JPH0435683B2 - - Google Patents

Info

Publication number
JPH0435683B2
JPH0435683B2 JP25653686A JP25653686A JPH0435683B2 JP H0435683 B2 JPH0435683 B2 JP H0435683B2 JP 25653686 A JP25653686 A JP 25653686A JP 25653686 A JP25653686 A JP 25653686A JP H0435683 B2 JPH0435683 B2 JP H0435683B2
Authority
JP
Japan
Prior art keywords
film thickness
measured
wavelength
detector
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25653686A
Other languages
Japanese (ja)
Other versions
JPS63109304A (en
Inventor
Isao Hishikari
Toshihiko Ide
Kosei Aikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP25653686A priority Critical patent/JPS63109304A/en
Publication of JPS63109304A publication Critical patent/JPS63109304A/en
Publication of JPH0435683B2 publication Critical patent/JPH0435683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光の干渉を利用して膜厚を測定す
る装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for measuring film thickness using optical interference.

[従来の技術] 光の干渉を利用して被測定対象の膜厚を測定す
るには、被測定対象に光源よりの光を投光し、そ
の透過光または反射光を分光して干渉縞を検出器
で検出し、被測定対象の膜厚を測定しているが、
被測定対象の屈折率nが波長λにより変化する場
合、正確な膜厚測定が困難となる問題点があつ
た。
[Prior art] To measure the film thickness of an object to be measured using optical interference, light from a light source is projected onto the object to be measured, and the transmitted or reflected light is separated to form interference fringes. The film thickness of the object to be measured is detected by a detector, but
When the refractive index n of the object to be measured changes depending on the wavelength λ, there is a problem that accurate film thickness measurement becomes difficult.

これを解決するため、出願人は、特願昭61−
196148号において、被測定対象の屈折率が波長依
存性をもつても、正確な膜厚測定を可能とした膜
厚測定装置を提供した。
In order to solve this problem, the applicant filed a patent application in 1983-
In No. 196148, we provided a film thickness measuring device that enables accurate film thickness measurement even if the refractive index of the object to be measured has wavelength dependence.

[この発明が解決しようとする問題点] しかしながら、この方法であつても、被測定対
象の屈折率、屈折率の波長依存係数(分散)をあ
らかじめ設定しなければならない。分散の小さい
物、大まかな測定であれば屈折率のみあらかじめ
測定しておけばよいが、より正確な測定では分散
の正確な値が必要である。屈折率のデータは比較
的知られているが、分散のデータは少い。また、
プラスチツクフイルムでは、添加物の種類、割
合、製造方法などにより屈折率・分散は異り、実
際の測定対象物の屈折率・分散が分らない場合が
多い。
[Problems to be Solved by the Invention] However, even with this method, the refractive index of the object to be measured and the wavelength dependent coefficient (dispersion) of the refractive index must be set in advance. For objects with small dispersion and for rough measurements, it is sufficient to measure only the refractive index in advance, but for more accurate measurements, accurate values of dispersion are required. Although refractive index data is relatively well known, dispersion data is sparse. Also,
The refractive index and dispersion of plastic films vary depending on the type and proportion of additives, manufacturing method, etc., and it is often difficult to know the refractive index and dispersion of the actual object to be measured.

この発明の目的は、以上の点に鑑み、厚さが分
つている試料について、屈折率および分散を求
め、膜厚を測定するようにした膜厚測定装置を提
供することである。
In view of the above points, it is an object of the present invention to provide a film thickness measuring device that measures the film thickness by determining the refractive index and dispersion of a sample whose thickness is known.

[問題点を解決するための手段] この発明は、光源からの光を被測定対象に投光
し、その透過光または反射光を分光して干渉縞を
検出器で検出し、被測定対象の膜厚を求める装置
において、検出器の干渉縞パターンの少くとも2
つの異なる波長範囲についての極値を与える波長
または波数、次数差から求めた各膜厚が等しいと
して屈折率の波長依存係数を求め、被測定対象の
膜厚を演算するようにした膜厚測定装置である。
[Means for Solving the Problems] This invention projects light from a light source onto an object to be measured, separates the transmitted light or reflected light, and detects interference fringes with a detector. In a device for determining film thickness, at least two of the interference fringe patterns of the detector are
A film thickness measuring device that calculates the film thickness of the object to be measured by calculating the wavelength dependence coefficient of the refractive index on the assumption that each film thickness obtained from the wavelength or wave number or order difference that gives the extreme value in two different wavelength ranges is equal. It is.

