JPH01131405A - Film thickness measuring instrument - Google Patents

Film thickness measuring instrument

Info

Publication number
JPH01131405A
JPH01131405A JP62290868A JP29086887A JPH01131405A JP H01131405 A JPH01131405 A JP H01131405A JP 62290868 A JP62290868 A JP 62290868A JP 29086887 A JP29086887 A JP 29086887A JP H01131405 A JPH01131405 A JP H01131405A
Authority
JP
Japan
Prior art keywords
component
refractive index
light
measured
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62290868A
Other languages
Japanese (ja)
Inventor
Toshihiko Ide
敏彦 井手
Kosei Aikawa
相川 孝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP62290868A priority Critical patent/JPH01131405A/en
Publication of JPH01131405A publication Critical patent/JPH01131405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To automatically measure and correct the refractive index of an object of measurement such as an opaque film which has a coefficient of absorption by finding the refractive index from the output ratio of a P and an S component which provide the maximum value of an interference waveform and the output ratio of a P and an S component which provide the minimum value. CONSTITUTION:Light from a light source 1 is projected on the object 3 of measurement like the opaque film having the coefficient of absorption and the light which is transmitted through it is split into a P-polarized component and an S-polarized component By a polarizing plate 5 which is rotated by a driving means. Then they are diffracted spectrally by a prism 7 and incident on a CCD 9 to detect the intensity of interference fringe patterns as to the P and S components. The output of the CCD 9 is processed by an arithmetic means 10 as specified to find the refractive index and film thickness 10 the object 3. Consequently, the refractive index is found by utilizing the ratio of the P and S components which provide the maximum value and the ratio of the P and S components which provide the minimum value, so even if the kind and refractive index of the object 3 are changed, the refractive index is corrected automatically at all times and the accurate film thickness can be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光の干渉を利用して膜厚を測定する装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for measuring film thickness using optical interference.

[従来の技術] 光の干渉を利用して被測定対象の膜厚を測定するには、
被測定対象に光源よりの光を投光し、その透過光または
反射光を分光して干渉縞(干渉波形)を検出器で検出し
、被測定対象の膜厚を測定している。
[Prior art] To measure the film thickness of a target using optical interference,
Light from a light source is projected onto the object to be measured, the transmitted light or reflected light is separated, and interference fringes (interference waveforms) are detected by a detector to measure the film thickness of the object to be measured.

[この発明が解決しようとする問題点1しかしながら、
被測定対象の膜厚を測定するには、あらかじめ屈折率が
既知であることが必要であり、被測定対象の種類が変更
となり、屈折率が変わると、これに応じて測定系の屈折
率等の設定値の変更が必要となり、非常に不便であった
。また、操業中に回折率が変動するような膜(たとえば
シリコン拡散膜)の測定は不可能であった。このため、
出願人は、透明膜についての屈折率、膜厚測定装置を同
時に出願する明細書中で述べているが、吸収係数をもつ
不透明膜の測定は困難である。
[Problem 1 to be solved by this invention However,
To measure the film thickness of the object to be measured, it is necessary to know the refractive index in advance, and if the type of object to be measured changes and the refractive index changes, the refractive index of the measurement system will change accordingly. It was very inconvenient as it required changing the setting values. Furthermore, it has been impossible to measure a film whose diffraction index fluctuates during operation (for example, a silicon diffusion film). For this reason,
Although the applicant describes a refractive index and film thickness measuring device for a transparent film in the specification filed at the same time, it is difficult to measure an opaque film that has an absorption coefficient.

この発明の目的は、以上の点に鑑み、吸収係数をもつ不
透明膜のような被測定対象の屈折率を自動的に測定して
補正するようにした膜厚測定装置を提供することである
In view of the above points, an object of the present invention is to provide a film thickness measuring device that automatically measures and corrects the refractive index of an object to be measured, such as an opaque film having an absorption coefficient.

[問題点を解決するための手段] この発明は、被測定対象に一定角度で光源の光を投光し
、被測定対象からの透過光または反射光のP成分および
S成分の偏光成分に分離された光を分光手段で分光して
検出器で干渉波形を検出し、干渉波形の極大値を与える
P成分とS成分との出力比および極小値を与えるP成分
とS成分との出力比から屈折率を求め、この屈折率とP
成分またはS成分の極値を与える波長に基いて膜厚を演
算手段で行うようにした膜厚測定装置である。
[Means for Solving the Problems] The present invention projects light from a light source onto an object to be measured at a constant angle, and separates the transmitted light or reflected light from the object to be measured into polarized light components of the P component and the S component. The resulting light is separated by a spectroscopic means, and the interference waveform is detected by a detector. From the output ratio of the P component and the S component that give the maximum value of the interference waveform and the output ratio of the P component and the S component that give the minimum value of the interference waveform, Find the refractive index, and combine this refractive index with P
This is a film thickness measuring device in which the film thickness is measured by a calculating means based on the wavelength that gives the extreme value of the component or S component.

