JPH0543907A - High strength steel member and production thereof by injection molding method - Google Patents

High strength steel member and production thereof by injection molding method

Info

Publication number
JPH0543907A
JPH0543907A JP3224552A JP22455291A JPH0543907A JP H0543907 A JPH0543907 A JP H0543907A JP 3224552 A JP3224552 A JP 3224552A JP 22455291 A JP22455291 A JP 22455291A JP H0543907 A JPH0543907 A JP H0543907A
Authority
JP
Japan
Prior art keywords
weight
powder
injection molding
strength steel
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3224552A
Other languages
Japanese (ja)
Other versions
JP2745889B2 (en
Inventor
Yoshio Kijima
良雄 木嶋
Tatsuya Kuramoto
竜也 藏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3224552A priority Critical patent/JP2745889B2/en
Publication of JPH0543907A publication Critical patent/JPH0543907A/en
Application granted granted Critical
Publication of JP2745889B2 publication Critical patent/JP2745889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a high strength steel member by an injection molding method where its tensile and breaking strength is increased without decreasing much elongation percentage of the product compared with the existing Fe-Ni-C alloy. CONSTITUTION:A high strength steel member consisting of 1-10wt.% Cu, 0.3-1.0wt.% C and the balance Fe with inevitable impurities is produced by an injection molding method. In this method, metal material powder of alloy composition consisting of 1-10wt.% Cu, 0.3-1.0wt.% C and the balance Fe with inevitable impurities is obtained by blending carbonyl Fe powder of <=10micron average particle diameter, Cu powder of <=20micron average particle diameter and natural graphite powder. To 91.8-92.2wt.% of the metal material powder is added 7.8-8.2wt.% of an organic binder to knead them. After the kneaded material is injection into a metal mold, the injected port is turned into a debindered port in the inert atmosphere of up to 300 deg.C and then the debindered part is subjected to smteruig in a vacuum sintering furnace to obtain the member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、OA機器、精密機器、
自動車部品等に利用される高強度鋼部材の改良並びにそ
の製造法に関する。
The present invention relates to OA equipment, precision equipment,
The present invention relates to improvement of high-strength steel members used for automobile parts and the like and a manufacturing method thereof.

【0002】[0002]

【従来の技術】OA機器、精密機器、自動車部品等に利
用される鋼部材は3次元的に複雑な形状を有するものが
多く、品質の安定と量産とを併せて確保する目的から、
近年、射出成形法による高強度鋼部材の供給が為されて
いる。
2. Description of the Related Art Many steel members used in office automation equipment, precision equipment, automobile parts, etc. have a three-dimensionally complicated shape, and for the purpose of ensuring stable quality and mass production,
In recent years, high strength steel members have been supplied by injection molding.

【0003】しかしながら、この場合、市販されている
粉末冶金用の原料粉末の種類が限定されて居るばかり
か、射出成形法に適する原料粉末となるとさらに入手が
厳しい事もあって、強度の高い事が要求される部品に対
してはFe−Ni−C合金の利用が限度とされている。
However, in this case, not only the kinds of commercially available raw material powders for powder metallurgy are limited, but also when the raw material powders suitable for the injection molding method are more difficult to obtain, the strength is high. The use of Fe-Ni-C alloys is limited to the parts that are required.

【0004】[0004]

【本発明が解決しようとする課題】射出成形法により製
造されたFe−Ni−C合金は、焼結処理が終了した時
点に於ける引張破断強度が50Kg/mm2 前後にしか
ならない為、形状をより小さくして部品取り付けの為の
容積を狭くする事が強く要求される現代にあっては,こ
の課題を解決しようとした場合には、より強度の高い部
品を入手する事が課題として与えられていた。
The Fe-Ni-C alloy produced by the injection molding method has a tensile rupture strength of only about 50 Kg / mm 2 at the end of the sintering process. In today's world where there is a strong demand for smaller parts and a smaller volume for mounting parts, in order to solve this problem, obtaining parts with higher strength is an issue. It was being done.

【0005】本発明は、上記の経過から、現行のFe−
Ni−C合金と比較して、製品の伸び率をさほど低減す
る事なく、その引張破断強度を向上させた射出成形法に
よる高強度鋼部材の供給を可能にする事を目的とする。
The present invention is based on the above-mentioned process and is based on the current Fe-
An object of the present invention is to make it possible to supply a high-strength steel member by an injection molding method in which the elongation at break of the product is not significantly reduced as compared with the Ni-C alloy and the tensile breaking strength thereof is improved.