[実施例] 第1図は、この発明の一実施例を示す構成説明
図である。
[Embodiment] FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

図において、1は、光源で、光源1から光は、
レンズによりハーフミラー3を介してフイルムの
ような被測定対象4に投光され、被測定対象4を
透過または反射した光は、この図ではハーフミラ
ー3、レンズ5、チヨツパのようなシヤツタ手段
6、しぼり7、レンズ8を介して回析格子等の分
光手段9で分光され、レンズ10を介してCCD
のようなイメージセンサの検出器11に入射す
る。このイメージセンサの検出器11の各素子に
は分光手段9で分光された各波長に対応した光が
入射し、干渉縞パターンの強度が検出される。検
出器11の出力は増幅器12で増幅され、演算手
段13で所定の演算がなされ、被測定対象4の膜
厚dが演算される。
In the figure, 1 is a light source, and the light from light source 1 is
The light is projected by a lens onto an object to be measured 4 such as a film through a half mirror 3, and the light transmitted or reflected by the object to be measured 4 is transmitted through a half mirror 3, a lens 5, and a shutter means 6 such as a chopper in this figure. , an aperture 7, a lens 8, and a spectroscopic means 9 such as a diffraction grating.
is incident on the detector 11 of an image sensor such as . Light corresponding to each wavelength separated by the spectroscopic means 9 is incident on each element of the detector 11 of this image sensor, and the intensity of the interference fringe pattern is detected. The output of the detector 11 is amplified by an amplifier 12, and a predetermined calculation is performed by a calculation means 13, whereby the film thickness d of the object to be measured 4 is calculated.

第2図に示すように、光源からの平行光線L1
L2は、膜厚(厚さ)dで、屈折率が波長依存性
をもつ被測定対象4の表面および裏面で反射し、
両光線L1、L2は、光学的光路差2nd/cosθ′をも
ち、この光路差が光の波長の整数倍のとき干渉し
て第3図のような干渉縞を形成する。
As shown in Fig. 2, parallel rays L 1 from the light source,
L 2 is a film thickness (thickness) d, which is reflected by the front and back surfaces of the object to be measured 4 whose refractive index has wavelength dependence,
Both rays L 1 and L 2 have an optical path difference 2nd/cos θ', and when this optical path difference is an integral multiple of the wavelength of the light, they interfere to form interference fringes as shown in FIG.

第3図で示すような干渉縞パターンが得られた
とし、測定領域の極値を与える最小波長λ1、最大
波長λ2について、干渉の各次数をm+N、m、波
長λ1、〓2に対応する被測定対象4の屈折率をn1
n2とし、次式が成り立つ。
Assume that an interference fringe pattern as shown in Fig. 3 is obtained, and for the minimum wavelength λ 1 and maximum wavelength λ 2 that give the extreme values of the measurement area, each order of interference is set to m+N, m, wavelength λ 1 , 〓 2. The refractive index of the corresponding object to be measured 4 is n 1 ,
Assuming n 2 , the following formula holds.

(m+N)λ1=2n1d/cosθ′ (1) mλ2=2n2d/cosθ′ (2) (2)式よりmを求め(1)式に代入して整理すると d=Ncosθ′/21/n1/λ1−n2/λ2 (3) となる。被測定対象4に垂直に投光するθ′=0の
ときはcosθ′=1で(3)式は d=N/21/n1/λ1−n2/λ (4) となる。このように、波長λ1、λ2、極値の次数差
N、波長λ1、λ2に対応する屈折率n1、n2から、被
測定対象4の膜厚が(3),(4)式より求まる。
(m+N)λ 1 =2n 1 d/cosθ' (1) mλ 2 =2n2d/cosθ' (2) Obtaining m from equation (2) and substituting it into equation (1) to organize, d=Ncosθ'/21/ n 11 −n 22 (3). When θ'=0 and the light is projected perpendicularly to the object to be measured 4, cos θ'=1 and equation (3) becomes d=N/21/n 11 −n 2 /λ (4). In this way, from the wavelengths λ 1 , λ 2 , the order difference N of the extreme values, and the refractive indices n 1 , n 2 corresponding to the wavelengths λ 1 , λ 2 , the film thickness of the object to be measured 4 is (3), (4 ) can be found from the formula.