[実施例] 第1図は、この発明の一実施例を示す構成説明図である
[Embodiment] FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

図において、1は、光源で、光源1からの光は、レンズ
2により、吸収係数をもつ不透明フィルム膜のような被
測定対象3に投光され、被測定対象3を透過または反射
した光は、図示しない駆動手段で回転する偏光板のよう
な偏光手段5によりP成分とS成分の偏光成分に分離さ
れ、レンズ6を介して回折格子やプリズムのような分光
手段7で分光され、レンズ8を介してCODのようなイ
メージセンサの検出器9に入射し、P成分、S成分につ
いての第2図で示すような干渉縞パターン(干渉波形)
の強度が検出される。この検出器9の出力は、図示しな
い増幅器で増幅され、演算手段10で所定の演算がなさ
れ、被測定対象3の屈折率n1躾厚dが演算される。な
お、偏光手段5により分離された光がP成分かS成分か
を識別する同期信号も演算手段10に送られ、演算に利
用される。
In the figure, 1 is a light source, and the light from the light source 1 is projected by a lens 2 onto an object to be measured 3 such as an opaque film having an absorption coefficient, and the light transmitted or reflected from the object to be measured 3 is The polarization means 5 such as a polarizing plate rotated by a drive means (not shown) separates the light into P and S polarization components, which are separated into polarized light components through a lens 6 by a spectroscopic means 7 such as a diffraction grating or a prism, and are separated by a lens 8. The interference fringe pattern (interference waveform) as shown in FIG. 2 for the P and S components is incident on the detector 9 of an image sensor such as a COD.
intensity is detected. The output of the detector 9 is amplified by an amplifier (not shown), and a predetermined calculation is performed by the calculating means 10, whereby the refractive index n1 and the thickness d of the object to be measured 3 are calculated. Note that a synchronization signal for identifying whether the light separated by the polarization means 5 is a P component or an S component is also sent to the calculation means 10 and used for calculation.

第3図で示すように、光源1からの光りは、入射角 1
1、屈折角12で、被測定対象3の表面、裏面で反射す
る。反射光R1屈折光りとし、被測定対象3の屈折率n
、吸収係数χ、厚さdとすれば、たとえばS成分、P成
分の透過率を丁S、Tpとすると、干渉の結果、次式が
成り立つ。
As shown in Fig. 3, the light from the light source 1 has an incident angle of 1
1. It is reflected on the front and back surfaces of the object to be measured 3 at a refraction angle of 12. The reflected light R1 is refracted light, and the refractive index n of the object to be measured 3 is
, absorption coefficient χ, and thickness d. For example, if the transmittances of the S component and the P component are S and Tp, the following equation holds true as a result of interference.

TI)−016(n 2+22)B12θ22/Z+ 
              (1)Ts −ci 6
 (n 2−142)B12θ22、/ Z  2  
                         
   (2>ここで記号は次の通り。
TI)-016(n2+22)B12θ22/Z+
(1) Ts -ci 6
(n 2-142) B12θ22, / Z 2

(2>Here, the symbols are as follows.

Zl−(A12+B+2)2+ (C12+8+2)2
eXp (−277χ)+2 [(At2−8+2><
8+2−C+” )−4A+B、2 C+ )cos 
 (ηn )+2B+  (At  (at2−C+2
>+C+  (At2−812) )sin  (ηn
 ) ] −exp(−ηχ) Z2− <A22+822)” +(C22+B22 
)  2 eXl)   (−277χ )  +2 
 [(A2 2−822>(B22−022)+4A2
822C2)CO3(ηn ) +282 (A2 (
B22−C22)−C2(A22−822 )sin 
 (77n  )]  ・eXp(−ηχ) A+=n  B1 +θ2、A2−θl+n  θ2B
+=χθ1 、     B2−χθ2C+=n  θ
1−θ2、C2−θl  −n  θ2θl−C09i
l 、     θ2=CO!1ii2η−4πdθ2
/λ   λ:波長 C:光学系により決まる定数 吸収係数χが小さい場合、χは1より十分小さいとして
χの2次の項を無視すると、(1)、(2)式は次のよ
うになる。
Zl-(A12+B+2)2+ (C12+8+2)2
eXp (-277χ)+2 [(At2-8+2><
8+2-C+")-4A+B, 2C+)cos
(ηn )+2B+ (At (at2-C+2
>+C+ (At2-812) ) sin (ηn
] −exp(−ηχ) Z2− <A22+822)” +(C22+B22
) 2 eXl) (-277χ) +2
[(A2 2-822>(B22-022)+4A2
822C2) CO3(ηn) +282 (A2 (
B22-C22)-C2(A22-822) sin
(77n)] ・eXp(-ηχ) A+=n B1 +θ2, A2-θl+n θ2B
+=χθ1, B2−χθ2C+=nθ
1-θ2, C2-θl -n θ2θl-C09i
l, θ2=CO! 1ii2η−4πdθ2
/λ λ: Wavelength C: Constant absorption coefficient determined by optical system When χ is small, assuming that χ is sufficiently smaller than 1 and ignoring the second-order term of χ, equations (1) and (2) become as follows. .

