JPH0543337A - Carbon fiber-reinforced composite material and its production - Google Patents

Carbon fiber-reinforced composite material and its production

Info

Publication number
JPH0543337A
JPH0543337A JP3216196A JP21619691A JPH0543337A JP H0543337 A JPH0543337 A JP H0543337A JP 3216196 A JP3216196 A JP 3216196A JP 21619691 A JP21619691 A JP 21619691A JP H0543337 A JPH0543337 A JP H0543337A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
precursor
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3216196A
Other languages
Japanese (ja)
Inventor
Tomoyuki Wakamatsu
智之 若松
Yosuke Takemura
洋輔 竹村
Masatake Sakagami
正剛 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3216196A priority Critical patent/JPH0543337A/en
Publication of JPH0543337A publication Critical patent/JPH0543337A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a carbon-fiber reinforced composite material having a high strength by covering the surfaces of carbon fiber substrates with a carbon matrix and further covering the carbon matrix with a ceramic matrix. CONSTITUTION:The whole surfaces of carbon fiber substrates (woven or nonwoven fabrics) are covered with a carbon precursor (a resin, pitch, etc.), which is further covered with a ceramic precursor (Si, Ti, B, etc.) to laminate sheets of the resultant prepreg. The prepared laminated sheets of the prepreg are then burned under pressure to produce a carbon-fiber reinforced composite material in which the carbon matrix and the ceramic matrix are laminated. The objective carbon-fiber reinforced composite material excellent in strength without causing damage to carbon fiber is obtained by providing a reaction protective layer between the carbon fiber and ceramic matrix.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強度の高い炭素繊維強化
複合材料及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced composite material having high strength and a method for producing the same.

【0002】[0002]

【従来の技術】炭素繊維強化複合材料は耐熱、耐酸化性
に優れ、かつ軽量なため、各種の超耐熱材料として用い
られている。ところで、この炭素繊維強化複合材料の製
法は大きく分けて(1)マトリックス前駆体への炭素繊
維基材の含浸及び焼成を繰り返して高密度化する方法、
(2)炭素繊維基材に化学蒸着法によりマトリックスを
充填する方法、(3)炭素繊維基材にマトリックス前駆
体を付着させたプリプレグを積層し、加圧、焼成する方
法がある。
2. Description of the Related Art Carbon fiber reinforced composite materials are used as various super heat resistant materials because they are excellent in heat resistance and oxidation resistance and lightweight. By the way, the production method of this carbon fiber reinforced composite material is roughly divided into (1) a method of densifying by repeating impregnation and firing of a carbon fiber base material into a matrix precursor,
There are (2) a method of filling a carbon fiber base material with a matrix by a chemical vapor deposition method, and (3) a method of laminating a prepreg having a matrix precursor attached to a carbon fiber base material, pressurizing and firing it.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記(1)、
(2)の方法では手間がかかり、かつ厚い材料では内部
までセラミックスを充填できないという問題点がある。
又、(1)、(3)の方法では、マトリックスとなるセ
ラミックスが難焼結性の場合が多く、焼結助剤を必要と
する。ただし、繊維強化材では繊維がフィラーとなるた
め単一材より焼結助剤を大量に必要とし、この大量の焼
結助剤が強化材の高温特性を劣化させるという問題があ
る。
However, the above (1),
The method (2) has problems that it takes a lot of time and that the thick material cannot be filled with the ceramics.
Further, in the methods (1) and (3), the matrix ceramics are often difficult to sinter, and a sintering aid is required. However, in the fiber reinforcement, since fibers serve as fillers, a large amount of sintering aid is required as compared with a single material, and there is a problem that the large amount of sintering aid deteriorates the high temperature characteristics of the reinforcement.

