JPH0542704U - Directional control valve device - Google Patents

Directional control valve device

Info

Publication number
JPH0542704U
JPH0542704U JP10063591U JP10063591U JPH0542704U JP H0542704 U JPH0542704 U JP H0542704U JP 10063591 U JP10063591 U JP 10063591U JP 10063591 U JP10063591 U JP 10063591U JP H0542704 U JPH0542704 U JP H0542704U
Authority
JP
Japan
Prior art keywords
pressure
valve
directional control
control valve
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10063591U
Other languages
Japanese (ja)
Other versions
JP2550774Y2 (en
Inventor
和義 石浜
和則 池井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP10063591U priority Critical patent/JP2550774Y2/en
Publication of JPH0542704U publication Critical patent/JPH0542704U/en
Application granted granted Critical
Publication of JP2550774Y2 publication Critical patent/JP2550774Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

(57)【要約】 (修正有) 【目的】方向制御弁装置において、安全弁を1つにし特
定方向制御弁に接続したアクチュエータの最高作動力を
安全弁セット圧より高くして、他の方向制御弁に接続し
たアクチュエータの最高圧力より高くする。 【構成】弁ブロック30のスプール孔31内に主スプー
ル49を摺動自在に嵌挿して方向制御弁とし、弁ブロッ
クに第1、第2圧力検出ポート100,101を形成し
て連通口凹部102に開口すると共にボール103及び
透孔104を設ける。複数の弁ブロックを接合して各第
1、第2圧力検出ポートを透孔に連通し、隣接する弁ブ
ロック間にボールを付勢するカバーブロックを設けると
共にボールの押し付け力を調整するバネ力調整機構を設
け、透孔を1つの安全弁に連通する。
(57) [Summary] (Modified) [Purpose] In a directional control valve device, one safety valve is used and the maximum operating force of the actuator connected to the specific directional control valve is made higher than the safety valve set pressure, and other directional control valves are used. Higher than the maximum pressure of the actuator connected to. A main spool 49 is slidably fitted in a spool hole 31 of a valve block 30 to form a directional control valve, and first and second pressure detection ports 100 and 101 are formed in the valve block to form a communication port recess 102. And a ball 103 and a through hole 104 are provided. A plurality of valve blocks are joined to communicate each of the first and second pressure detection ports with the through hole, and a cover block for urging the ball is provided between the adjacent valve blocks, and a spring force adjustment for adjusting the pressing force of the ball is provided. A mechanism is provided to connect the through hole to one safety valve.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、油圧ポンプの吐出圧油を複数の方向制御弁で複数のアクチュエータ に供給する方向制御弁装置に関する。 The present invention relates to a directional control valve device that supplies the discharge pressure oil of a hydraulic pump to a plurality of actuators with a plurality of directional control valves.

【0002】[0002]

【従来の技術】[Prior Art]

油圧ポンプの吐出圧油を複数のアクチュエータに供給するにはアクチュエータ と同数の方向制御弁を設け、その各方向制御弁を切換え操作して各アクチュエー タに油圧ポンプの吐出圧油を供給している。 前記方向制御弁としては例えば図1に示すように、弁ブロック1のスプール孔 2内にスプール3を嵌挿し、このスプール3を左右に摺動することでポンプポー ト4を第1・第2アクチュエータポート5,6の一方に連通し、かつ第1・第2 アクチュエータポート5,6の他方をタンクポート7に連通するようにしたもの が知られている。 In order to supply the hydraulic oil discharge pressure oil to multiple actuators, the same number of directional control valves as the actuators are provided, and each directional control valve is switched to supply the hydraulic pump discharge pressure oil to each actuator. .. As the directional control valve, for example, as shown in FIG. 1, a spool 3 is fitted in a spool hole 2 of a valve block 1 and the spool 3 is slid right and left to move the pump port 4 to the first and second actuators. It is known that one of the ports 5 and 6 communicates with the other, and the other of the first and second actuator ports 5 and 6 communicates with the tank port 7.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

かかる方向制御弁にあっては第1・第2アクチュエータポート5,6の最高圧 力を規定して各部が破損等しないように、図1に示すように弁ブロック1に第1 ・第2安全弁8,9を第1・第2アクチュエータポート5,6に開口して取付け ている。 このように、1つの方向制御弁に2つの安全弁が必要であるから、複数の方向 制御弁を組み合せて方向制御弁装置とした場合に、方向制御弁の数の2倍の安全 弁が必要となってコストが高くなるばかりか、方向制御弁装置全体が大きくなっ て設置面積が大となる。 In such a directional control valve, as shown in FIG. 1, the first and second safety valves are provided in the valve block 1 so that the maximum pressure of the first and second actuator ports 5 and 6 is regulated so that each part is not damaged. 8 and 9 are attached to the first and second actuator ports 5 and 6 by opening them. In this way, one directional control valve requires two safety valves. Therefore, when multiple directional control valves are combined to form a directional control valve device, the number of safety valves is twice the number of directional control valves. Not only does this increase the cost, but the directional control valve device as a whole also becomes large and the installation area becomes large.

【0004】 そこで、本考案は前述の課題を解決できるようにした方向制御弁装置を提供す ることを目的とする。Therefore, an object of the present invention is to provide a directional control valve device capable of solving the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

