JPH0542820B2 - - Google Patents

Info

Publication number
JPH0542820B2
JPH0542820B2 JP56201247A JP20124781A JPH0542820B2 JP H0542820 B2 JPH0542820 B2 JP H0542820B2 JP 56201247 A JP56201247 A JP 56201247A JP 20124781 A JP20124781 A JP 20124781A JP H0542820 B2 JPH0542820 B2 JP H0542820B2
Authority
JP
Japan
Prior art keywords
crystal
crystallinity
infrared light
impurities
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56201247A
Other languages
Japanese (ja)
Other versions
JPS58102536A (en
Inventor
Kazumi Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56201247A priority Critical patent/JPS58102536A/en
Publication of JPS58102536A publication Critical patent/JPS58102536A/en
Publication of JPH0542820B2 publication Critical patent/JPH0542820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は半導体結晶の結晶評価法に係り、特に
レーザ光と赤外光を併用することにより、非接
触、非破壊の測定を行うことができる結晶評価法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal evaluation method for semiconductor crystals, and more particularly to a crystal evaluation method that allows non-contact, non-destructive measurement by using a combination of laser light and infrared light.

従来の非接触、非破壊の半導体評価法としては
(1)フオトルミネツセンス、(2)光吸収、(3)マイクロ
波を用いたライフタイム、(4)光散乱、(5)うず電流
を用いたホール効果、等の測定を行うことによつ
てなされるもの等が挙げられる。
As a conventional non-contact, non-destructive semiconductor evaluation method,
By measuring (1) photoluminescence, (2) light absorption, (3) lifetime using microwaves, (4) light scattering, (5) Hall effect using eddy current, etc. Examples include things that are carried out.

これらの測定法においてはA:エピタキシヤル
層だけの情報を得ることができない((2)、(5))。
B:特に高価な装置が必要かそれでなければ測定
に時間がかかる((1)、(3),(4))。C:測定場所の
位置分解能が悪い((5))。などの欠点がある。
In these measurement methods, A: Information on only the epitaxial layer cannot be obtained ((2), (5)).
B: Especially expensive equipment is required or measurement takes time ((1), (3), (4)). C: The positional resolution of the measurement location is poor ((5)). There are drawbacks such as.

本発明は上述の点に鑑みなされたもので、簡便
な、位置分解能の良い、エピ層の評価もできる結
晶評価法を提供するにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a crystal evaluation method that is simple, has good positional resolution, and can also evaluate epitaxial layers.

本発明の目的は、キヤリア励起のためのレーザ
光とキヤリア密度測定のための赤外光を併用する
ことによつて、半導体結晶中に存在するキヤリア
トラツプ(発行中心、非発光中心)の量を推定す
ることを可能にするもので、半導体結晶にレーザ
光を照射することにより結晶内キヤリアを励起
し、そのキヤリア密度を赤外光の反射で測定する
ことにより半導体中の発光、非発光中心となる不
純物や欠陥の量を推定する結晶評価法により達成
される。
The purpose of the present invention is to estimate the amount of carrier traps (emitting centers, non-emitting centers) present in a semiconductor crystal by using a combination of laser light for carrier excitation and infrared light for measuring carrier density. By irradiating a semiconductor crystal with laser light, carriers within the crystal are excited, and by measuring the carrier density by reflection of infrared light, it is possible to identify the luminescent and non-luminous centers in the semiconductor. This is achieved using crystal evaluation methods that estimate the amount of impurities and defects.

次に本発明の原理を説明する。 Next, the principle of the present invention will be explained.

(1) 自由電子または正孔によつて赤外光が反射さ
れるのは、プラズマ反射としてよく知られてい
る。反射の起る赤外光の臨界波長λminはキヤ
リア(電子、正孔)の密度をnとすれば
λminα1/√の関係がある。
(1) The reflection of infrared light by free electrons or holes is well known as plasma reflection. The critical wavelength λmin of infrared light at which reflection occurs has the relationship λminα1/√, where n is the density of carriers (electrons, holes).

従つて、λminを測定することにより、nを
推定することができる。
Therefore, n can be estimated by measuring λmin.