【0004】一方、難焼結性のセラミックスの焼結法と
して、セラミックス前駆体の金属又は金属化合物と炭素
を供給する反応物質を混合したものを原料とし、焼結中
に反応させる反応焼結法がある。この方法を炭素繊維強
化複合材料に用いると、強化繊維である炭素繊維も反応
の対象となるため、炭素繊維が損傷し、強度の極めて低
い複合材料しか得られないという問題点があった。
On the other hand, as a sintering method for hardly-sinterable ceramics, a reaction sintering method in which a mixture of a ceramic precursor metal or a metal compound and a reactant for supplying carbon is used as a raw material and a reaction is performed during sintering There is. When this method is applied to a carbon fiber reinforced composite material, the carbon fiber, which is a reinforcing fiber, is also an object of the reaction, so that the carbon fiber is damaged and only a composite material having extremely low strength is obtained.

【0005】[0005]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされた炭素繊維強化複合材料及びその製
造方法であって、まず複合材料は、炭素繊維基材の周囲
が炭素マトリックスで覆われ、更にその上がセラミック
マトリックスで覆われたことを特徴とするもので、その
製造方法は炭素繊維基材全面を炭素前駆体で覆い、この
炭素前駆体が更にセラミック前駆体で覆われたプリプレ
グを積層し、加圧、焼成することを特徴とするものであ
る。
DISCLOSURE OF THE INVENTION The present invention is a carbon fiber reinforced composite material and a method for producing the same made to solve the above problems. First, in the composite material, a carbon matrix is provided around a carbon fiber base material. It is characterized in that it is covered and further covered with a ceramic matrix, the manufacturing method is such that the entire surface of the carbon fiber substrate is covered with a carbon precursor, and this carbon precursor is further covered with a ceramic precursor. It is characterized in that prepregs are laminated, pressed and fired.

【0006】ここで、前記プリプレグの製法は(a)炭
素繊維基材をマトリックス前駆体中に浸漬する方法、
(b)電着法によって炭素繊維基材上にマトリックス前
駆体を付着させる方法、(c)マトリックス前駆体をシ
ート状に成形加工し、これを炭素繊維基材間に挟む方
法、のいずれかを用いれば良い。
Here, the manufacturing method of the prepreg is (a) a method of immersing a carbon fiber base material in a matrix precursor,
Either (b) a method of depositing a matrix precursor on a carbon fiber base material by an electrodeposition method, or (c) a method of forming a matrix precursor into a sheet shape and sandwiching the matrix precursor between the carbon fiber base materials. You can use it.

【0007】(a)、(b)の方法では炭素繊維基材に
まず炭素前駆体を付着させた後、その上にセラミックス
前駆体をさらに付着させる。又、(c)の方法の場合、
セラミックス前駆体シートの両面を炭素前駆体シートで
挟んだものと炭素繊維基材を交互に積層することで行
う。又、炭素前駆体を(a)の方法で、セラミックス前
駆体を(c)の方法で付着するなどのように(a)、
(b)、(c)の方法を組み合わせることによってプリ
プレグを製造してもよい。
In the methods (a) and (b), the carbon precursor is first attached to the carbon fiber substrate, and then the ceramic precursor is further attached thereon. In the case of the method (c),
The ceramic precursor sheet is sandwiched between the carbon precursor sheets and the carbon fiber base material is alternately laminated. In addition, the carbon precursor is deposited by the method (a) and the ceramic precursor is deposited by the method (c).
A prepreg may be manufactured by combining the methods of (b) and (c).

【0008】又、前記炭素繊維基材には、二次元状の基
材、即ち織布、不織布(フェルト、ペーパー、マット)
等を用いればよい。炭素前駆体には、樹脂、ピッチ、カ
ーボンブラック、黒鉛粉末、自己焼結性炭素粉末から選
択されたものを用い、セラミックス前駆体には、Si、
Ti、B、Hf、Zr、Wから選択された金属単体又は
金属化合物と、炭素を供給する炭素前駆体(樹脂、ピッ
チ、カーボンブラック、黒鉛粉末、自己焼結性炭素粉末
から選択されたもの)との混合物を用いればよい。
The carbon fiber base material is a two-dimensional base material, that is, woven cloth, non-woven cloth (felt, paper, mat).
Etc. may be used. As the carbon precursor, one selected from resin, pitch, carbon black, graphite powder, and self-sintering carbon powder is used, and as the ceramic precursor, Si,
A metal simple substance or metal compound selected from Ti, B, Hf, Zr, and W, and a carbon precursor for supplying carbon (selected from resin, pitch, carbon black, graphite powder, and self-sintering carbon powder). A mixture of and may be used.