弁ブロック30のスプール孔31内に主スプール49を摺動自在に嵌挿して入 力ポート44を第1・第2アクチュエータ34,35に連通・遮断する方向制御 弁とし、前記弁ブロック30に第1、第2アクチュエータポート34,35に連 通した第1・第2圧力検出ポート100,101を形成し、この第1・第2圧力 検出ポート100,101を弁ブロック30の一方の接合面に形成した連通用凹 部102に開口し、かつ連通用凹部102から圧力検出ポートへの圧油流れを阻 止するボール103を設け、その連通用凹部102と弁ブロック30の他方の接 合面に亘って透孔104を形成し、複数の弁ブロック30を接合して各第1・第 2圧力検出ポート100,101を透孔104に連通し、隣接する弁ブロック3 0間に前記ボール103を押すバネ106を設け、最も端部に位置する弁ブロッ ク73の一方の接合面にカバーブロック110を設け、このカバーブロック11 0に前記ボール103の押しつけ力を調製するバネ力調整機構111を設け、そ の透孔104を1つの安全弁105に連通した方向制御弁装置。 The main spool 49 is slidably fitted in the spool hole 31 of the valve block 30 to form a directional control valve that connects and disconnects the input port 44 with the first and second actuators 34 and 35. First and second pressure detection ports 100 and 101 communicating with the first and second actuator ports 34 and 35 are formed, and the first and second pressure detection ports 100 and 101 are provided on one joint surface of the valve block 30. A ball 103 is provided which opens in the formed communication recess 102 and blocks the flow of pressure oil from the communication recess 102 to the pressure detection port. The ball 103 is provided on the other contact surface of the communication recess 102 and the valve block 30. A through-hole 104 is formed over the valve block 30, and the plurality of valve blocks 30 are joined to communicate the first and second pressure detection ports 100 and 101 with the through-hole 104. A spring 106 for pushing 103 is provided, a cover block 110 is provided on one joint surface of the valve block 73 located at the end, and a spring force adjusting mechanism 111 for adjusting the pushing force of the ball 103 on the cover block 110. A directional control valve device in which the through hole 104 is connected to one safety valve 105.

【0006】[0006]

【作 用】[Work]

複数の弁ブロック30を前後面40,41相互を重ね合せて連結することで、 各弁ブロック30の第1・第2圧力検出ポート100,101が透孔104より 安全弁105に連通し、かつ低圧側の圧力検出ポート1002は101には高圧 油が流入しないから、複数の方向制御弁における最も高いアクチュエータポート の圧力を1つの安全弁に導くことができ、方向制御弁装置に安全弁を1つ取付け れば良く、安全弁の数が減少してコストが安くなるばかりか、全体がコンパクト になって狭いスペースに取付けできし、端部の特定方向制御弁に接続したアクチ ュエータの最高作動力をバネ調整機構で調整できる。 By connecting the plurality of valve blocks 30 by overlapping the front and rear surfaces 40 and 41 with each other, the first and second pressure detection ports 100 and 101 of each valve block 30 communicate with the safety valve 105 through the through hole 104, and the low pressure. Since the high-pressure oil does not flow into the pressure detection port 1002 on the side 101, the pressure of the highest actuator port of a plurality of directional control valves can be guided to one safety valve, and one safety valve is attached to the directional control valve device. Not only does this reduce the number of safety valves and lower costs, but the overall size is compact and can be installed in a narrow space, and the maximum actuating force of the actuator connected to the directional control valve at the end can be adjusted by the spring adjustment mechanism. Can be adjusted with.

【0007】[0007]

【実 施 例】【Example】

図2は複数の方向制御弁を同時操作して各アクチュエータに1つの油圧ポンプ の吐出圧油を所定の分配比で供給できるようにした圧油供給装置の回路図であり 、油圧ポンプ20の吐出路21に複数の方向制御弁22を設け、この各方向制御 弁22の入口側にチェック弁部23と減圧弁部24より成る圧力補償弁25をそ れぞれ設け、複数の方向制御弁22を同時操作した時に各圧力補償弁25で圧力 補償して各アクチュエータ26に1つの油圧ポンプ20の吐出圧油を供給できる ようにしてあり、方向制御弁22と圧力補償弁25が後述する弁ブロックに設け られ、その弁ブロックを重ね合せて方向制御装置27としてある。 図3に示すように、弁ブロック30は略直方体形状となり、この弁ブロック3 0の上部寄りにスプール孔31が左右側面32,33に開口して形成され、この スプール孔31に開口した第1・第2アクチュエータポート34,35が上面3 6に開口して形成してあり、弁ブロック30の下部寄りには左側面32に開口し たチェック弁用孔37と右側面33に開口した減圧弁用孔38が同心状に形成さ れ、前記チェック弁用孔37に開口したポンプポート39が前後面40,41に 開口して形成され、前記減圧弁孔38に開口した第1、第2ポート42,43が 前後面40,41に開口して形成してあり、複数の弁ブロック30の前後面40 ,41を突き合せて連結すると各ポンプポート、第1・第2ポート39,42, 43が連通するようにしてある。 図4に示すように、前記弁ブロック30にはスプール孔31に開口した入力ポ ート44、第1・第2負荷圧検出ポート45,46、前記第1・第2アクチュエ ータポート34,35、第1、第2タンクポート47,48、第1・第2アクチ ュエータポート34,35に開口した第1・第2圧力検出ポート100,101 が形成され、その第1・第2圧力検出ポート100,101は図3のように弁ブ ロック30の前面40に形成した連通用凹部102に開口し、かつチェック弁を 構成するボール103がそれぞれ設けてあり、その連通用凹部102と後面41 に亘って透孔104が形成され、複数の弁ブロック30を前後面40,41相互 を重ね合せると図5のように、各弁ブロック30の第1・第2圧力検出ポート1 00,101が連通用凹部102と透孔104でそれぞれ連通し、かつボール1 03によって低圧側の圧力検出ポート100又は101に高圧が流入しないよう になり、透孔104には各弁ブロック30の第1・第2圧力検出ポート100, 101における最も高い圧力が導入され、その透孔104が図7のように1つの 弁ブロック30に設けた安全弁107の入口側に連通してある。 FIG. 2 is a circuit diagram of a pressure oil supply device in which a plurality of directional control valves are simultaneously operated so that the discharge pressure oil of one hydraulic pump can be supplied to each actuator at a predetermined distribution ratio. A plurality of directional control valves 22 are provided in the passage 21, and a pressure compensating valve 25 composed of a check valve portion 23 and a pressure reducing valve portion 24 is provided on the inlet side of each directional control valve 22. When the valves are simultaneously operated, the pressure compensation valve 25 compensates the pressure so as to supply the pressure oil discharged from one hydraulic pump 20 to each actuator 26. The directional control valve 22 and the pressure compensation valve 25 are provided in a valve block described later. The valve blocks are overlapped with each other to form a direction control device 27. As shown in FIG. 3, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed in the left and right side surfaces 32 and 33 near the upper portion of the valve block 30. The second actuator ports 34 and 35 are formed so as to open on the upper surface 36, and the check valve hole 37 opened on the left side surface 32 and the pressure reducing valve opened on the right side surface 33 are formed near the lower part of the valve block 30. First and second ports formed in the pressure reducing valve hole 38, and the pump port 39 opening in the check valve hole 37 is formed in the front and rear surfaces 40, 41. 42, 43 are formed to open at the front and rear surfaces 40, 41, and when the front and rear surfaces 40, 41 of the plurality of valve blocks 30 are butted and connected to each other, the respective pump ports, the first and second ports 39, 42, 43 are formed. Communicate Unishi are. As shown in FIG. 4, in the valve block 30, an input port 44 opened in a spool hole 31, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, and First and second tank ports 47 and 48, and first and second pressure detecting ports 100 and 101 opened to the first and second actuator ports 34 and 35 are formed, and the first and second pressure detecting ports 100 and 101 are formed. As shown in FIG. 3, 101 is opened to a communication recess 102 formed on the front surface 40 of the valve block 30 and is provided with a ball 103 that constitutes a check valve. The communication recess 102 and the rear surface 41 extend over the ball 103. When the through holes 104 are formed and the front and rear surfaces 40, 41 of the plurality of valve blocks 30 are overlapped with each other, the first and second pressure detection ports 100, 101 of the respective valve blocks 30 are arranged as shown in FIG. The communication recess 102 and the through hole 104 communicate with each other, and the ball 103 prevents the high pressure from flowing into the low pressure side pressure detection port 100 or 101. The highest pressure is introduced into the pressure detection ports 100 and 101, and the through hole 104 is connected to the inlet side of the safety valve 107 provided in one valve block 30 as shown in FIG.