【0006】[0006]

【課題を解決するための手段】本発明者等は鋭意研究し
た結果、上記の課題は、1〜10重量%のCuと、0.
3〜1.0重量%のCと、残部が不可避的不純物を含ん
だFeとからなる合金組成で配合され、射出成形法によ
り製造されている高強度鋼部材を採用する事によって解
決される事を見出だし、本発明に至ったものである。
Means for Solving the Problems As a result of earnest studies by the present inventors, the above-mentioned problems were found to be 1 to 10% by weight of Cu.
The problem can be solved by adopting a high strength steel member which is compounded by an alloy composition consisting of 3 to 1.0% by weight of C and the balance of Fe containing unavoidable impurities and manufactured by an injection molding method. The present invention has been found out and led to the present invention.

【0007】[0007]

【作用】本発明にあって、高強度鋼にCuを添加したの
は、焼結体の素地であるFe相を強化する為であり、C
は高強度鋼の焼結性を向上させる為に用いたものであ
る。
In the present invention, the reason why Cu is added to the high-strength steel is to strengthen the Fe phase, which is the base of the sintered body.
Is used to improve the sinterability of high strength steel.

【0008】この場合、Cuの配合量を1〜10重量%
と規定したのは、Cuの配合量が1重量%未満では高強
度鋼の強度が充分でなく、逆に、Cuの配合量が10重
量%を超えると、製品の材料伸びが著しく低下してしま
うからである。そして本発明の組成範囲の Cu,C及
びFeに於いて従来のFe-Ni-C合金に比較して伸び率
をさほど低下することなく引張破断強度を向上すること
が出来る。
In this case, the Cu content is 1 to 10% by weight.
The strength of high-strength steel is not sufficient when the content of Cu is less than 1% by weight, and conversely, when the content of Cu exceeds 10% by weight, the material elongation of the product is remarkably reduced. Because it will be. With respect to Cu, C and Fe in the composition range of the present invention, the tensile rupture strength can be improved without significantly lowering the elongation as compared with the conventional Fe-Ni-C alloy.

【0009】また、Cの配合量を0.3〜1.0重量%
と規定したのは、Cの配合量が0.3重量%未満では高
強度鋼の強度が充分でなく、逆に、Cの配合量が1.0
重量%を超えると、製品の材料伸びが著しく低下してし
まうからである。
Further, the compounding amount of C is 0.3 to 1.0% by weight.
The strength of high-strength steel is not sufficient if the C content is less than 0.3% by weight, and conversely, the C content is 1.0%.
This is because the material elongation of the product is remarkably reduced when the content exceeds the weight percentage.

【0010】次に本発明の製造法は,平均粒径が10ミ
クロン以下であるカーボニルFe粉と、平均粒径が20
ミクロン以下であるCu粉と,天然黒鉛粉とを調合して
1〜10重量%のCuと、0.3〜1.0重量%のC
と、残部が不可避的不純物を含んだFeとからなる合金
組成の金属原料粉を得ること,この金属原料粉91.8
重量%〜92.2重量%に対し有機バインダー7.8〜
8.2重量%を加えて混練機により混練すること,この
混練物を予め用意した型に射出成形して得た成形体を摂
氏300度迄の不活性雰囲気中で加熱する事によって成
形体より有機バインダーを除去すること,その後この脱
バインダー成形体を真空焼結炉中で焼結処理することを
特徴とする。
Next, according to the production method of the present invention, carbonyl Fe powder having an average particle size of 10 microns or less and an average particle size of 20 are used.
Mixing Cu powder of less than micron and natural graphite powder, Cu of 1-10 wt% and C of 0.3-1.0 wt%
And a balance of Fe containing unavoidable impurities, to obtain a metal raw material powder having an alloy composition. This metal raw material powder 91.8
Organic binder of 7.8% by weight to 92.2% by weight
By adding 8.2% by weight and kneading with a kneader, injection molding the kneaded product into a mold prepared in advance and heating the molded product in an inert atmosphere up to 300 degrees Celsius The method is characterized in that the organic binder is removed, and then the debindered compact is sintered in a vacuum sintering furnace.

