give the following equation.

d=Ncos2λ1λ2/2n(λ2−λ1) =Ncosi2/2n(1/λ1−1/λ2) …(9) このように、波長λ1、λ2、極値の次数差N、(5)
式による屈折率nから被測定対象3の膜厚dが求
まる。
d=Ncos 2 λ 1 λ 2 /2n (λ 2 - λ 1 ) = Ncosi 2 /2n (1/λ 1 -1/λ 2 )...(9) In this way, the wavelengths λ 1 , λ 2 , and the extreme values The order difference N, (5)
The film thickness d of the object to be measured 3 is determined from the refractive index n according to the formula.

なお、(1)、(2)式は、透過光Rについて説明した
が、反射光Tについても同様である。
Although equations (1) and (2) have been described for transmitted light R, the same applies to reflected light T.

つまり、分光手段7により検出器9の各素子の
波長は決つているので、各素子番号と波長との関
係を演算手段10のメモリに記憶しておく。
That is, since the wavelength of each element of the detector 9 is determined by the spectroscopy means 7, the relationship between each element number and wavelength is stored in the memory of the calculation means 10.

そして、測定時、偏光手段5のP成分とS成分
とに分離したときの第2図のような干渉波形の出
力信号を読み出し、極小値を与える波長について
の(3)、(4)式に相当する信号から(5)式を演算し、あ
らかじめ定めた入射角i1を(7)式を利用して(5)式の
右辺に代入して屈折率nを演算する。
Then, at the time of measurement, the output signal of the interference waveform as shown in FIG. 2 when separated into the P component and the S component of the polarization means 5 is read out, and equations (3) and (4) for the wavelength that gives the minimum value are calculated. Equation (5) is calculated from the corresponding signal, and a predetermined incident angle i 1 is substituted into the right side of equation (5) using equation (7) to calculate the refractive index n.

次いで、第2図の干渉波形から、極値を与える
素子番号からメモリを利用して波長λ1、λ2を求
め、極値の差から次数差Nを求め、(5)式より求め
た屈折率nを用い、被測定対象3の膜厚dを求め
る。
Next, from the interference waveform in Fig. 2, the wavelengths λ 1 and λ 2 are determined using memory from the element numbers that give the extreme values, the order difference N is determined from the difference between the extreme values, and the refraction calculated from equation (5) is calculated. The film thickness d of the object to be measured 3 is determined using the ratio n.

なお、第4図のように偏光手段5を光源1側に
おき、偏光した光を被測定対象3に投光するよう
にしてもよい。
Incidentally, as shown in FIG. 4, the polarizing means 5 may be placed on the light source 1 side to project polarized light onto the object to be measured 3.

[発明の効果] 以上述べたように、この発明は、2つのP成
分、S成分の偏光成分についての極小値の比を利
用して屈折率nを求めているので、透明膜のよう
な被測定対象の種類、屈折率が変わつても、常に
屈折率を自動的に補正して正確な膜厚を測定する
ことができる。また、偏光成分の比から屈折率を
求めているので、光路等による光学定数の変動の
影響は除去され、高精度に屈折率を求めることが
できる。
[Effects of the Invention] As described above, the present invention calculates the refractive index n using the ratio of the minimum values of the two polarization components of the P component and the S component. Even if the type or refractive index of the object to be measured changes, the refractive index can always be automatically corrected to accurately measure the film thickness. Furthermore, since the refractive index is determined from the ratio of polarized light components, the influence of fluctuations in optical constants due to optical paths, etc. is removed, and the refractive index can be determined with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は、この発明
の一実施例を示す構成説明図である。 1…光源、2,4,6,8…レンズ、3…被測
定対象、5…偏光手段、7…分光手段、9…検出
器、10…演算手段。
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are configuration explanatory diagrams showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 2, 4, 6, 8... Lens, 3... Measured object, 5... Polarizing means, 7... Spectroscopic means, 9... Detector, 10... Calculating means.