【0009】[0009]

【作用】既に述べたように、反応焼結法を炭素繊維強化
複合材料に用いると、強化繊維である炭素繊維も反応の
対象となり、炭素繊維の損傷を引き起こす。本発明で
は、前記従来の技術における(3)の方法と反応焼結法
とを組み合わせたようなもので、積層前のプリプレグの
段階で炭素繊維に炭素前駆体を均一に付着させ、炭素繊
維とセラミックス前駆体が直接接することなく、前記炭
素前駆体が反応防護層としての役割を果たすようにし
た。従って、炭素繊維に損傷を生ずることなく焼成を行
うことができる。
As described above, when the reactive sintering method is used for the carbon fiber reinforced composite material, the carbon fiber which is the reinforcing fiber also becomes a target of the reaction and causes damage to the carbon fiber. The present invention is a combination of the method (3) and the reactive sintering method in the above-mentioned conventional technique, in which the carbon precursor is uniformly adhered to the carbon fiber at the stage of the prepreg before the lamination, The carbon precursor serves as a reaction protection layer without directly contacting the ceramic precursor. Therefore, the firing can be performed without damaging the carbon fiber.

【0010】又、炭素繊維の炭素前駆体の付着及びこの
炭素前駆体の上へのセラミックス前駆体の付着は、積層
されるプリプレグ単位で制御が容易にできるため、炭素
マトリックス層には反応防護が十分で、複合材料内部ま
で均一な構造組成をもつ材料を製造することができる。
Further, since the deposition of the carbon precursor of the carbon fiber and the deposition of the ceramics precursor on the carbon precursor can be easily controlled for each prepreg unit to be laminated, the carbon matrix layer can be protected against the reaction. Sufficiently, it is possible to produce a material having a uniform structural composition even inside the composite material.

【0011】炭素前駆体の量は、セラミックスの材質、
量と炭素繊維強化複合材料の用途によって変化させる必
要があるが、これが少なすぎると反応防護層としての役
割を果たさず、多すぎるとセラミックスのもつ耐酸化性
や耐摩耗性などの特性を損なうことになる。以上のこと
より炭素前駆体の量は、焼成後の炭素繊維に対して5〜
100重量%の範囲内になるよう制御することが好まし
い。又、セラミックス前駆体中の金属単体若しくは金属
化合物と、炭素を供給する炭素前駆体との割合は、生成
セラミックスの組成比であることが好ましい。
The amount of carbon precursor depends on the ceramic material,
The amount must be changed depending on the amount and use of the carbon fiber reinforced composite material, but if it is too small, it will not function as a reaction protection layer, and if it is too large, it will impair the properties of ceramics such as oxidation resistance and wear resistance. become. From the above, the amount of carbon precursor is 5 to the carbon fiber after firing.
It is preferable to control the content within the range of 100% by weight. Further, the ratio of the elemental metal or the metal compound in the ceramic precursor and the carbon precursor supplying carbon is preferably the composition ratio of the produced ceramic.

【0012】[0012]

【試験例】本発明複合材を実際に作成して比較例と併せ
てそれらの曲げ強度及び層間強度を調べてみた。各実施
例、比較例は以下の通りである。
[Test Example] The composite material of the present invention was actually prepared and their bending strength and interlaminar strength were examined together with the comparative example. Examples and comparative examples are as follows.