Tp −C16n 2θ12θ22 /[A1’ +CI4 exp  (−277χ)+2
 <−A12C12cos  (ηn ) +2A+B
+C+  (At−C+ )sin  (ηn ))・
exp  (−ηχ)]        (3)TS 
−C16n 2θ12θ22 / [A2’ +C2’ eXp  (−27774)
+2 t、−A22C22cos (ηn ) −2A
2B2C2(A2+C2)sin  (ηn )) ・
exp  (−ηχ)]           <A4
TpおよびTsの極小値付近では、sin  (ηn)
−Q1CO8(770) −−1なので、(3)、(4
)式は次式となる。
Tp -C16n 2θ12θ22 /[A1' +CI4 exp (-277χ)+2
<-A12C12cos (ηn) +2A+B
+C+ (At-C+) sin (ηn))・
exp (−ηχ)] (3) TS
-C16n 2θ12θ22 / [A2'+C2' eXp (-27774)
+2 t, -A22C22cos (ηn) -2A
2B2C2(A2+C2) sin (ηn)) ・
exp (-ηχ)] <A4
Near the minimum values of Tp and Ts, sin (ηn)
-Q1CO8 (770) --1, so (3), (4
) formula becomes the following formula.

Tp −C16n 2θ12θ22 / (A+2+012eXD  (−772:) )2
Ts=C16n2θ12θ22 / (A22+C22ext)(−77χ))2この極
小値についての(5)、(6)式の比Bは次式となる。
Tp -C16n 2θ12θ22 / (A+2+012eXD (-772:) )2
Ts=C16n2θ12θ22/(A22+C22ext)(-77χ))2 The ratio B of equations (5) and (6) for this minimum value is as follows.

8−TS /TO −(△+2+Cl2exp  (−77χ) )2/(
A22+C22exa  <−ηz> ’t2(7)式
のηは、極小波長に対応する。
8-TS /TO -(△+2+Cl2exp (-77χ) )2/(
A22+C22exa <-ηz>'t2 η in equation (7) corresponds to the minimum wavelength.

また、極大値付近では、sin  <ηn>−o。Also, near the maximum value, sin <ηn>-o.

cos(ηn)−1なので(3)、(4)式に暴き同様
にしてS成分とP成分との比について次式%式% (8)式のηは極大波長に対応する。
Since cos(ηn)-1, equations (3) and (4) are expressed and similarly, the ratio of the S component to the P component is expressed by the following equation: % Equation % η in Equation (8) corresponds to the maximum wavelength.

(7)、(8)式よりχを消去する。Eliminate χ from equations (7) and (8).

B−<A+2+C+2 Rゞl/“) / (A22 +C22Rゞ”’)     (9)こ
こで R−(A+  2−P −A 22 )/  (C+ 
l −P ・C22) である。また、スネルの法則等から n5ini 2−3inil θ2=cosi2 −cos(sin   (s+ni1/n))   (
10)となる。
B-<A+2+C+2 Rゞl/") / (A22 +C22Rゞ"') (9) Here, R-(A+ 2-P -A 22)/ (C+
l −P ・C22). Also, from Snell's law etc., n5ini 2-3inil θ2=cosi2 -cos(sin (s+ni1/n)) (
10).

ここで、iは設定値で既知(θ1−cosi1も既知)
、B、Pは測定より求まるので、〈7〉、(8)を与え
る波長が求まれば、(9)式の8は屈折率nの関数とな
り、これより屈折率nが求まる。なお、(7)、(8)
式はPについて解いても同様である。
Here, i is a known set value (θ1-cosi1 is also known)
, B, and P can be determined by measurement, so if the wavelength that gives <7> and (8) is determined, 8 in equation (9) becomes a function of the refractive index n, and the refractive index n can be determined from this. In addition, (7), (8)
The equation is the same even if it is solved for P.