【0008】 前記チェック弁となるボール103は弁ブロック30の後面41に形成した凹 部105に設けられたバネ106で第1・第2圧力検出ポート100,101の 開口周縁に押しつけられ、そのボール103はバネ106による押しつけ力以上 の力が作用すると第1・第2圧力検出ポート100,101の開口周縁から離れ て第1・第2圧力検出ポート100,101と連通用凹部102が連通するので 、チェック弁が開放する圧力はバネ106のバネ力と安全弁107のセット圧に よって決定され、高圧の第1又は第2圧力検出ポート100,101の圧力が前 記チェック弁を開放する圧力以上となると、チェック弁を開放してその高圧の第 1又は第2圧力検出ポート100,101が連通用凹部102に連通するが低圧 側の第1・第2圧力検出ポート100,101はボール103によって閉じられ て連通用凹部102と遮断される。 これによりアクチュエータの最高作動圧力は安全弁セット圧を高くすることによ って高くできるが、前記バネ106は小さな凹部105内に配設されるからバネ 力を強くできないし、バネ力を調整できず、アクチュエータの最高作動圧力を安 全弁セット圧より高くできないし、その最高作動圧力を調整できない。 このようであるから、複数の方向制御弁における1つの特定方向制御弁で圧油 が供給される特定アクチュエータの最高作動圧力を他の方向制御弁で圧油が供給 される他のアクチュエータより高くできないし、調整できない。 このために、図5,図6に示すように端部の弁ブロック30の前面40にカバ ーブロック110を取付け、このカバーブロック110にバネ力調整機構111 を取付けてある。 該バネ力調整機構111はカバーブロック110の孔112に嵌挿した押圧ピ ストン113をバネ114でボール103に押しつけ、このバネ114のバネ受 け115を孔112のネジ部112aにネジ合いしてロックナット116でロッ クした構造となり、ロックナット116を弛めてバネ受け115を締付けること でバネ114のバネ力を大きくすることでボール103の第1・第2圧力検出ポ ート100,101の開口周縁への押しつけ力を大きくすれば、チェック弁が開 口する圧力が高くなって端部の弁ブロック30の特定方向制御弁で圧油が供給さ れる特定アクチュエータの最高作動圧力を安全弁セット圧より高くして他のアク チュエータの最高作動圧力より高くできるし、そのバネ力を調整することで特定 アクチュエータの最高作動圧力を調整できる。 前記スプール孔31に嵌挿した主スプール49には第1・第2小径部50,5 1と連通用溝52が形成してあり、前記第1・第2負荷圧検出ポート45,46 は図3に示すように弁ブロック30の前面に開口し、かつ凹部53で連通し、主 スプール49には第2負荷圧検出ポート46と第2タンクポート48を連通・遮 断する油路54が形成され、スプール49はスプリングで各ポートを遮断し、油 路54で第2負荷圧検出ポート46と第2タンクポート48を連通する中立位置 Aに保持され、スプール49を右方に摺動すると第2小径部51で第2アクチュ エータポート35を第2タンクポート48に連通し、連通用溝52で入力ポート 44が第2負荷圧検出ポート46に連通し、第1小径部50で第1アクチュエー タポート34が第1負荷圧検出ポート45に連通し、かつ第2負荷圧検出ポート 46と第2タンクポート48が遮断する第1圧油供給位置Bとなり、スプール4 9を左方に摺動すると第1小径部50で第1アクチュエータポート34を第1タ ンクポート47に連通し、連通用溝52で入力ポート44が第1負荷圧検出ポー ト45に連通し、第2小径部51で第2アクチュエータポート35が第2負荷圧 検出ポート46に連通し、かつ第2負荷圧検出ポート46と第2タンクポート4 8が遮断する第2圧油供給位置Cとなって方向制御弁55を構成している。 前記チェック弁用孔37は油路56でポンプポート44に開口し、そのチェッ ク弁用孔37には前記ポンプポート39と入力ポート44を連通遮断する弁60 が嵌挿され、その弁60はプラグ61に設けたストッパ杆62で図示位置より左 方に摺動しないように規制されて遮断位置に保持されてチェック弁部63を構成 している。 前記減圧弁用孔38は第4ポート57と油路58で第2負荷圧検出ポート46 に連通し、この減圧弁用孔38にはスプール64が嵌挿されて第1圧力室65と 第2圧力室66を形成し、第1圧力室65は第3ポート57に連通し、第2圧力 室66は第2ポート43に連通し、前記スプール64の盲穴67に挿入したフリ ーピストン68と盲穴67底部との間にばね69が設けられてフリーピストン6 8はプラグ70に当接し、かつスプール64に一体的に設けた押杆71が透孔7 2より突出して前記弁60をストッパ杆62に当接しており、前記スプール64 には第1ポート42を盲穴67に連通する細孔73が形成されて減圧弁部74を 構成し、この減圧弁部74と前記チェック弁部63とで圧力補償弁75を構成し ている。The ball 103 serving as the check valve is pressed against the opening peripheral edges of the first and second pressure detection ports 100 and 101 by a spring 106 provided in a recess 105 formed in the rear surface 41 of the valve block 30, and the ball 103 is When a force greater than the pressing force of the spring 106 acts on 103, the first and second pressure detecting ports 100 and 101 and the communication recess 102 communicate with each other apart from the opening peripheral edge of the first and second pressure detecting ports 100 and 101. The pressure at which the check valve opens is determined by the spring force of the spring 106 and the set pressure of the safety valve 107, and the pressure at the high pressure first or second pressure detection port 100 or 101 is equal to or higher than the pressure at which the check valve is opened. Then, the check valve is opened and the high pressure first or second pressure detection port 100 or 101 communicates with the communication recess 102, but the low pressure side. The first and second pressure detection ports 100 and 101 are closed by a ball 103 to be disconnected from the communication recess 102. As a result, the maximum operating pressure of the actuator can be increased by increasing the safety valve set pressure, but since the spring 106 is arranged in the small recess 105, the spring force cannot be increased and the spring force cannot be adjusted. , The maximum operating pressure of the actuator cannot be higher than the safety valve set pressure, and the maximum operating pressure cannot be adjusted. Because of this, the maximum operating pressure of a specific actuator to which pressure oil is supplied by one specific direction control valve among multiple direction control valves cannot be made higher than other actuators to which the pressure oil is supplied by other direction control valves. However, it cannot be adjusted. For this purpose, as shown in FIGS. 5 and 6, the cover block 110 is attached to the front surface 40 of the valve block 30 at the end, and the spring force adjusting mechanism 111 is attached to the cover block 110. The spring force adjusting mechanism 111 presses the pressing piston 113 inserted into the hole 112 of the cover block 110 against the ball 103 with the spring 114, and the spring receiver 115 of this spring 114 is screwed into the screw portion 112a of the hole 112. The structure is locked by the lock nut 116, and the spring force of the spring 114 is increased by loosening the lock nut 116 and tightening the spring receiver 115, so that the first and second pressure detecting ports 100, 101 of the ball 103 are formed. If the pressing force of the check valve to the peripheral edge of the opening is increased, the pressure at which the check valve opens increases, and the pressure oil is supplied by the specific direction control valve of the valve block 30 at the end. It can be higher than the pressure and higher than the maximum working pressure of other actuators, and by adjusting the spring force of a particular actuator Maximum operating pressure can be adjusted. The main spool 49 fitted in the spool hole 31 is formed with first and second small diameter portions 50, 51 and a communication groove 52, and the first and second load pressure detection ports 45, 46 are shown in FIG. As shown in FIG. 3, an oil passage 54 that opens to the front surface of the valve block 30 and communicates with the concave portion 53, and that communicates and blocks the second load pressure detection port 46 and the second tank port 48 is formed in the main spool 49. The spool 49 is held at the neutral position A where the second load pressure detection port 46 and the second tank port 48 communicate with each other by the oil passage 54 by shutting off each port with a spring, and when the spool 49 slides to the right, The second small diameter portion 51 connects the second actuator port 35 to the second tank port 48, the communication groove 52 connects the input port 44 to the second load pressure detection port 46, and the first small diameter portion 50 connects the first actuator. Port 34 The first pressure oil supply position B is in communication with the first load pressure detection port 45, and the second load pressure detection port 46 and the second tank port 48 are shut off. When the spool 49 is slid to the left, the first small diameter portion is reached. 50 connects the first actuator port 34 to the first tank port 47, the communication groove 52 connects the input port 44 to the first load pressure detection port 45, and the second small diameter portion 51 connects the second actuator port 35. The directional control valve 55 is configured as a second pressure oil supply position C that communicates with the second load pressure detection port 46 and that shuts off the second load pressure detection port 46 and the second tank port 48. The check valve hole 37 is opened to the pump port 44 by the oil passage 56, and the check valve hole 37 is fitted with a valve 60 that cuts off the communication between the pump port 39 and the input port 44. A stopper rod 62 provided on the plug 61 regulates the stopper valve 62 so that it does not slide to the left from the illustrated position and is held at the shutoff position to form a check valve portion 63. The pressure reducing valve hole 38 communicates with the second load pressure detecting port 46 through the fourth port 57 and the oil passage 58, and the spool 64 is fitted into the pressure reducing valve hole 38 to connect the first pressure chamber 65 and the second pressure chamber 65. A pressure chamber 66 is formed, the first pressure chamber 65 communicates with the third port 57, the second pressure chamber 66 communicates with the second port 43, and the free piston 68 inserted in the blind hole 67 of the spool 64 and a blind piston 68. A spring 69 is provided between the free piston 68 and the bottom of the hole 67 so that the free piston 68 abuts on the plug 70, and a push rod 71 integrally provided on the spool 64 projects from the through hole 72 so that the valve 60 is stopped by the stopper rod. 62, and the spool 64 is formed with a fine hole 73 for communicating the first port 42 with the blind hole 67 to form a pressure reducing valve portion 74. The pressure reducing valve portion 74 and the check valve portion 63 are connected to each other. Pressure compensating valve 75.