(2) 半導体にそのバンドキヤツプより大きなエネ
ルギーを持つ光を照射すると、価電子帯から伝
導帯に電子が励起され、電子−正孔対が形成さ
れる。これらの電子、正孔はある時間(life
time)の後に再結合をして消滅する。再結合
を行う場合、伝導帯の電子と価電子帯の正孔が
直接結合する場合もあるが、バンドギヤツプ内
に存在する再結合中心を介在して結合する場合
もある。
(2) When a semiconductor is irradiated with light with energy greater than its bandcap, electrons are excited from the valence band to the conduction band, forming electron-hole pairs. These electrons and holes have a certain period of time (life
time) and then recombine and disappear. When recombining, electrons in the conduction band and holes in the valence band may combine directly, but they may also combine via a recombination center that exists within the band gap.

この再結合中心は結晶中の不純物や結晶欠陥が
原因となつて形成されるため、結晶性の悪い試料
においては再結合中心が多数あり、従つて電子−
正孔対が消滅する機会が非常に多くなる。すなわ
ち同一強度の光で励起した場合、結晶性の悪い試
料ほど電子−正孔対が見出される確率が小さくな
る。電子−正孔対数は励起光強度が十分大きけれ
ば結晶中のキヤリア数に対応するからキヤリア数
の測定により結晶性を評価することができる。
These recombination centers are formed due to impurities or crystal defects in the crystal, so in samples with poor crystallinity, there are many recombination centers, and therefore electrons
There are many opportunities for hole pairs to disappear. That is, when excited with light of the same intensity, the probability that electron-hole pairs will be found decreases in a sample with poorer crystallinity. Since the electron-hole pair number corresponds to the number of carriers in the crystal if the excitation light intensity is sufficiently large, crystallinity can be evaluated by measuring the number of carriers.

もし、レーザ光による励起を行わずに、プラズ
マ反射という現象のみで不純物や欠陥の量を調べ
ようとすると以下のような問題がある。
If one attempts to examine the amount of impurities and defects using only the phenomenon of plasma reflection without excitation with laser light, the following problems arise.

現実に存在する結晶は、ドナ・アクセプタ・重
金属類・結晶欠陥など多くの性質の異なる不純物
を含有している。通常のドナ・アクセプタは浅い
不純物としての性質を備え、結晶内のキヤリア生
成に寄与している。重金属類や結晶欠陥などは深
い不純物の性質を備えることが多く、結晶内のキ
ヤリアを減少させるキヤリアキラー、すなわちト
ラツプとして働く。結晶の良否は広義には全不純
物の量が基準となるが、結晶性といつた場合、狭
義に後者の深い不純物の量を基準とする。それ
は、半導体レーザなどを作製する時発光効率を問
題とするが、この量が深い不純物の量に大きく依
存するからである。
Really existing crystals contain many impurities with different properties, such as donors, acceptors, heavy metals, and crystal defects. Normal donor acceptors have the properties of shallow impurities and contribute to carrier formation within the crystal. Heavy metals and crystal defects often have deep impurity properties and act as carrier killers, or traps, that reduce carriers within the crystal. In a broad sense, the quality of a crystal is determined by the amount of all impurities, but when it comes to crystallinity, in a narrower sense, the standard is the amount of deep impurities. This is because luminous efficiency is an issue when manufacturing semiconductor lasers and the like, and this amount largely depends on the amount of deep impurities.

結晶内では、これら性質の異なる多数の不純物
と、結晶自身の持つ状態すなわち伝導帯と価電子
帯とにその結晶がおかれた温度に対応して電子が
分布し、いわゆる熱平衡状態が実現している。
Inside the crystal, electrons are distributed between these many impurities with different properties and the states of the crystal itself, that is, the conduction band and valence band, depending on the temperature at which the crystal is placed, and a so-called thermal equilibrium state is achieved. There is.

そして、この状態で反射赤外光を測定すると、
得られる情報としてはキヤリア密度(n型半導体
では伝導帯の電子密度)が得られる事になるが、
上述したように、これは結晶性をそのまま表した
ものとはなつていない。それは、伝導帯の電子密
度が浅い不純物と深い不純物の相関関係によつて
いるからである。さらに、反射赤外光の測定によ
つてキヤリア密度の測定が行える条件として、プ
ラズマ反射が生じる赤外光を用いなければならな
いが、通常用いられる50μm以下の波長での測定
を可能とするためにはキヤリア密度1017cm-3台の
キヤリアの存在が必要である。
Then, when measuring the reflected infrared light in this state,
The information that can be obtained is the carrier density (electron density in the conduction band for n-type semiconductors).
As mentioned above, this does not directly represent crystallinity. This is because the electron density in the conduction band depends on the correlation between shallow impurities and deep impurities. Furthermore, in order to be able to measure carrier density by measuring reflected infrared light, it is necessary to use infrared light that causes plasma reflection, but in order to enable measurement at wavelengths of 50 μm or less, which are commonly used, requires the presence of three carriers with a carrier density of 10 17 cm -.