また、(1)式または(2)式の極値を与える適当な最
小波長λ1、最大波長λ2、干渉の各次数をm +N、
 raとすると次式が成り立つ。
In addition, the appropriate minimum wavelength λ1 and maximum wavelength λ2 that give the extreme value of equation (1) or (2), and each order of interference are m + N,
When ra is set, the following formula holds true.

1+N)A1 ” 2nd/QO8i2      (
11)1λ2 = 2nd/cosi2      (
12)(9)式より蹟を求めて(8)式に代入して整理
すると次式となる。
1+N) A1 ” 2nd/QO8i2 (
11) 1λ2 = 2nd/cosi2 (
12) Calculating the value from equation (9) and substituting it into equation (8) yields the following equation.

d−Ncosi2λ1λ2/2n  (λ2−λ1)=
Ncosi2/2n  (1/λ1−1/λ2)このよ
うに、波長λ1、A2、極値の次数差N1(9)式等に
より屈折率nから被測定対象3の膜厚dが求まる。
d-Ncosi2λ1λ2/2n (λ2-λ1)=
Ncosi2/2n (1/λ1-1/λ2) In this way, the film thickness d of the object to be measured 3 is determined from the refractive index n using the wavelengths λ1, A2, the order difference N1 of the extreme values, and the equation (9).

つまり、分光手段7により検出器9の各素子の波長は決
まっているので、各素子番号と波長との関係を演算手段
10のメモリに記憶しておく。
That is, since the wavelength of each element of the detector 9 is determined by the spectroscopy means 7, the relationship between each element number and wavelength is stored in the memory of the calculation means 10.

そして、測定時、偏光手段5のP成分とS成分とに分離
したときの第2図のような干渉波長の出力を読み出し、
極小値を与える波長についてのS成分とP成分の(7)
式の出力比Bを演算し、また極大値を与える波長につい
てのS成分とP成分の(8)式の出力比を演算し、(9
)式の81入射各 12を利用して、被測定対象3の屈
折率nを求めることができる。
Then, at the time of measurement, the output of the interference wavelength as shown in FIG. 2 when separated into the P component and S component of the polarization means 5 is read out,
(7) of the S component and P component for the wavelength that gives the minimum value
Calculate the output ratio B of the equation, and calculate the output ratio of the S component and the P component of the equation (8) for the wavelength that gives the maximum value, and calculate the output ratio of the equation (8).
) The refractive index n of the object to be measured 3 can be determined using each of the 81 and 12 of the equation.

次いで、第2図の干渉波長から、極値を与える素子信号
からメモリを利用して波長λ1、A2を求め極値の差か
ら次数差Nを求め、(9)式より求めた屈折率nを用い
、被測定対象3の膜厚dを求める。
Next, from the interference wavelength in Fig. 2, the wavelengths λ1 and A2 are obtained from the element signal giving the extreme value using memory, the order difference N is obtained from the difference between the extreme values, and the refractive index n obtained from equation (9) is obtained. to find the film thickness d of the object to be measured 3.

なお、第4図のように偏光手段5を光源1側におき、偏
光した光を被測定対象3に投光するようにしてもよい。
Incidentally, as shown in FIG. 4, the polarizing means 5 may be placed on the light source 1 side to project polarized light onto the object to be measured 3.

[発明の効果] 以上述べたように、この発明は、2つのP成分、S成分
の偏光成分についての極大値を与えるP、S成分の比、
および極小値を与えるPSS成分の比を利用して屈折率
nを求めているので、吸収係数をもつ不透明膜のような
被測定対象の種類、屈折率が変っても、常に屈折率を自
動的に補正して、正確な膜厚を測定することができる。
[Effects of the Invention] As described above, the present invention provides a ratio of the P and S components that gives the maximum value of the polarization components of the two P and S components,
Since the refractive index n is determined using the ratio of the PSS component that gives the minimum value, the refractive index is always automatically calculated even if the type or refractive index of the object to be measured, such as an opaque film with an absorption coefficient, changes. It is possible to accurately measure the film thickness by correcting the