ここで、波長λの逆数である波数γで(4)式を表
わすと、次式となる(最大波数γ1=1/λ1、最少
波数γ2=1/λ2)。
Here, when equation (4) is expressed in terms of wave number γ, which is the reciprocal of wavelength λ, the following equation is obtained (maximum wave number γ 1 =1/λ 1 , minimum wave number γ 2 =1/λ 2 ).

d=N/21/n1γ1−n2γ2 (5) ここで、屈折率nが波数γの1次式で近似され
るものとし、波数γ0での屈折率をn0とすると、 n=n0(1+α(γ−γ0)) (6) となる。αは、屈折率の波長依存性を示す波長依
存係数(分散係数)で、γ=γ0でn=n0で、γ0
基準波数である。
d=N/21/n 1 γ 1 −n 2 γ 2 (5) Here, let us assume that the refractive index n is approximated by a linear expression of the wave number γ, and let the refractive index at the wave number γ 0 be n 0 . , n=n 0 (1+α(γ−γ 0 )) (6). α is a wavelength dependence coefficient (dispersion coefficient) indicating the wavelength dependence of the refractive index, where γ=γ 0 and n=n 0 , and γ 0 is the reference wave number.

(6)式を(5)式に代入して整理すると次式となる。 Substituting equation (6) into equation (5) and organizing it gives the following equation.

d=N/{2(γ1−γ2)n0 ・(1+α(γ1+γ2−γ0))} (7) ところで、n0とαが既知であると仮定して、本
来の波数範囲(波長範囲)を2分割し、それぞれ
の波数範囲で膜厚測定すると、各膜厚d1,d2は次
式となる。各波数範囲は、γ11〜γ12、γ21〜γ22
し、各次数差はN1,N2とした。
d=N/{2 (γ 1 − γ 2 ) n 0 · (1 + α (γ 1 + γ 2 − γ 0 ))} (7) By the way, assuming that n 0 and α are known, the original wave number When the range (wavelength range) is divided into two and the film thickness is measured in each wave number range, the film thicknesses d 1 and d 2 are determined by the following equations. The wave number ranges were γ 11 to γ 12 and γ 21 to γ 22 , and the order differences were N 1 and N 2 .

d1=N1/{2(γ11−γ12)n0 ・(1+α(γ11+γ12−γ0))} (8) d2=N2/{2(γ21−γ22)n0 ・(1+α(γ21+γ22−γ0))} (9) 同一箇所を測定しているので、d1とd2とは等し
くなり、d1=d2より次式が得られる。
d 1 = N 1 / {2 (γ 11 − γ 12 ) n 0・(1 + α (γ 11 + γ 12 − γ 0 ))} (8) d 2 = N 2 / {2 (γ 21 − γ 22 ) n 0・(1+α(γ 21 + γ 22 −γ 0 ))} (9) Since the same location is measured, d 1 and d 2 are equal, and the following equation is obtained from d 1 = d 2 .

α={N2(γ11−γ12) −N1(γ21−γ22)} /{N1(γ21−γ22)(γ21+γ22−γ0) −N2(γ11−γ12)(γ11+γ12−γ0)} (10) このαの右辺は、すべて測定可能な値であるの
で、既知のサンプルについてαは求まる。
α={N 211 − γ 12 ) −N 121 − γ 22 )} / {N 121 − γ 22 ) (γ 21 + γ 22 − γ 0 ) −N 211 − γ 12 )(γ 1112 −γ 0 )} (10) Since all the right-hand sides of α are measurable values, α can be found for known samples.

また、n0は、真の厚さdsが与えられれば、(8)
式、(9)式のいずれか、または、全波数範囲で測り
なおした結果から求めることができる。
Also, n 0 is given by the true thickness d s , (8)
It can be obtained from either equation (9) or from the results of remeasurement over the entire wavenumber range.

(8)式を用いると、n0は、 n0=N1/{2ds(γ11−γ12) ・(1+α(γ11+γ12−γ0))} (11) で求められる。 Using equation (8), n 0 is obtained as n 0 =N 1 /{2ds(γ 11 −γ 12 )·(1+α(γ 1112 −γ 0 ))} (11).

このようにして求めたα、n0等を(6)式に用い、
任意波数(波長)の屈折率n1、n2、……が求ま
り、(5)式等より膜厚が求まる。
Using α, n 0, etc. obtained in this way in equation (6),
The refractive indexes n 1 , n 2 , . . . of arbitrary wave numbers (wavelengths) are determined, and the film thickness is determined from equation (5) and the like.