【0009】 以上の様であるから、複数の弁ブロック30を重ね合せて連結することで、 1つの安全弁に最も高いアクチュエータポートの圧力が導入されるから、複数の 方向制御弁を備えた方向制御弁装置において安全弁を1つとすることができし、 特定の方向制御弁によるアクチュエータの最高作動圧力を安全弁セット圧より高 くして他の方向制御弁によるアクチュエータの最高作動圧力よりも高くできるし 、その最高作動圧力を調整できる。 また複数の弁ブロック30を前後面40,41相互を重ね合せて連結すれば、 各弁ブロック30のポンプポート、第1・第2ポート39,42,43が連通し 、かつ凹部53が隣接する弁ブロック30の後面41で閉塞されて第1・第2負 荷圧検出ポート45,46が連通するから、図7に示すように油圧ポンプ80の 吐出路81をポンプポート39、第1ポート42に連通し、第2ポート43に負 荷圧検出路82を接続すれば図8に示すように図2と同様の油圧回路を構成でき る。 図8において、83は油圧ポンプ80の吐出流量を制御する斜板、84はサー ボシリンダ、85はポンプ調整用方向制御弁、86はタンク、87はバネである 。As described above, since the highest actuator port pressure is introduced into one safety valve by overlapping and connecting a plurality of valve blocks 30, the directional control with a plurality of directional control valves is provided. In the valve device, one safety valve can be used, and the maximum working pressure of the actuator by a specific directional control valve can be made higher than the safety valve set pressure and higher than the maximum working pressure of the actuator by another directional control valve. Maximum working pressure can be adjusted. If a plurality of valve blocks 30 are connected by overlapping the front and rear surfaces 40 and 41, the pump ports of the valve blocks 30 communicate with the first and second ports 39, 42 and 43, and the recess 53 is adjacent. Since the first and second load pressure detection ports 45 and 46 are closed by being blocked by the rear surface 41 of the valve block 30, the discharge passage 81 of the hydraulic pump 80 is connected to the pump port 39 and the first port 42 as shown in FIG. If the load pressure detection path 82 is connected to the second port 43, a hydraulic circuit similar to that of FIG. 2 can be constructed as shown in FIG. In FIG. 8, 83 is a swash plate that controls the discharge flow rate of the hydraulic pump 80, 84 is a servo cylinder, 85 is a directional control valve for pump adjustment, 86 is a tank, and 87 is a spring.