これらの事情から、単に反射赤外光によつて不
純物密度を測定し、結晶性の良否を判断すること
は原理的・技術的に困難である。
Due to these circumstances, it is theoretically and technically difficult to determine the quality of crystallinity by simply measuring the impurity density using reflected infrared light.

一方本願発明では、まずレーザ光によつて価電
子帯から多量の電子を伝導帯に励起する。励起さ
れた電子は熱平衡状態と比べて過剰となるのでエ
ネルギーの低い状態へ緩和しようとする。その終
状態は、禁制帯内の不純物レベルもしくは価電子
帯である。緩和した電子は、再びレーザ光により
励起され、また緩和するというプロセスを繰り返
し、ある定常状態を形成する。この定常状態にお
いて伝導帯の電子密度は禁制帯内の不純物密度と
レーザ光強度に依存するが、レーザ光強度をある
一定の大きさ以上にすると、浅い不純物から生じ
る電子量が無視できるほど電子を価電子帯から励
起できるようになる。この状態では、レーザ光強
度と深い不純物すなわち結晶性が、伝導帯上の電
子密度を決定する。すなわち、結晶性が悪くなる
ほど、励起光強度が大きくなるほど電子密度は大
きくなる。従つて、励起光強度を一定にしておい
て異なる二つの試料を比較すれば、結晶性が悪い
試料の方が電子密度が小さくなることから結晶性
を評価できるわけである。また、結晶性が悪い試
料は、電子密度が小さいために反射赤外光の測定
が困難だが、レーザ光強度を大きくすることによ
り電子密度を増加させ、プラズマ反射の起きる波
長を測定可能領域まで持つてくることが可能とな
る。
On the other hand, in the present invention, a large amount of electrons are first excited from the valence band to the conduction band using laser light. Since the excited electrons are in excess compared to the thermal equilibrium state, they try to relax to a lower energy state. The end state is an impurity level within the forbidden band or valence band. The relaxed electrons are excited by the laser beam again and the process of relaxation is repeated to form a certain steady state. In this steady state, the electron density in the conduction band depends on the impurity density in the forbidden band and the laser light intensity, but when the laser light intensity is increased above a certain level, the electron density is reduced to such an extent that the amount of electrons generated from shallow impurities can be ignored. It becomes possible to excite from the valence band. In this state, laser light intensity and deep impurities, or crystallinity, determine the electron density on the conduction band. That is, as the crystallinity worsens and the excitation light intensity increases, the electron density increases. Therefore, by comparing two different samples while keeping the excitation light intensity constant, the crystallinity can be evaluated because the sample with poor crystallinity has a lower electron density. In addition, it is difficult to measure reflected infrared light for samples with poor crystallinity due to their low electron density, but by increasing the laser light intensity, the electron density can be increased to bring the wavelength at which plasma reflection occurs into the measurable range. It becomes possible to come.

以上のように本発明は、レーザ光により伝導帯
の電子の密度を制御するという構成を導入するこ
とにより、反射赤外光を用いた結晶性の評価が可
能となるものである。
As described above, the present invention makes it possible to evaluate crystallinity using reflected infrared light by introducing a configuration in which the electron density in the conduction band is controlled by laser light.

以下本発明の半導体結晶評価法を図を参照して
説明する。
The semiconductor crystal evaluation method of the present invention will be explained below with reference to the drawings.

第1図に本発明の一実施例として、GaAsエピ
タキシヤル結晶の評価装置に応用したときのブロ
ツク図を示す。
FIG. 1 shows a block diagram of one embodiment of the present invention when it is applied to an evaluation apparatus for GaAs epitaxial crystals.