つまり、あらかじめ、分光手段9により検出器
11の各素子に入射す波長は決まつているので、
検出器11の各素子番号と波長(波数)との関係
を演算手段13のメモリに記憶し設定しておく。
また、波長に対する屈折率の関係も表または式の
形で同様にメモリに記憶しておく。たとえば、測
定で求めた上記のα、n0を用いた(6)式のようなも
のである。
In other words, since the wavelengths incident on each element of the detector 11 are determined in advance by the spectroscopic means 9,
The relationship between each element number of the detector 11 and the wavelength (wave number) is stored and set in the memory of the calculation means 13.
Further, the relationship between the refractive index and the wavelength is also stored in the memory in the form of a table or equation. For example, it is something like equation (6) using the above α and n 0 determined by measurement.

そして、測定時、検出器11の各素子の出力を
順次読み出し、第3図で示すように、測定範囲内
で極値を与える素子番号からメモリを利用して波
長λ1、λ2(波数γ1,γ2)を求め、このλ1、λ2(γ
1
γ2)に対応する屈折率n1、n2をメモリの(6)式等か
ら求め、極値の数の差から次数差Nを求め、(3)、
(4)、(5)式または(7)、(8)、(9)のような演算を行つて
被測定対象4の膜厚dを求める。ところで、被測
定対象4の膜厚のバラツキにより干渉縞パターン
がずれて重なり、弱い部分が生じることがある。
これを避けるため、検出器11の各波長について
の出力のうち極大値と極小値との差が所定の値以
上のときの極値についての出力から上記のように
膜厚を測定するようにする。このことにより、不
確実で、弱い干渉縞を拾うことなく、強い確実な
干渉縞から被測定対象4の膜厚dを測定できる。
Then, during measurement, the output of each element of the detector 11 is read out sequentially, and as shown in FIG. 3, wavelengths λ 1 and λ 2 (wave number γ 1 , γ 2 ), and calculate these λ 1 , λ 2
1 ,
The refractive indices n 1 and n 2 corresponding to γ 2 ) are determined from the memory equation (6), etc., and the order difference N is determined from the difference in the number of extreme values, (3),
The film thickness d of the object to be measured 4 is determined by calculations such as equations (4) and (5) or (7), (8), and (9). Incidentally, due to variations in the film thickness of the object to be measured 4, the interference fringe patterns may shift and overlap, resulting in weak portions.
In order to avoid this, the film thickness is measured as described above from the output of the extreme value when the difference between the maximum value and the minimum value of the output for each wavelength of the detector 11 is greater than a predetermined value. . Thereby, the film thickness d of the object to be measured 4 can be measured from strong and reliable interference fringes without picking up uncertain and weak interference fringes.

また、検出器11に電荷蓄積型撮像素子CCD
のようなイメージセンサを用いると、被測定対象
4が移動して、その厚さ等がずれると、やや異つ
た干渉縞パターンが検出器11の各素子に一走査
周期内に入射して合成され、全体としてコントラ
ストが悪くなる。
In addition, the detector 11 is equipped with a charge storage type image sensor CCD.
When an image sensor such as the one shown in FIG. , the overall contrast deteriorates.

このため、モータによりセクタが回転するチヨ
ツパのようなシヤツタ手段6により入射光を断続
して1回の測定時間を制限し、検出器11への入
射光の変動の影響を少くし、干渉縞のコントラス
トが悪くなるのを防止し、測定を確実なものとす
る。
For this reason, the incident light is interrupted by a shutter means 6 such as a chopper whose sectors are rotated by a motor to limit the time for one measurement, thereby reducing the influence of fluctuations in the incident light on the detector 11 and reducing interference fringes. To prevent deterioration of contrast and ensure reliable measurement.

[発明の効果] 以上述べたように、この発明は、波長に対応し
た屈折率を決める波長依存係数(分散)を測定か
ら求め、あらかじめメモリに記憶して用いるよう
にしているので、被測定対象の屈折率が波長依存
性をもつても、正確に膜厚の測定が可能となる。
[Effects of the Invention] As described above, in this invention, the wavelength-dependent coefficient (dispersion) that determines the refractive index corresponding to the wavelength is determined from measurement, and is stored in memory in advance for use. Even if the refractive index of the film has wavelength dependence, it is possible to accurately measure the film thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、この発明の一実施例を示す
構成図、第3図は、干渉縞の説明図である。 1……光源、2,5,8,10……レンズ、3
……ハーフミラー、4……被測定対象、6……シ
ヤツタ手段、7……しぼり、9……分光手段、1
1……検出器、12……増幅器、13……演算手
段。
FIGS. 1 and 2 are block diagrams showing one embodiment of the present invention, and FIG. 3 is an explanatory diagram of interference fringes. 1... Light source, 2, 5, 8, 10... Lens, 3
... Half mirror, 4 ... Object to be measured, 6 ... Shutter means, 7 ... Aperture, 9 ... Spectroscopic means, 1
1...Detector, 12...Amplifier, 13...Arithmetic means.