また、偏光成分の比から屈折率を求めているので、光路
等による光源定数の変動の影響は除去され、高精度に屈
折率を求めることができる。
Furthermore, since the refractive index is determined from the ratio of polarized light components, the influence of fluctuations in the light source constant due to the optical path, etc. is removed, and the refractive index can be determined with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第4図は、この発明の一実施例を示す
構成説明図、第3図は、干渉波形の説明図である。 1・・・光源、2.4.6.8・・・レンズ、3・・・
被測定対象、5・・・偏光手段、7・・・分光手段、9
・・・検出器、10・・・演算手段
1, 2, and 4 are configuration explanatory diagrams showing one embodiment of the present invention, and FIG. 3 is an explanatory diagram of interference waveforms. 1...Light source, 2.4.6.8...Lens, 3...
Object to be measured, 5... Polarizing means, 7... Spectroscopy means, 9
...Detector, 10...Calculating means

Claims (1)

【特許請求の範囲】 1、被測定対象に一定角度で光を投光する光源と、被測
定対象からの透過光または反射光のP成分およびS成分
の偏光成分に分離された光を分光する分光手段と、この
分光手段で分光された干渉波形を検出する検出器と、こ
の検出器の干渉波長の極大値を与えるP成分とS成分の
出力比、および極小値を与えるP成分とS成分の出力比
から被測定対象の屈折率を求め、この屈折率とP成分ま
たはS成分の極値を与える波長に基いて被測定対象の膜
厚を演算する演算手段とを備えたことを特徴とする膜厚
測定装置。 2、前記被測定物に光を投光する光源側または光が被測
定物を透過または反射した側に光を偏光成分に分離する
偏光手段を設けたことを特徴とする特許請求の範囲第1
項記載の膜厚測定装置。 3、前記検出器として、イメージセンサを用いたことを
特徴とする特許請求の範囲第1項または第2項記載の膜
厚測定装置。
[Claims] 1. A light source that projects light at a fixed angle onto an object to be measured, and spectrally separates the light that is transmitted or reflected from the object to be measured into polarized components of the P component and the S component. A spectroscopic means, a detector for detecting the interference waveform separated by the spectroscopic means, an output ratio of the P component and the S component that give the maximum value of the interference wavelength of this detector, and the P component and the S component that give the minimum value. The refractive index of the object to be measured is determined from the output ratio of Film thickness measuring device. 2. A polarizing means for separating the light into polarized components is provided on the light source side that projects the light onto the object to be measured or on the side where the light is transmitted or reflected from the object to be measured.
Film thickness measuring device described in Section 2. 3. The film thickness measuring device according to claim 1 or 2, wherein an image sensor is used as the detector.
JP62290868A 1987-11-17 1987-11-17 Film thickness measuring instrument Pending JPH01131405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290868A JPH01131405A (en) 1987-11-17 1987-11-17 Film thickness measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290868A JPH01131405A (en) 1987-11-17 1987-11-17 Film thickness measuring instrument

Publications (1)

Publication Number Publication Date
JPH01131405A true JPH01131405A (en) 1989-05-24

Family

ID=17761539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290868A Pending JPH01131405A (en) 1987-11-17 1987-11-17 Film thickness measuring instrument

Country Status (1)

Country Link
JP (1) JPH01131405A (en)

Similar Documents

Publication Publication Date Title
JP2002365142A5 (en)
JP2001208607A (en) Wavelength calibrating method and wavelength measuring method for spectroscope in wavelength measuring instrument, and device therefor
WO2017126215A1 (en) Phase shift amount measurement device
JPH01131405A (en) Film thickness measuring instrument
JPH0464417B2 (en)
JPH01131404A (en) Film thickness measuring instrument
JPH08271337A (en) Spectroscope
JPS6350703A (en) Apparatus for measuring film thickness
JPH04313007A (en) Film inspecting device
JPS6350704A (en) Apparatus for measuring film thickness
JP2761276B2 (en) Optical disk substrate evaluation system
JP2927020B2 (en) Birefringence measurement device
JPS63243822A (en) Data processing method for array type detector
JPH07234171A (en) Reflection efficiency measuring instrument and diffraction efficiency measuring instrument
JPH0654217B2 (en) Interference film thickness measurement method
SU1550378A1 (en) Method of determining the index of refraction of transparent media
JPS63109304A (en) Apparatus for measuring thickness of film
JPS6350705A (en) Apparatus for measuring film thickness
JPS61209340A (en) Optical measuring apparatus
JPS6097215A (en) Length measuring device
JPH02310434A (en) Spectrophotometer
JPS58103071A (en) Color discriminating device
JPS62222132A (en) Wavelength detecting method
JPH09288064A (en) Foreign-body detection apparatus
JPH04294249A (en) Measuring method for birefringence

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131101

LAPS Cancellation because of no payment of annual fees