【0013】(実施例1)プリプレグの製法に関し、炭
素前駆体及びセラミックス前駆体共に前記方法(a)に
より付着させたものである。 エポキシ樹脂にPAN系炭素繊維織布を浸漬し、炭
素繊維の上にくまなく樹脂を付着させた。この状態で樹
脂と炭素繊維織布との比率は重量で1:1であった。 平均粒径2μmチタン粉末をエポキシ系樹脂及び溶
剤とよく混練し分散させ、塗料の状態とした。この状態
でのチタン粉末と樹脂との比率は重量で2:1であっ
た。 で得られたプリプレグをの溶液に浸漬し、樹脂
の表面にさらにセラミックス前駆体を付着させ、プリプ
レグを得た。この状態でチタン粉末と炭素繊維織布との
比率は重量で4:1であった。 で得られたプリプレグを乾燥し、これを積層して
2000℃まで加圧焼成し、炭素繊維強化セラミックス
複合材を得た。
(Example 1) With respect to a method for producing a prepreg, both a carbon precursor and a ceramics precursor were deposited by the method (a). The PAN-based carbon fiber woven cloth was dipped in the epoxy resin, and the resin was adhered all over the carbon fiber. In this state, the weight ratio of the resin to the carbon fiber woven cloth was 1: 1. Titanium powder having an average particle diameter of 2 μm was well kneaded and dispersed with an epoxy resin and a solvent to prepare a coating material. The weight ratio of titanium powder to resin in this state was 2: 1. The prepreg obtained in step 1 was dipped in the solution to further deposit a ceramics precursor on the surface of the resin to obtain a prepreg. In this state, the weight ratio of titanium powder to carbon fiber woven cloth was 4: 1. The prepreg obtained in (1) was dried, and the prepreg was laminated and pressure-fired to 2000 ° C. to obtain a carbon fiber-reinforced ceramic composite material.

【0014】(実施例2)本例は炭素前駆体及びセラミ
ックス前駆体共に前記方法(b)により付着したもので
ある。 自己焼結性のある平均粒径10μmの炭素粉末をア
クリルアマイド系樹脂及び溶剤とよく混練させた後水に
分散させいわゆるアニオン系塗料の状態とした。この状
態で炭素粉末と樹脂との比率は重量で2:1であった。 PAN系炭素繊維系織布をの分散溶液中に浸漬
し、攪拌しながら約30Vの電圧を印加して、炭素繊維
の上にくまなく炭素前駆体を析出させた。この状態で炭
素粉末と炭素繊維織布の比重は重量で1:2であった。 平均粒径2μm珪素粉末をアクリルアマイド系樹脂
及び溶剤とよく混練させた後、水に分散させたアニオン
系塗料の状態とした。この状態で珪素粉末と樹脂との比
率は重量で2:1であった。 で得られたプリプレグをの溶液に浸漬し、攪拌
しながら約30Vの電圧を印加して、炭素前駆体の表面
にさらにセラミックス前駆体を析出させたプリプレグを
得た。この状態で珪素粉末と炭素繊維織布との比率は重
量で3:1であった。 得られたプリプレグを乾燥したものを積層し、20
00℃まで加圧焼成し、炭素繊維強化セラミックス複合
材料を得た。
(Example 2) In this example, both the carbon precursor and the ceramics precursor are deposited by the method (b). A carbon powder having an average particle diameter of 10 μm and having self-sinterability was well kneaded with an acrylic amide resin and a solvent, and then dispersed in water to obtain a so-called anionic coating material. In this state, the weight ratio of carbon powder to resin was 2: 1. The PAN-based carbon fiber-based woven fabric was dipped in the dispersion solution of, and a voltage of about 30 V was applied with stirring to deposit the carbon precursor throughout the carbon fibers. In this state, the specific gravity of the carbon powder and the carbon fiber woven cloth was 1: 2 by weight. Silicon powder having an average particle diameter of 2 μm was thoroughly kneaded with an acrylic amide resin and a solvent, and then dispersed in water to obtain an anionic coating material. In this state, the weight ratio of silicon powder to resin was 2: 1. The prepreg obtained in (3) was dipped in the solution, and a voltage of about 30 V was applied with stirring to obtain a prepreg in which a ceramics precursor was further deposited on the surface of the carbon precursor. In this state, the weight ratio of silicon powder to carbon fiber woven cloth was 3: 1. The dried prepregs are laminated to form 20 layers.
It was pressure-fired to 00 ° C. to obtain a carbon fiber reinforced ceramic composite material.