【0010】 次に前述の油圧回路の作動を図8に基づいて説明する。 方向制御弁55が中立位置Aのとき。 油圧ポンプ80によってタンク86から吸上げられた油は、吐出路81を通っ てチェック弁部63の開く方向の圧力室aに案内される。この時、減圧弁部74 の圧力室65,66は、ともにタンク86に通じているので、この圧力室65, 66の圧力はともにゼロで、よって減圧弁部74は、弱いばね69によって押さ れ杆体71がチェック弁部63に当接しているだけである。 一方、ポンプ吐出圧は、ポンプ調整用方向制御弁85のばね87によって負荷 圧検出路82の圧力との差圧がある一定に保たれる。いま、この差圧を20kg /cm2 とすると負荷圧検出路82の圧力はゼロなので、ポンプ吐出圧は20k g/cm2 まで上昇し、同時にチェック弁部63の圧力室aにポンプ吐出圧が流 入して方向制御弁55の入口圧(チェック弁部63の出口圧)がポンプ吐出圧と 等しくなるまでストロークし、等しくなれば、弱いばね69によってレシートす る。 減圧弁部74は、ストロークエンド時のみ、ポンプ吐出路81と圧力室66を 連通させる一方、チェック弁部63は、ストロークエンドに達する前に、ポンプ 吐出路81と出口側を連通させるので、方向制御弁55が中立位置Aのときは、 ポンプ吐出路81と圧力室66が連通することはなく、圧力室65の圧力はゼロ のままである。Next, the operation of the above hydraulic circuit will be described with reference to FIG. When the directional control valve 55 is in the neutral position A. The oil sucked from the tank 86 by the hydraulic pump 80 is guided through the discharge passage 81 to the pressure chamber a in the opening direction of the check valve portion 63. At this time, since the pressure chambers 65 and 66 of the pressure reducing valve portion 74 both communicate with the tank 86, the pressures of the pressure chambers 65 and 66 are both zero, and therefore the pressure reducing valve portion 74 is pressed by the weak spring 69. The rod 71 is only in contact with the check valve portion 63. On the other hand, the pump discharge pressure is kept constant by the spring 87 of the pump adjusting directional control valve 85, which is a differential pressure from the pressure of the load pressure detecting path 82. Now, assuming that this differential pressure is 20 kg / cm 2 , the pressure in the load pressure detection path 82 is zero, so the pump discharge pressure rises to 20 kg / cm 2, and at the same time, the pump discharge pressure enters the pressure chamber a of the check valve 63. After flowing in, the stroke is made until the inlet pressure of the directional control valve 55 (the outlet pressure of the check valve portion 63) becomes equal to the pump discharge pressure, and when it becomes equal, a receipt is made by the weak spring 69. The pressure reducing valve unit 74 connects the pump discharge passage 81 and the pressure chamber 66 only at the end of the stroke, while the check valve unit 63 connects the pump discharge passage 81 and the outlet side before reaching the stroke end. When the control valve 55 is in the neutral position A, the pump discharge passage 81 and the pressure chamber 66 do not communicate with each other, and the pressure in the pressure chamber 65 remains zero.