【0011】上記方法に於いて,バインダ−の配合量を
7.8〜8.2重量%に限定したのは,バインダ−の配
合量が7.8重量%未満では原料を射出成型する場合の
原料の流動性が不足してまい,製品の成型性を低下させ
ことが多くなるためであり,逆に,バインダ−の配合量
が8.2重量%をこえると,脱バインダ−処理を施した
後の製品表面に発泡部や亀裂などの欠陥が発生し易くな
るためである。
In the above method, the content of the binder is limited to 7.8 to 8.2% by weight when the content of the binder is less than 7.8% by weight when the raw material is injection molded. This is because the flowability of the raw material is insufficient and the moldability of the product is often decreased. On the contrary, when the blending amount of the binder exceeds 8.2% by weight, the binder removal treatment is performed. This is because defects such as foamed portions and cracks are likely to occur on the surface of the subsequent product.

【0012】また,脱バインダ−処理温度を300度迄
としたのは,300度を,超えた脱バインダ−処理を実
施するとバインダ−がぬけ過ぎてしまいその取扱い強度
が低くなつてくることから,脱バインダ−半製品の取扱
いとして,脱バインダ−処理品を次工程へ搬送する際の
取扱い不良率が高くなつてしまうからである。
Further, the reason why the binder removal treatment temperature is set to 300 ° C. is that if the binder removal treatment exceeding 300 ° C. is carried out, the binder is excessively drawn and its handling strength becomes low. This is because, as the handling of the binder-removed semi-finished product, the handling defect rate at the time of transferring the binder-removed product to the next step becomes high.

【0013】C原料としてカ−ボニル鉄以外には天然黒
鉛が望ましい。それは天然黒鉛が鱗片状であることと,
本質的に高温でガス化して後に製品に浸炭拡散し,爾
後,その組成となることにあるためで,ここより不純物
の少ない天然黒鉛であることを要するも,粒径に関して
は限定する必要はない。
As carbon raw material, natural graphite is desirable in addition to carbonyl iron. It is because natural graphite is scaly,
This is because it is essentially gasified at a high temperature and then carburized and diffused into the product, and after that, it becomes the composition, so natural graphite with less impurities than here is required, but there is no need to limit the particle size. ..

【0014】[0014]

【実施例】超高圧アトマイズ法で得られた平均粒径8ミ
クロンの純Cu微粉末と,Cを0.05重量%含有する
平均粒径5ミクロンのカ−ボニル鉄粉と,Cを0.9重
量含有する平均粒径5ミクロンのカ−ボニル鉄粉と,C
を0,01重量%以下含有する平均粒径5ミクロンのカ
ーボニルニッケル粉と、平均粒径22ミクロンの天然黒
鉛粉末とを用いて、表1に提示した組成になる様に金属
原料を秤量すると共に、この金属原料の92重量部に対
して8重量部に当たる重量の有機バインダー(この場
合、当該有機バインダ−はポリエチレン30重量%,パ
ラフィンワックス60重量%及びステアリン酸10重量
%となる様に秤量した)総量10Kgの原料を、直径が
300mmであるプラネタリーミキサーの混練槽に逐次
投入し、回転数を20rpmに設定した後、摂氏100
度で1時間の混練処理を施し,さらに、この混練物を直
径5mmのペレットに造粒して成形原料とした。
EXAMPLE Pure Cu fine powder having an average particle size of 8 microns obtained by the ultra-high pressure atomization method, carbonyl iron powder having an average particle size of 5 microns containing 0.05% by weight of C, and C of 0. Carbonyl iron powder having an average particle size of 5 microns containing 9 weights, and C
Using a carbonyl nickel powder having an average particle size of 5 microns containing 0.01% by weight or less and a natural graphite powder having an average particle size of 22 microns, the metal raw materials are weighed so as to have the composition shown in Table 1. An organic binder having a weight equivalent to 8 parts by weight with respect to 92 parts by weight of the metal raw material (in this case, the organic binder was 30% by weight of polyethylene, 60% by weight of paraffin wax and 10% by weight of stearic acid). ) A total amount of 10 kg of raw materials was sequentially charged into a kneading tank of a planetary mixer having a diameter of 300 mm, and the number of revolutions was set to 20 rpm.
The kneaded material was subjected to a kneading treatment for 1 hour, and the kneaded material was further granulated into pellets having a diameter of 5 mm to obtain a forming raw material.

【0015】上記の成形原料を、射出圧力を600Kg
/cm2 、射出速度を30mm/sec、射出温度を摂
氏90度の設定条件下にて金型に射出成形し、材料引っ
張り試験片の成形体を製作した。
The injection pressure of the above molding raw material is 600 Kg.
/ Cm 2 , the injection speed was 30 mm / sec, and the injection temperature was set to 90 degrees Celsius, which was injection-molded into a mold to fabricate a material tensile test piece.