測定試料1にレーザ2から励起光を照射する。
このとき、レーザ光のパワーをモニタするために
ハーフミラー3と光パワーメータ4が必要であ
る。レーザ光により励起されたキヤリアの密度を
測定するため、赤外光光源5より赤外分光器6を
通して単一波長光を試料1に当て、その反射光を
赤外デイクタ7によつて受光する。光電変換され
た信号は増幅器8を通つてレコーダ9に送られ
る。レコーダには分光器6から、波長を示す参照
信号も送られる。
A measurement sample 1 is irradiated with excitation light from a laser 2.
At this time, a half mirror 3 and an optical power meter 4 are required to monitor the power of the laser beam. In order to measure the density of carriers excited by the laser beam, single wavelength light is applied to the sample 1 from an infrared light source 5 through an infrared spectrometer 6, and the reflected light is received by an infrared detector 7. The photoelectrically converted signal is sent to a recorder 9 through an amplifier 8. A reference signal indicating the wavelength is also sent to the recorder from the spectrometer 6.

第2図、第3図に本装置を用いて得た縦軸に赤
外反射率(%)、横軸に波長でプロツトした赤外
反射スペクトルを示す。
FIGS. 2 and 3 show infrared reflection spectra obtained using this apparatus, plotted with the vertical axis representing the infrared reflectance (%) and the horizontal axis representing the wavelength.

第2図はレーザの出力を変えたときの反射スペ
クトルの変化であり、強励起条件(実線)では弱
励起条件(点線)に比べ反射スペクトルが極小を
示す点λminが短波長側にずれ、自由キヤリアが
増加することを示している。
Figure 2 shows the change in the reflection spectrum when the laser output is changed. Under strong excitation conditions (solid line), compared to weak excitation conditions (dotted line), the point λmin where the reflection spectrum shows a minimum shifts to the short wavelength side, and the free This indicates that carriers will increase.

第3図は、レーザの出力を一定として、異なる
二つの試料の反射スペクトルを示したもので、試
料Aのλminは試料Bのλminより短波長側にあ
り、試料Aの方が試料Bに比べ結晶性が良いこと
を示している。
Figure 3 shows the reflection spectra of two different samples with the laser output constant. The λmin of sample A is on the shorter wavelength side than the λmin of sample B, and sample A is shorter than sample B. This indicates good crystallinity.

このように本発明の実施例によれば、レーザ光
の出力を変化させることにより測定波長領域を自
由に選び、最適化できるため、結晶性の良否に広
い範囲を持つGaAs結晶においても1台の装置に
よつて十分対応できるという効果がある。
In this way, according to the embodiments of the present invention, the measurement wavelength range can be freely selected and optimized by changing the output of the laser beam, so even GaAs crystals with a wide range of crystallinity can be measured with a single device. This has the effect of being fully compatible with the equipment.

本発明によれば半導体結晶の結晶性評価を行う
際、非接触、非破壊で行え、測定場所の位置分解
能を良くでき、測定時間も短縮でき、さらにエピ
タキシヤル層の評価も行うことができるので、非
常に汎用性のある、実用的な測定装置を形成でき
る効果がある。
According to the present invention, when evaluating the crystallinity of a semiconductor crystal, it can be performed non-contact and non-destructively, the positional resolution of the measurement location can be improved, the measurement time can be shortened, and epitaxial layers can also be evaluated. This has the effect of making it possible to form a very versatile and practical measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる半導体結晶評価装置の
ブロツク図、第2図、第3図は本発明により得た
赤外反射スペクトルを示す図である。 1は測定試料、2はレーザー、3はハーフミラ
ー、4は光パワーメータ、5は赤外光光源、6は
赤外分光器、7は赤外デイテクタ、8は増幅器、
9はレコーダ。
FIG. 1 is a block diagram of a semiconductor crystal evaluation apparatus used in the present invention, and FIGS. 2 and 3 are diagrams showing infrared reflection spectra obtained by the present invention. 1 is a measurement sample, 2 is a laser, 3 is a half mirror, 4 is an optical power meter, 5 is an infrared light source, 6 is an infrared spectrometer, 7 is an infrared detector, 8 is an amplifier,
9 is a recorder.