【0015】(実施例3)本例は炭素前駆体及びセラミ
ックス前駆体共に前記方法(c)により付着したもので
ある。 自己焼結性のある平均粒径10μmの炭素粉末をフ
ェノール系樹脂及び溶剤とよく混練させたものをシート
状に成形し、炭素前駆体シートを得た。この状態で炭素
粉末と樹脂との比率は重量で2:1であった。 平均粒径3μmのホウ素粉末をフェノール系樹脂及
び溶剤とよく混練させたものをシート状に成形し、セラ
ミックス前駆体シートを得た。この状態でホウ素粉末と
樹脂との比率は重量で2:1であり、重量はの炭素前
駆体シートの4倍となるようにした。 セラミックス前駆体シートの両面を炭素前駆体シー
トで挟んだものをマトリックス前駆体シートとした。 Pitch系高弾性率炭素繊維のフェルトとのマ
トリックス前駆体シートを交互に積層した。ここで、炭
素繊維織布とマトリックス前駆体シートとの重量比率は
1:6になるようにしている。 で得られたプリプレグを2000℃まで加圧焼成
し、炭素繊維強化セラミックス複合材料を得た。
(Embodiment 3) In this embodiment, both the carbon precursor and the ceramic precursor are deposited by the method (c). A carbon precursor sheet was obtained by molding a self-sintering carbon powder having an average particle diameter of 10 μm that was well kneaded with a phenolic resin and a solvent into a sheet. In this state, the weight ratio of carbon powder to resin was 2: 1. Boron powder having an average particle diameter of 3 μm was well kneaded with a phenolic resin and a solvent, and molded into a sheet to obtain a ceramic precursor sheet. In this state, the weight ratio of the boron powder to the resin was 2: 1 and the weight was 4 times that of the carbon precursor sheet. A matrix precursor sheet was prepared by sandwiching both sides of a ceramics precursor sheet with carbon precursor sheets. Matrix precursor sheets with Pitch-based high modulus carbon fiber felt were alternately laminated. Here, the weight ratio of the carbon fiber woven fabric and the matrix precursor sheet is set to 1: 6. The prepreg obtained in 1. was pressure-fired to 2000 ° C. to obtain a carbon fiber reinforced ceramic composite material.

【0016】(比較例1)本例は実施例1について、炭
素前駆体の付着を行わなかったものである。 PAN系炭素繊維織布を実施例1のの溶液に浸漬
し、セラミックス前駆体を付着させプリプレグを得た。
この状態でチタン粉末と炭素繊維織布との比率は重量で
4:1であった。 得られたプリプレグを乾燥したものを積層し、20
00℃まで加圧焼成して、炭素繊維強化セラミックス複
合材料を得た。
Comparative Example 1 This example is the same as Example 1 except that the carbon precursor was not deposited. A PAN-based carbon fiber woven fabric was dipped in the solution of Example 1 to adhere a ceramics precursor to obtain a prepreg.
In this state, the weight ratio of titanium powder to carbon fiber woven cloth was 4: 1. The dried prepregs are laminated to form 20 layers.
It was pressure-fired to 00 ° C. to obtain a carbon fiber-reinforced ceramic composite material.