【0016】上記の成形体を窒素雰囲気中で摂氏300
度に加熱することによって、先ず成形体より有機バイン
ダーを除去し、その後、真空度を5×10-2Torrに
設定した半連続式の真空焼結炉を用いて、摂氏1250
度で1時間の焼結処理を施し、JSPM標準2−64に
基づいた粉末焼結体引っ張り試験片を得た。
[0016] The above-mentioned molded body was heated to 300 degrees Celsius in a nitrogen atmosphere.
First, the organic binder is removed from the molded body by heating at a temperature of 1250 ° C., and thereafter, a semi-continuous type vacuum sintering furnace having a vacuum degree of 5 × 10 −2 Torr is used to obtain 1250 ° C.
Sintering treatment for 1 hour was performed to obtain a powder sintered body tensile test piece based on JSPM standard 2-64.

【0017】次いで、上記の引っ張り試験片を各組成の
成形原料について10本づつ用意し、島津オートグラフ
AE−5000を用いて試験片の引張破断強度と伸びを
測定して表1を得た。
Next, ten tensile test pieces were prepared for each molding raw material of each composition, and the tensile breaking strength and elongation of the test pieces were measured using Shimadzu Autograph AE-5000, and Table 1 was obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】この表1より従来、高強度鋼部材として利
用されていたFe−Ni−C系合金の部材に比較して、
本発明合金は伸びは多少減少するものの,引張破断強度
は大幅に改善されている事が明らかになった。また,C
u,Cが本発明範囲外の合金(表中△印は範囲外値を示
す・・・比較例1乃至3)は引張破断強度もしくは伸び
のいずれに於いて市場の要求値を満たさず(表中*印は
要求値以下を示す)実用性のないことが判明した。
As shown in Table 1, in comparison with the Fe-Ni-C alloy members conventionally used as high strength steel members,
Although the elongation of the alloy of the present invention was slightly reduced, it was revealed that the tensile rupture strength was significantly improved. Also, C
Alloys in which u and C are out of the range of the present invention (indicated by Δ in the table indicate out-of-range values ... Comparative Examples 1 to 3) do not satisfy the market requirement in either tensile rupture strength or elongation (Table Medium * indicates less than the required value) It was found to be impractical.

【0020】尚、上記の試験片について別途に測定した
相対密度比は何れも92〜95%の値を示して居り、本
発明品を利用する分野に於いては充分にその機能を満足
するものであった。
Incidentally, the relative density ratios separately measured for the above-mentioned test pieces all showed values of 92 to 95%, which sufficiently satisfy the function in the field of utilizing the product of the present invention. Met.

【0021】[0021]