Claims (1)

【特許請求の範囲】 1 半導体結晶にレーザ光を照射して結晶内にキ
ヤリアを励起する工程と、 該レーザ光照射部に赤外光を照射し、該半導体
結晶からの反射赤外光の臨界波長(λmin)測定
する工程とを有し、 該臨界波長により該半導体結晶の結晶性を判断
することを特徴とする半導体結晶評価方法。
[Claims] 1. A step of irradiating a semiconductor crystal with a laser beam to excite carriers in the crystal, and irradiating the laser beam irradiated portion with infrared light to determine the criticality of the reflected infrared light from the semiconductor crystal. A method for evaluating a semiconductor crystal, comprising: measuring a wavelength (λmin), and determining the crystallinity of the semiconductor crystal based on the critical wavelength.
JP56201247A 1981-12-14 1981-12-14 Semiconductor crystal evaluation method Granted JPS58102536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56201247A JPS58102536A (en) 1981-12-14 1981-12-14 Semiconductor crystal evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56201247A JPS58102536A (en) 1981-12-14 1981-12-14 Semiconductor crystal evaluation method

Publications (2)

Publication Number Publication Date
JPS58102536A JPS58102536A (en) 1983-06-18
JPH0542820B2 true JPH0542820B2 (en) 1993-06-29

Family

ID=16437771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56201247A Granted JPS58102536A (en) 1981-12-14 1981-12-14 Semiconductor crystal evaluation method

Country Status (1)

Country Link
JP (1) JPS58102536A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795260A (en) * 1987-05-15 1989-01-03 Therma-Wave, Inc. Apparatus for locating and testing areas of interest on a workpiece
KR100711301B1 (en) 2004-05-07 2007-04-25 가부시키가이샤 리코 Conveyor belt, sheet feeding device, and image forming apparatus including the sheet feeding device that stably conveys original document
JP2007288135A (en) * 2006-03-20 2007-11-01 Kobe Steel Ltd Method and device for evaluating crystallinity of silicon semiconductor thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154265A (en) * 1978-05-26 1979-12-05 Hitachi Ltd Impurity doping amount evaluation method for semiconductor
JPS56154648A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Measurement of semiconductor impurity concentration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487069U (en) * 1977-12-02 1979-06-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154265A (en) * 1978-05-26 1979-12-05 Hitachi Ltd Impurity doping amount evaluation method for semiconductor
JPS56154648A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Measurement of semiconductor impurity concentration

Also Published As

Publication number Publication date
JPS58102536A (en) 1983-06-18

Similar Documents

Publication Publication Date Title
Tanaka et al. New method of superheterodyne light beating spectroscopy for Brillouin scattering using frequency-tunable lasers
US20020045283A1 (en) Method and apparatus for evaluating the quality of a semiconductor substrate
US8912799B2 (en) Accurate measurement of excess carrier lifetime using carrier decay method
Bosi et al. Lifetime studies on the relaxed excited state of color centers
US20040253751A1 (en) Photothermal ultra-shallow junction monitoring system with UV pump
JPS63250835A (en) Inspection of epitaxial wafer
Liaugaudas et al. Luminescence-lifetime mapping in diamond
JPH0542820B2 (en)
Garro et al. Resonant Rayleigh scattering by excitonic states laterally confined in the interface roughnessof GaAs/Al x Ga 1− x As single quantum wells
JP2004349582A (en) Method and device of measuring defect in solid
JPH0697508A (en) Inspection of water for manufacturing light emitting element
US5512999A (en) Method for nondestructive measurement of dislocation density in GaAs
Maslar et al. Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths
O'Neill et al. Localized excitation transfer processes in MgO: Cr3+
JPH033946B2 (en)
JP2970818B2 (en) Beam modulation spectrometer and measurement method thereof
Campani et al. A pulsed dye laser raman spectrometer employing a new type of gated analogue detection
Tsang et al. TIME RESOLVED RAMAN SPECTROSCOPY OF OPTICALLY GENERATED PHONONS IN III-V SEMICONDUCTORS
JPH05291624A (en) Method of inspecting epitaxial wafer for light emitting diode
Mori et al. Two-dimensional image detection of luminescence and transport properties of GaAs
Werheit et al. Ambipolar Diffusion of Electron–Hole Pairs in β‐Rhombohedral Boron
JPH01231341A (en) Device for evaluating semiconductor crystal
JPS61181945A (en) Crystal evaluator
Baranov et al. Interferometric coherence measurement of stress-induced In x Ga 1− x A s/G a A s quantum dots at the resonant-luminescence phonon sideband
JPS63147389A (en) Semiconductor laser inspection device