【0017】(比較例2)本例は実施例2で用いた炭素
前駆体とセラミックス前駆体との混合物をマトリックス
前駆体としたものである。 自己焼結性のある平均粒径10μmの炭素粉末と平
均粒径2μm珪素粉末をアクリルアマイド系樹脂及び溶
剤とよく混練させた後、水に分散させいわゆるアニオン
系塗料の状態とした。この状態で炭素粉末と珪素と樹脂
との比率は重量で1:3:2であった。 PAN系炭素繊維織布をの分散液中に浸漬し、攪
拌しながら約30Vの電圧を印加して、炭素繊維の上に
マトリックス前駆体を析出させたプリプレグを得た。こ
の状態で原料粉末と炭素繊維織布との比率は重量で3.
5:1であった。 得られたプリプレグを乾燥したものを積層し、20
00℃まで加圧焼成して、炭素繊維強化セラミックス複
合材料を得た。
(Comparative Example 2) In this example, a mixture of the carbon precursor and the ceramics precursor used in Example 2 was used as a matrix precursor. A self-sintering carbon powder having an average particle size of 10 μm and a silicon powder having an average particle size of 2 μm were thoroughly kneaded with an acrylic amide resin and a solvent, and then dispersed in water to obtain a so-called anionic paint. In this state, the ratio of carbon powder, silicon and resin was 1: 3: 2 by weight. A PAN-based carbon fiber woven fabric was dipped in the dispersion liquid, and a voltage of about 30 V was applied with stirring to obtain a prepreg in which a matrix precursor was deposited on the carbon fibers. In this state, the ratio of the raw material powder to the carbon fiber woven fabric is 3.
It was 5: 1. The dried prepregs are laminated to form 20 layers.
It was pressure-fired to 00 ° C. to obtain a carbon fiber-reinforced ceramic composite material.

【0018】(比較例3)本例は実施例2について炭素
前駆体の付着を行わなかったものである。 PAN系炭素繊維織布を実施例2のの溶液に浸漬
し、攪拌しながら約30Vの電圧を印加して、炭素繊維
の上にくまなくセラミックス前駆体を析出させた。この
状態で、珪素粉末と炭素繊維織布との比率は重量で3.
5:1であった。 得られたプリプレグを乾燥したものを積層し、20
00℃まで加圧焼成して、炭素繊維強化セラミックス複
合材料を得た。
(Comparative Example 3) In this example, the carbon precursor of Example 2 was not deposited. A PAN-based carbon fiber woven fabric was dipped in the solution of Example 2 and a voltage of about 30 V was applied with stirring to deposit a ceramic precursor all over the carbon fiber. In this state, the ratio of the silicon powder to the carbon fiber woven cloth is 3.
It was 5: 1. The dried prepregs are laminated to form 20 layers.
It was pressure-fired to 00 ° C. to obtain a carbon fiber-reinforced ceramic composite material.

【0019】(比較例4)本例は実施例3について炭素
前駆体の付着を行わなかったものである。 Pitch系高弾性率炭素繊維のフェルトと、実施
例3ので得られたセラミックス前駆体シートを交互に
積層した。ここで、炭素繊維織布とセラミックス前駆体
シートとの重量比率は1:4になるようにしている。 で得られたプリプレグを2000℃まで加圧焼成
し、炭素繊維強化セラミックス複合材料を得た。
(Comparative Example 4) In this example, the carbon precursor of Example 3 was not deposited. The Pitch-based high elastic modulus carbon fiber felt and the ceramic precursor sheet obtained in Example 3 were alternately laminated. Here, the weight ratio of the carbon fiber woven fabric and the ceramics precursor sheet is set to 1: 4. The prepreg obtained in 1. was pressure-fired to 2000 ° C. to obtain a carbon fiber reinforced ceramic composite material.

【0020】実施例1〜3及び比較例1〜4でそれぞれ
得られた炭素繊維強化複合材について、層方向に垂直な
方向に対する曲げ強度及び層間強度の測定を行った。試
料の形状は、曲げ強度:厚み×幅×スパン=5mm×7
mm×30mm、層間強度:厚み×縦×横=4mm×4
mm×20mmである。その結果を表1に示す。
With respect to the carbon fiber reinforced composite materials obtained in Examples 1 to 3 and Comparative Examples 1 to 4, the bending strength and the interlayer strength in the direction perpendicular to the layer direction were measured. The shape of the sample is bending strength: thickness x width x span = 5 mm x 7
mm × 30 mm, interlayer strength: thickness × length × width = 4 mm × 4
It is mm × 20 mm. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】同表に示すように、マトリックスの熱膨張
率が高くかつ炭素繊維の配向が強い炭素繊維織布を用い
た系、即ち実施例1及び比較例1との間で大きな差が出
ている。実施例1は、炭素マトリックスによる防護層の
ない比較例1に比べて、曲げ強度で5倍以上、層間強度
で3倍以上の値が測定され、その有効性が確認された。
又、顕微鏡による破面観察でも、比較例1では炭素繊維
及びマトリックスの亀裂や層間剥離が多く観察された
が、実施例1では大幅に減少していた。さらに、比較例
では炭素繊維の表面がマトリックスとの反応により荒れ
ていたが実施例ではそのような現象は見られなかった。
As shown in the table, there is a large difference between the system using the carbon fiber woven cloth having a high coefficient of thermal expansion of the matrix and the strong orientation of the carbon fibers, that is, Example 1 and Comparative Example 1. There is. In Example 1, the bending strength was 5 times or more and the interlayer strength was 3 times or more as compared with Comparative Example 1 having no protective layer made of a carbon matrix, and its effectiveness was confirmed.
Also, in the fracture surface observation with a microscope, in Comparative Example 1, many cracks and delamination of carbon fibers and matrix were observed, but in Example 1, it was significantly reduced. Furthermore, in the comparative example, the surface of the carbon fiber was rough due to the reaction with the matrix, but such a phenomenon was not observed in the examples.