【発明の効果】本発明の実施により、従来品を上回る性
能を持つた射出成形高強度鋼部材を供給する事が可能に
なり、当該部材を組み込んでいる製品の機能性向上並び
に形状縮小化に対して貢献するところ大なるものがあ
る。
By carrying out the present invention, it becomes possible to supply an injection-molded high-strength steel member having a performance superior to that of conventional products, and to improve the functionality and reduce the shape of a product incorporating the member. There are great things to contribute to.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 304 7217−4K 38/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 38/00 304 7217-4K 38/16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 1〜10重量%のCuと、0.3〜1.
0重量%のCと、残部が不可避的不純物を含んだFeと
からなる合金組成で配合され、射出成形法により製造さ
れている事を特徴とする射出成形法による高強度鋼部
材。
1. 1-10% by weight of Cu, 0.3-1.
A high-strength steel member manufactured by an injection molding method, characterized in that the alloy composition is composed of 0% by weight of C and the balance is Fe containing inevitable impurities, and is manufactured by an injection molding method.
【請求項2】 平均粒径が10ミクロン以下であるカー
ボニルFe粉と、平均粒径が20ミクロン以下であるC
u粉と,天然黒鉛粉とを調合して1〜10重量%のCu
と、0.3〜1.0重量%のCと、残部が不可避的不純
物を含んだFeとからなる合金組成の金属原料粉を得る
こと,この金属原料粉91.8重量%〜92.2重量%
に対して有機バインダー7.8〜8.2重量%を加えて
混練機により混練すること,この混練物を予め用意した
型に射出成形して得た成形体を摂氏300度迄の不活性
雰囲気中で加熱することによって成形体より有機バイン
ダーを除去すること,その後この脱バインダー成形体を
真空焼結炉中で焼結処理することを特徴とする射出成形
法による高強度部材の製造方法。
2. Carbonyl Fe powder having an average particle size of 10 microns or less and C having an average particle size of 20 microns or less.
u powder and natural graphite powder are mixed to prepare Cu of 1 to 10% by weight.
And 0.3 to 1.0% by weight of C, and the balance being Fe containing inevitable impurities, to obtain a metal raw material powder, which is 91.8 wt% to 92.2. weight%
7.8 to 8.2% by weight of an organic binder is added to the above and kneaded by a kneader, and the kneaded product is injection-molded into a mold prepared in advance to obtain a molded product, which is in an inert atmosphere up to 300 degrees Celsius. A method for producing a high-strength member by injection molding, characterized in that an organic binder is removed from a molded body by heating in a vacuum, and then this debindered molded body is sintered in a vacuum sintering furnace.
【請求項3】 有機バインダーがポリエチレン30重量
%と、パラフィンワックス60重量%と、ステアリン酸
10重量%とからなる事を特徴とする請求項2記載の射
出成形法による高強度鋼部材の製造方法。
3. The method for producing a high-strength steel member by the injection molding method according to claim 2, wherein the organic binder comprises 30% by weight of polyethylene, 60% by weight of paraffin wax, and 10% by weight of stearic acid. ..
【請求項4】 Cuの組成原料は超高圧水アトマイズ法
で製造された平均粒径が20ミクロン以下であるCu粉
であり、FeとCの組成原料は平均粒径が10ミクロン
以下であるカーボニルFe粉である事を特徴とする請求
項1記載の射出成形法による高強度鋼部材。
4. The Cu composition raw material is Cu powder produced by an ultrahigh pressure water atomizing method and having an average particle size of 20 microns or less, and the Fe and C composition raw material is carbonyl having an average particle size of 10 microns or less. The high-strength steel member produced by the injection molding method according to claim 1, which is Fe powder.
JP3224552A 1991-08-08 1991-08-08 Method of manufacturing high-strength steel member by injection molding method Expired - Lifetime JP2745889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3224552A JP2745889B2 (en) 1991-08-08 1991-08-08 Method of manufacturing high-strength steel member by injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3224552A JP2745889B2 (en) 1991-08-08 1991-08-08 Method of manufacturing high-strength steel member by injection molding method

Publications (2)

Publication Number Publication Date
JPH0543907A true JPH0543907A (en) 1993-02-23
JP2745889B2 JP2745889B2 (en) 1998-04-28

Family

ID=16815575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3224552A Expired - Lifetime JP2745889B2 (en) 1991-08-08 1991-08-08 Method of manufacturing high-strength steel member by injection molding method

Country Status (1)

Country Link
JP (1) JP2745889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063409A1 (en) * 2003-01-08 2004-07-29 Mitsubishi Materials Corporation Iron base sintered alloy, iron base sintered alloy member, method for production thereof, and oil pump rotor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128513A (en) * 1977-04-16 1978-11-09 Sumitomo Electric Ind Ltd Process for producing sintered steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128513A (en) * 1977-04-16 1978-11-09 Sumitomo Electric Ind Ltd Process for producing sintered steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063409A1 (en) * 2003-01-08 2004-07-29 Mitsubishi Materials Corporation Iron base sintered alloy, iron base sintered alloy member, method for production thereof, and oil pump rotor

Also Published As

Publication number Publication date
JP2745889B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
EP0296552B1 (en) Metal binder and molding composition
EP2564956A1 (en) Fabrication method of alloy parts by metal injection molding
CN108856701B (en) Stainless steel base feed and preparation method thereof, stainless steel base blank and preparation method thereof
CN113333752B (en) Feeding product formed by titanium and titanium alloy injection and preparation method thereof
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
US6126873A (en) Process for making stainless steel aqueous molding compositions
JPH0543907A (en) High strength steel member and production thereof by injection molding method
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JPH02107703A (en) Composition for injection molding
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH05117819A (en) High strength alloy steel for injection molding and powder metallurgy
JPH11181541A (en) Production of stainless steel sintered body
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH0827536A (en) Production of sintered compact of stainless steel
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JPH0565501A (en) Raw material for injection molding of metallic powder and production of sintered metallic material
JPH07188801A (en) Production of titanium sintered compact
JPH0931588A (en) Production of invar (r) sintered compact
JPH01212702A (en) Manufacture of magnetic material
JPH04280903A (en) Manufacture of cemented carbide powder for injection molding and cemented carbide sintered product
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH07268515A (en) Injection molded titanium sintered compact and its production
JP3073217B2 (en) Manufacturing method of precision metal parts by powder molding
JPH0551662A (en) Manufacture of cu-ni alloy sintered body