【0011】 方向制御弁55のいずれか一方のみ第1圧油供給位置Bにストロークさせる とき。 いま、左側の方向制御弁55を第1圧油供給位置Bにストロークさせ、右側の 方向制御弁55は、中立位置Aとする。 方向制御弁55をストロークさせ入力ポート44と第1アクチュエータポート 34を接続させ、同時に、第2アクチュエータポート35と第2タンクポート4 8を接続させる。この時第1アクチュエータポート34とアクチュエータ88を 接続する導管89内の圧力(負荷圧)がポンプ吐出圧(20kg/cm2 )より 大きいときはチェック弁部63が圧力室bの圧力でレシートするため、アクチュ エータ88の自然降下を防止することができる。 アクチュエータ88の導管89の圧力、すなわち負荷圧が通路58より減圧弁 部74の一方の圧力室65に導かれる。他方の圧力室66の圧力はゼロであるた め、減圧弁部74は、チェック弁部63から解離する方向にストロークエンドま でストロークし、減圧弁部74の絞りを介して、ポンプ吐出路81と負荷圧検出 路82が連通する。前記導管89内の圧力(負荷圧)がポンプ吐出圧(=20k g/cm2 )より大きいときは、チェック弁部63が圧力室bの圧力で閉じ、そ の圧力が、減圧弁部74の一方の圧力室65に導かれるため、他方の圧力室66 とポンプ吐出路81が連通しても、減圧弁部74はストロークしたままである。 一方、導管89内の圧力(負荷圧)がポンプ吐出圧(=20kg/cm2 )より 小さいときは、その負荷圧が減圧弁部74の一方の圧力室65に導かれ、減圧弁 部74が一方の圧力室65の圧力でストロークするが、他方の圧力室66の圧力 が一方の圧力室65の圧力(すなわち負荷圧)まで上昇すると、弱いばね69に よって閉じチェック弁部63に当接する。 いずれの場合でも、減圧弁部74は、一方の圧力室65内の圧力と他方の圧力 室66内の圧力が等しくなるまで、ポンプ吐出路81と圧力室66を連通させ、 両圧力室65,66内の圧力が等しくなれば弱いばね69によって閉じチェック 弁部63に当接する。結果として負荷圧検出路82内の圧力は、負荷圧と等しく なり、ポンプ吐出圧は、ポンプ調整用方向制御弁85によって、ある差圧(ここ では20kg/cm2 )分だけ、負荷圧検出路82内の圧力より高い圧力に制御 される。このポンプ吐出圧は、チェック弁部63を介して、入力ポート44に導 かれているので、すなわち、方向制御弁55の入口圧と出口圧(=負荷圧)の間 には、差圧(=20kg/cm2 )が保たれることになる。よって、方向制御弁 55のストロークに伴なう入口側と出口側の間の絞りの開口面積の変化によって のみ、アクチュエータ88へ供給される流量が制御される。 方向制御弁55をストロークさせる際、アクチュエータ88の導管89あるい は90と負荷圧導入用の第2油路53が接続され、一方、第2油路53は、減圧 弁部74の一方の圧力室65と接続されているが、減圧弁部74において負荷圧 は、パイロット圧力(減圧弁部のセット圧力)としてのみ使われるので、その圧 力がぬけることはなく、すなわち、方向制御弁55をストロークさせた際、負荷 圧がぬけることによるアクチュエータ88の自然降下はない。When only one of the directional control valves 55 is stroked to the first pressure oil supply position B. Now, the left direction control valve 55 is stroked to the first pressure oil supply position B, and the right direction control valve 55 is set to the neutral position A. The direction control valve 55 is stroked to connect the input port 44 and the first actuator port 34, and at the same time, connect the second actuator port 35 and the second tank port 48. At this time, when the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is higher than the pump discharge pressure (20 kg / cm 2 ), the check valve portion 63 receives the pressure in the pressure chamber b. It is possible to prevent the actuator 88 from naturally descending. The pressure in the conduit 89 of the actuator 88, that is, the load pressure, is introduced from the passage 58 into the pressure chamber 65 of the pressure reducing valve portion 74. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve portion 74 strokes in the direction of disengagement from the check valve portion 63 to the stroke end, and through the throttle of the pressure reducing valve portion 74, the pump discharge passage 81. And the load pressure detection path 82 communicate with each other. When the pressure (load pressure) in the conduit 89 is higher than the pump discharge pressure (= 20 kg / cm 2 ), the check valve portion 63 is closed by the pressure of the pressure chamber b, and the pressure is reduced by the pressure reducing valve portion 74. Since the pressure reducing valve portion 74 is guided to the one pressure chamber 65, even if the other pressure chamber 66 communicates with the pump discharge passage 81, the pressure reducing valve portion 74 remains stroked. On the other hand, when the pressure (load pressure) in the conduit 89 is smaller than the pump discharge pressure (= 20 kg / cm 2 ), the load pressure is guided to one pressure chamber 65 of the pressure reducing valve portion 74, and the pressure reducing valve portion 74 is Although the stroke is made by the pressure of one pressure chamber 65, when the pressure of the other pressure chamber 66 rises to the pressure of one pressure chamber 65 (that is, the load pressure), the weak spring 69 closes the check valve portion 63. In any case, the pressure reducing valve unit 74 keeps the pump discharge passage 81 and the pressure chamber 66 in communication until the pressure in the one pressure chamber 65 and the pressure in the other pressure chamber 66 become equal to each other. If the pressures in 66 become equal, the weak spring 69 makes contact with the closing check valve 63. As a result, the pressure in the load pressure detection path 82 becomes equal to the load pressure, and the pump discharge pressure is adjusted by the pump adjustment directional control valve 85 by a certain differential pressure (here, 20 kg / cm 2 ). The pressure is controlled to be higher than the pressure in 82. This pump discharge pressure is guided to the input port 44 via the check valve portion 63, that is, between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 55, the differential pressure (= 20 kg / cm 2 ) will be maintained. Therefore, the flow rate supplied to the actuator 88 is controlled only by the change in the opening area of the throttle between the inlet side and the outlet side due to the stroke of the directional control valve 55. When the directional control valve 55 is stroked, the conduit 89 or 90 of the actuator 88 is connected to the second oil passage 53 for introducing load pressure, while the second oil passage 53 is connected to the pressure of one of the pressure reducing valve portions 74. Although it is connected to the chamber 65, the load pressure in the pressure reducing valve portion 74 is used only as pilot pressure (set pressure of the pressure reducing valve portion), so the pressure is not lost, that is, the directional control valve 55 is When the stroke is made, the actuator 88 does not naturally descend due to the load pressure being removed.

【0012】 前記負荷圧検出路82はもう一方の方向制御弁55に配設されている圧力補償 弁75の減圧弁部74の他方の圧力室66にも接続されているが、減圧弁部74 の一方の圧力室65は、方向制御弁55の中立位置Aによってタンク86と接続 しているため、負荷圧はゼロで、よって圧力室66内の圧力によって減圧弁部7 4は、チェック弁部63を閉じる方向に付勢する。 一方、チェック弁部74を開く方向の圧力室aには、ポンプ吐出路81よりポ ンプ吐出圧が導かれるため、全体として、ポンプ吐出圧と負荷圧検出路82内の 圧力の差圧分(=20kg/cm2 )によってチェック弁部63及び減圧弁部7 4をチェック弁部63の開く方向にストロークさせるが、わずかにストロークし 入力ポート44の圧力がその差圧(=20kg/cm2 )になれば、弱いばね6 9によってレシートし、結果として、ストロークエンドまで減圧弁部74がスト ロークすることはなく、方向制御弁55側の油圧制御には、何ら影響することは ない。The load pressure detection path 82 is also connected to the other pressure chamber 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 disposed in the other directional control valve 55, but the pressure reducing valve portion 74 Since one of the pressure chambers 65 is connected to the tank 86 by the neutral position A of the direction control valve 55, the load pressure is zero, and thus the pressure in the pressure chamber 66 causes the pressure reducing valve portion 74 to change to the check valve portion. 63 is urged in the closing direction. On the other hand, since the pump discharge pressure is introduced from the pump discharge path 81 to the pressure chamber a in the direction of opening the check valve portion 74, the difference between the pump discharge pressure and the pressure in the load pressure detection path 82 is () as a whole. = 20 kg / cm 2 ), the check valve portion 63 and the pressure reducing valve portion 74 are stroked in the opening direction of the check valve portion 63, but they are slightly stroked, and the pressure at the input port 44 is the differential pressure (= 20 kg / cm 2 ). In this case, the weak spring 69 causes a receipt, and as a result, the pressure reducing valve portion 74 does not stroke to the stroke end, and there is no influence on the hydraulic control of the directional control valve 55 side.