【0023】一方、炭素前駆体、セラミックス前駆体を
混合したものをマトリックス前駆体とした比較例2は、
曲げ強度の点で反応防護層のない比較例3より優れてい
るものの、炭素前駆体を付着し、反応防護層をもつ実施
例2には、曲げ強度、層間強度共に及ばない。
On the other hand, Comparative Example 2 in which a mixture of carbon precursor and ceramics precursor was used as a matrix precursor,
In terms of bending strength, it is superior to Comparative Example 3 having no reaction protection layer, but the bending strength and interlayer strength of Example 2 having a carbon precursor attached and a reaction protection layer are lower.

【0024】実施例3もやはり反応防護層のない比較例
4と比べると、曲げ強度、層間強度共に改善されている
ことが確認された。尚、全ての比較例では炭素繊維の表
面がマトリックスとの反応により荒れていたが、実施例
にはそのような現象は見られなかった。
It was confirmed that the bending strength and the interlayer strength of Example 3 were also improved as compared with Comparative Example 4 having no reaction protection layer. In all the comparative examples, the surface of the carbon fiber was rough due to the reaction with the matrix, but no such phenomenon was observed in the examples.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
炭素繊維とセラミックスマトリックスの間に反応防護層
を設けたことで、炭素繊維の損傷を生ずることなく強度
の優れた炭素繊維強化複合材料を得ることができる。
又、本発明材料は、積層されるプリプレグの単位で炭素
前駆体及びセラミックス前駆体の付着量を制御できるた
め、内部まで均一な組成をもち、耐熱、耐酸化性材料と
しての工業的利用価値は極めて大きいものがある。
As described above, according to the present invention,
By providing the reaction protection layer between the carbon fiber and the ceramic matrix, it is possible to obtain a carbon fiber reinforced composite material having excellent strength without causing damage to the carbon fiber.
Further, the material of the present invention can control the adhesion amount of the carbon precursor and the ceramics precursor in the unit of the prepreg to be laminated, so that it has a uniform composition even in the inside, and is industrially useful as a heat-resistant and oxidation-resistant material. Some are extremely large.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維基材の表面が炭素マトリックス
で覆われ、更にその上がセラミックスマトリックスで覆
われたことを特徴とする炭素繊維強化複合材料。
1. A carbon fiber reinforced composite material characterized in that the surface of a carbon fiber base material is covered with a carbon matrix, and the surface thereof is further covered with a ceramic matrix.
【請求項2】 炭素繊維基材全面を炭素前駆体で覆い、
この炭素前駆体が更にセラミックス前駆体で覆われたプ
リプレグを積層し、加圧、焼成することを特徴とする炭
素繊維強化複合材料の製造方法。
2. A carbon precursor is entirely covered with a carbon precursor,
A method for producing a carbon fiber reinforced composite material, which comprises stacking a prepreg in which the carbon precursor is further covered with a ceramics precursor, and applying pressure and firing.
【請求項3】 炭素繊維基材が二次元状の基材、即ち織
布、不織布であることを特徴とする請求項1記載の炭素
繊維強化複合材料又は請求項2記載の炭素繊維強化複合
材料の製造方法。
3. The carbon fiber reinforced composite material according to claim 1 or the carbon fiber reinforced composite material according to claim 2, wherein the carbon fiber base material is a two-dimensional base material, that is, a woven fabric or a non-woven fabric. Manufacturing method.
【請求項4】 炭素前駆体は、樹脂、ピッチ、カーボン
ブラック、黒鉛粉末、自己焼結性炭素粉末から選択され
たものであることを特徴とする請求項1記載の炭素繊維
強化複合材料又は請求項2記載の炭素繊維強化複合材料
の製造方法。
4. The carbon fiber reinforced composite material according to claim 1, wherein the carbon precursor is selected from resin, pitch, carbon black, graphite powder, and self-sintering carbon powder. Item 3. A method for producing a carbon fiber reinforced composite material according to item 2.
【請求項5】 セラミックス前駆体は、Si、Ti、
B、Hf、Zr、Wから選択された金属単体又は金属化
合物と、炭素を供給する炭素前駆体との混合物からなる
ことを特徴とする請求項1記載の炭素繊維強化複合材料
又は請求項2記載の炭素繊維強化複合材料の製造方法。
5. The ceramic precursor is Si, Ti,
The carbon fiber reinforced composite material according to claim 1 or claim 2, which is composed of a mixture of a simple metal or a metal compound selected from B, Hf, Zr and W and a carbon precursor for supplying carbon. Of manufacturing a carbon fiber reinforced composite material of.
JP3216196A 1991-08-01 1991-08-01 Carbon fiber-reinforced composite material and its production Pending JPH0543337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3216196A JPH0543337A (en) 1991-08-01 1991-08-01 Carbon fiber-reinforced composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3216196A JPH0543337A (en) 1991-08-01 1991-08-01 Carbon fiber-reinforced composite material and its production