Claims (1)

【特許請求の範囲】 1 被測定対象に光を投光する光源と、被測定対
象からの透過光または反射光を分光手段で分光し
干渉縞を検出する検出器と、この検出器の干渉縞
パターンの少くとも2つの異る波長範囲について
の極値を与える波長または波数、次数差から求め
た各膜厚が等しいとして屈折率の波長依存係数を
求め、被測定対象の膜厚を演算する演算手段とを
備えたことを特徴とする膜厚測定装置。 2 前記検出器として、イメージセンサを用いた
ことを特徴とする特許請求の範囲第1項記載の膜
厚測定装置。
[Claims of Claims] 1. A light source that projects light onto an object to be measured, a detector that uses a spectrometer to separate transmitted light or reflected light from the object to be measured and detects interference fringes, and interference fringes of this detector. A calculation that calculates the film thickness of the object to be measured by determining the wavelength dependence coefficient of the refractive index on the assumption that each film thickness obtained from the wavelength or wave number or order difference that gives the extreme value for at least two different wavelength ranges of the pattern is equal. A film thickness measuring device characterized by comprising: means. 2. The film thickness measuring device according to claim 1, wherein an image sensor is used as the detector.
JP25653686A 1986-10-27 1986-10-27 Apparatus for measuring thickness of film Granted JPS63109304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25653686A JPS63109304A (en) 1986-10-27 1986-10-27 Apparatus for measuring thickness of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25653686A JPS63109304A (en) 1986-10-27 1986-10-27 Apparatus for measuring thickness of film

Publications (2)

Publication Number Publication Date
JPS63109304A JPS63109304A (en) 1988-05-14
JPH0435683B2 true JPH0435683B2 (en) 1992-06-11

Family

ID=17293987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25653686A Granted JPS63109304A (en) 1986-10-27 1986-10-27 Apparatus for measuring thickness of film

Country Status (1)

Country Link
JP (1) JPS63109304A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149951A (en) * 2007-12-21 2009-07-09 Mitsubishi Heavy Ind Ltd Film thickness adjustment method for film deposition system
CN102171000A (en) * 2008-10-01 2011-08-31 彼特沃尔特斯有限公司 Method for measuring the thickness of a discoidal workpiece

Also Published As

Publication number Publication date
JPS63109304A (en) 1988-05-14

Similar Documents

Publication Publication Date Title
KR940016660A (en) Thin Film Thickness Measurement Apparatus and Method
JP6550101B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPH0330802B2 (en)
GB2033079A (en) Infrared interference type film thickness measuring method and instrument
US5526117A (en) Method for the determination of characteristic values of transparent layers with the aid of ellipsometry
US4222667A (en) Fizeau fringe light evaluator and method
TW202004121A (en) Optical measuring device and optical measuring method
JP2021067611A5 (en)
US20170315053A1 (en) Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method
JPH0435683B2 (en)
JPS59105508A (en) Measurement of whith interference film thickness
JPH0464417B2 (en)
JPS6350703A (en) Apparatus for measuring film thickness
JPH0429364Y2 (en)
JPS6350704A (en) Apparatus for measuring film thickness
JPS60224002A (en) Infrared thickness gage
JPH03503806A (en) Method for detecting optical phase change during biosensor operation, biosensing device and biosensor suitable for use in detecting optical phase change during biosensor operation
JPH0466285B2 (en)
JPS6350705A (en) Apparatus for measuring film thickness
JPH0543963B2 (en)
JPH01320409A (en) Film thickness measuring method
CN112611464B (en) Transmission type temperature field measuring device and method based on infrared digital holographic technology
JPH063364B2 (en) Film thickness measurement method
JPH0444202B2 (en)
SU737817A1 (en) Interference method of measuring refraction coefficient of dielectric films of variable thickness