Claims (1)

【特許請求の範囲】 1 被測定対象に一定角度で光を投光する光源
と、被測定対象からの透過光または反射光のP成
分およびS成分の偏光成分に時分割的に分離され
た光を分光する分光手段と、この分光手段で分光
された干渉波形を検出する検出器と、この検出器
の干渉波形の極小値を与える波長のP成分とS成
分における出力比から被測定対象の屈折率を求
め、この屈折率とP成分またはS成分の極値を与
える波長に基いて被測定対象の膜厚を演算する演
算手段とを備えたことを特徴とする膜厚測定装
置。 2 前記被測定物に光を投光する光源側または光
が被測定物を透過または反射した側に光を偏光成
分に分離する偏光手段を設けたことを特徴とする
特許請求の範囲第1項記載の膜厚測定装置。 3 前記検出器として、イメージセンサを用いた
ことを特徴とする特許請求の範囲第1項または第
2項記載の膜厚測定装置。
[Claims of Claims] 1. A light source that projects light onto an object to be measured at a constant angle, and light that is time-divisionally separated into polarized light components of P and S components of transmitted light or reflected light from the object to be measured. A spectroscopic means for spectroscopy, a detector for detecting the interference waveform separated by the spectroscopic means, and a refraction of the object to be measured from the output ratio of the P component and the S component of the wavelength that gives the minimum value of the interference waveform of this detector. What is claimed is: 1. A film thickness measuring device comprising: calculation means for determining the refractive index and calculating the film thickness of the object to be measured based on the refractive index and the wavelength that gives the extreme value of the P component or the S component. 2. Claim 1, characterized in that a polarizing means for separating the light into polarized components is provided on the light source side that projects the light onto the object to be measured or on the side where the light is transmitted or reflected from the object to be measured. The film thickness measuring device described. 3. The film thickness measuring device according to claim 1 or 2, wherein an image sensor is used as the detector.
JP62290867A 1987-11-17 1987-11-17 Film thickness measuring instrument Granted JPH01131404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290867A JPH01131404A (en) 1987-11-17 1987-11-17 Film thickness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290867A JPH01131404A (en) 1987-11-17 1987-11-17 Film thickness measuring instrument

Publications (2)

Publication Number Publication Date
JPH01131404A JPH01131404A (en) 1989-05-24
JPH0543963B2 true JPH0543963B2 (en) 1993-07-05

Family

ID=17761524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290867A Granted JPH01131404A (en) 1987-11-17 1987-11-17 Film thickness measuring instrument

Country Status (1)

Country Link
JP (1) JPH01131404A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109457B (en) * 2023-10-25 2023-12-26 山东潍森新材料科技股份有限公司 Detection device for uniformity of wall thickness of cellulose casing

Also Published As

Publication number Publication date
JPH01131404A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
EP1803004B1 (en) Optical sensor using low-coherence interferometry
KR940016660A (en) Thin Film Thickness Measurement Apparatus and Method
JP2997312B2 (en) Polarization interferometer
JP3426552B2 (en) Shape measuring device
JPH0663867B2 (en) Interfering device for wavefront condition detection
US20170315053A1 (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
JPS59164914A (en) Optical scale reading apparatus
JPS635682B2 (en)
JPH0543963B2 (en)
JPH08271337A (en) Spectroscope
JPH0449642B2 (en)
JPH02116732A (en) Method and apparatus for optical measurement
JPH04313007A (en) Film inspecting device
JPS6350703A (en) Apparatus for measuring film thickness
JPH01131405A (en) Film thickness measuring instrument
JPS6350704A (en) Apparatus for measuring film thickness
JPH0435683B2 (en)
JPH0429364Y2 (en)
JPS62106310A (en) Apparatus for measuring degree of parallelism of plane-parallel plates
SU1550378A1 (en) Method of determining the index of refraction of transparent media
JP2863273B2 (en) Displacement measuring device
JPS6097215A (en) Length measuring device
JPH0249648B2 (en)
Bitte et al. Alternative methods for wavelength determination: interference filters and double photodiodes
JPS61209340A (en) Optical measuring apparatus