Publications (1)

Publication Number Publication Date
JPH0543337A true JPH0543337A (en) 1993-02-23

Family

ID=16684781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3216196A Pending JPH0543337A (en) 1991-08-01 1991-08-01 Carbon fiber-reinforced composite material and its production

Country Status (1)

Country Link
JP (1) JPH0543337A (en)

Similar Documents

Publication Publication Date Title
JP4727781B2 (en) Ceramic composite material
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
EP0072007B1 (en) Method of fabricating carbon composites
JP3987123B2 (en) Fabric preform formed with boron nitride coating, composite material incorporating the same, and method for producing the same
JPH0769748A (en) Preparation of carbon fiber reinforced ceramics composite material
JPH0543337A (en) Carbon fiber-reinforced composite material and its production
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JPH01133914A (en) Carbon fiber reinforced carbon composite material and production thereof
EP1004558A2 (en) Coated ceramic fibers
JPH0570227A (en) Production of fiber reinforced composite material
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH04305059A (en) Carbon fiber reinforced ceramics composite material and production thereof
JPH05170577A (en) Method for anti-oxidizing coating of carbon fiber reinforced carbon composite material using coating method
JPH0648867A (en) Production of boron carbide-coated carbon material
JPH04187583A (en) Oxidation-resistant carbon fiber reinforced carbon composite material and production thereof
JPH11130553A (en) Carbon/carbon composite material
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JPH0274669A (en) Carbon fiber-reinforced carbon material having oxidation resistance and production thereof
JPH05279139A (en) Production of carbon fiber-reinforced ceramic composite material
JPH0274670A (en) Oxidation-resistant carbon fiber-reinforced material and production thereof
JPH03197377A (en) Carbon fiber-reinforced composite material and its production
Ju A Hybrid Composite Material by Co-curing Lay-up Process for Enhanced Multifunctional Properties
JPH0524921A (en) Production of oxidation resistance c/c composite
JP2022138515A (en) Carbon fiber-based heat insulation material and method of manufacturing the same
JPS63256586A (en) Manufacture of oxidation-resistant carbon composite material