【0013】 方向制御弁55のいずれも第1圧油供給位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計が油圧ポンプ20の最 大吐出流量以下のとき。 いま、方向制御弁55をともに第1圧油供給位置Bにストロークさせ、各入力 ポート44と各導管89と第1・第2負荷圧検出ポート45,46をそれぞれ接 続させたとする。 一方の減圧弁部74は、圧力室66内の圧力が一方の圧力室65内の圧力に等 しくなるまで、また他方の減圧弁部74は、圧力室66内の圧力が、一方の圧力 室65内の圧力に等しくなるまで、それぞれストロークエンドまでストロークし たままである。いま、二つのアクチュエータ88,88の負荷圧のうち、左側の アクチュエータ88の負荷圧がより大きいとする。仮に、左側のアクチュエータ 88の負荷圧を100(kg/cm2 )、右側のアクチュエータ88の負荷圧を 10(kg/cm2 )とする。負荷圧検出路82は、絞り91を介してタンク8 6と接続されているので、方向制御弁ストローク前は負荷圧検出路82内の圧力 はゼロである。よって、各減圧弁部74は負荷圧検出用の第1油路53内の圧力 によってともにストロークし、ポンプ吐出圧が圧力検出導管34内の圧力と連通 させる。 負荷圧検出路82内の圧力が低圧側である右側のアクチュエータ88の導管9 0内の圧力(10kg/cm2 )まで上昇すると、まず、右方の圧力補償弁75 の減圧弁部74が閉じる。左方の圧力補償弁90の減圧弁部74はストロークし たままであり、負荷圧検出路82内の圧力はポンプ吐出圧(20kg/cm2 ) と等しくなるまで上昇する。このとき高圧側である左側のアクチュエータ88の 方向制御弁55の入力ポート44の圧力は100(kg/cm2 )であり、圧力 補償弁75のチェック弁部63は閉じていて、減圧弁部74とは解離している。 一方圧力補償弁75の減圧弁部74は、二つの圧力室65と66内の圧力の差( 20−10=10kg/cm2 )でチェック弁部63を閉じる方向に付勢する。 一方、チェック弁部63の開く方向の圧力室a内の圧力(ポンプ吐出圧)は20 (kg/cm2 )であるため、結果として方向制御弁55の入力ポート44の圧 力が10(kg/cm2 )になるまでチェック弁部63が開いた後、弱いばね6 9によってレシートする。 ポンプ調整用方向制御弁85によって、ある差圧(20kg/cm2 )分だけ 、負荷圧検出路82内の圧力(20kg/cm2 )より高い圧力にポンプ吐出圧 が制御される(40kg/cm2 )。このときも高圧側の圧力補償弁75のチェ ック弁部63は閉じたままで減圧弁部74はストロークしたままで負荷圧検出路 82内の圧力は40(kg/cm2 )となり、一方、低圧側の圧力補償弁75の 減圧弁部74は、負荷圧検出路82と負荷圧導入用の第1油路53内の圧力差( =30kg/cm2 )でチェック弁部63を閉じる方向に付勢し、結果として方 向制御弁55の入力ポート44の圧力は10kg/cm2 のままである。 このようにして、負荷圧検出路82内の圧力とポンプ吐出圧が上昇し続け、や がてポンプ吐出圧が高圧側のアクチュエータ88の負荷圧(100kg/cm2 )と等しくなると、高圧側の圧力補償弁75の減圧弁部63の二つの圧力室65 と66内の圧力はともに100kg/cm2 となり、弱いばね69によって、閉 じてチェック弁部63に当接する。このとき低圧側の圧力補償弁75の減圧弁部 74は負荷圧検出路82と負荷圧導入用の第1油路53内の圧力差(100−1 0=90kg/cm2 )でチェック弁部63を閉じる方向に付勢し、結果として 低圧側の方向制御弁55の入力ポート44の圧力は10kg/cm2 のままであ る。 再び、ポンプ調整用方向制御弁85によって、ポンプ吐出圧が120(kg/ cm2 )に制御される。 このとき高圧側の圧力補償弁75の減圧弁部63は、弱いばね69によってチ ェック弁部63に当接しているだけであり、チェック弁部63の二つの圧力室a とbの圧力差によって、ここで初めてチェック弁部63が開き、ポンプ吐出圧( 120kg/cm2 )が方向制御弁55の入力ポート44に導かれる。一方、低 圧側の圧力補償弁75の減圧弁部74は負荷圧検出路82と第1・第2負荷圧検 出ポート45,46内の圧力差(=90kg/cm2 )分でチェック弁部63を 閉じる方向に付勢し続けるが、チェック弁部63の開く方向の圧力室a内の圧力 が120(Kg/cm2 )になったので方向制御弁55の入力ポート44の圧力 が30(Kg/cm2 )(120−90)となる状態で、チェック弁部63及び 減圧弁部74が圧力バランスする。すなわち、チェック弁部63及び減圧弁部7 4はわずかにストロークし、チェック弁部63において、120kg/cm2 か ら30kg/cm2 になるように絞っている状態となる。 ここで初めて、この油圧制御系はつり合い、高圧側の方向制御弁55の入力ポ ート44の圧力が120kg/cm2 、低圧側の方向制御弁55の入力ポート4 4の圧力が30kg/cm2 となり、すなわち、二つのの方向制御弁55,55 の入口圧と出口圧(負荷圧)の差は、ともに20kg/cm2 に保たれることに より、二つの方向制御弁55,55はともに、ストローク分だけで、アクチュエ ータ88,88に供給する流量を制御することができるようになる。When any of the directional control valves 55 is stroked to the first pressure oil supply position B. -When the total flow rate required for each actuator 88 is less than or equal to the maximum discharge flow rate of the hydraulic pump 20. Now, it is assumed that the directional control valve 55 is both stroked to the first pressure oil supply position B, and the respective input ports 44, the respective conduits 89, and the first and second load pressure detection ports 45, 46 are respectively connected. One of the pressure reducing valve sections 74 has the pressure in the pressure chamber 66 equal to the pressure in the one pressure chamber 65, and the other pressure reducing valve section 74 has the pressure in the pressure chamber 66 equal to that of the one pressure chamber. It continues to stroke to the end of each stroke until it becomes equal to the pressure in 65. Now, assume that the load pressure of the left actuator 88 is larger than the load pressure of the two actuators 88, 88. It is assumed that the load pressure of the left actuator 88 is 100 (kg / cm 2 ) and the load pressure of the right actuator 88 is 10 (kg / cm 2 ). Since the load pressure detection path 82 is connected to the tank 86 via the throttle 91, the pressure in the load pressure detection path 82 is zero before the stroke of the directional control valve. Therefore, the pressure reducing valve portions 74 stroke together by the pressure in the first oil passage 53 for detecting the load pressure, and the pump discharge pressure communicates with the pressure in the pressure detecting conduit 34. When the pressure in the load pressure detection path 82 rises to the pressure (10 kg / cm 2 ) in the conduit 90 of the actuator 88 on the right side on the low pressure side, first, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the right side closes. .. The pressure reducing valve portion 74 of the pressure compensating valve 90 on the left side remains stroked, and the pressure in the load pressure detecting path 82 rises until it becomes equal to the pump discharge pressure (20 kg / cm 2 ). At this time, the pressure of the input port 44 of the directional control valve 55 of the left side actuator 88 which is the high pressure side is 100 (kg / cm 2 ), the check valve portion 63 of the pressure compensation valve 75 is closed, and the pressure reducing valve portion 74 is closed. Is dissociated from. On the other hand, the pressure reducing valve portion 74 of the pressure compensating valve 75 urges the check valve portion 63 in the closing direction by the difference in pressure between the two pressure chambers 65 and 66 (20-10 = 10 kg / cm 2 ). On the other hand, the pressure (pump discharge pressure) in the pressure chamber a in the opening direction of the check valve portion 63 is 20 (kg / cm 2 ), and as a result, the pressure of the input port 44 of the directional control valve 55 is 10 (kg / Cm 2 ), the check valve portion 63 is opened, and then a receipt is made by the weak spring 69. By a pump adjusting direction control valve 85, there differential pressure (20kg / cm 2) amount corresponding, pump discharge pressure from the high pressure pressure (20kg / cm 2) of the load pressure Detchi 82 is controlled (40 kg / cm 2 ). Also at this time, the pressure in the load pressure detection path 82 becomes 40 (kg / cm 2 ) with the check valve portion 63 of the high-pressure side pressure compensating valve 75 kept closed and the pressure reducing valve portion 74 still having a stroke. The pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side is configured to close the check valve portion 63 due to the pressure difference (= 30 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. It is energized so that the pressure at the input port 44 of the directional control valve 55 remains at 10 kg / cm 2 . In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and when the pump discharge pressure eventually becomes equal to the load pressure (100 kg / cm 2 ) of the high pressure side actuator 88, the high pressure side The pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 63 of the pressure compensating valve 75 are both 100 kg / cm 2 , and are closed by the weak spring 69 to contact the check valve portion 63. At this time, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side has a check valve portion due to a pressure difference (100-10 = 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. 63 is urged in the closing direction, and as a result, the pressure at the input port 44 of the directional control valve 55 on the low pressure side remains 10 kg / cm 2 . Again, the pump adjusting directional control valve 85 controls the pump discharge pressure to 120 (kg / cm 2 ). At this time, the pressure reducing valve portion 63 of the pressure compensating valve 75 on the high pressure side is only in contact with the check valve portion 63 by the weak spring 69, and due to the pressure difference between the two pressure chambers a and b of the check valve portion 63. For the first time, the check valve portion 63 is opened and the pump discharge pressure (120 kg / cm 2 ) is introduced to the input port 44 of the directional control valve 55. On the other hand, the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side is a check valve portion due to the pressure difference (= 90 kg / cm 2 ) between the load pressure detecting path 82 and the first and second load pressure detecting ports 45 and 46. Although the pressure in the pressure chamber a in the opening direction of the check valve portion 63 becomes 120 (Kg / cm 2 ), the pressure of the input port 44 of the directional control valve 55 becomes 30 ( Kg / cm 2 ) (120-90), the check valve portion 63 and the pressure reducing valve portion 74 balance the pressure. That is, the check valve 63 and the pressure reducing valve 7 4 slightly stroke, a state of the check valve unit 63, and squeezed so that a 120 kg / cm 2 or al 30kg / cm 2. For the first time, this hydraulic control system is balanced so that the pressure of the input port 44 of the high-pressure side directional control valve 55 is 120 kg / cm 2 , and the pressure of the input port 44 of the low-pressure side directional control valve 55 is 30 kg / cm 2. 2 , that is, the difference between the inlet pressure and the outlet pressure (load pressure) of the two directional control valves 55, 55 is maintained at 20 kg / cm 2 , so that the two directional control valves 55, 55 are In both cases, the flow rate supplied to the actuators 88, 88 can be controlled only by the stroke amount.

【0014】 −各アクチュエータ88,88に必要とされる流量の合計が油圧ポンプ8 0の最大吐出流量以上のとき。 いま、アクチュエータ88,88の負荷圧および必要流量を左側のアクチュエ ータ88が100kg/cm2 、501/min、右側のアクチュエータ88が 10kg/cm2 、501/minとする。油圧ポンプ80の最大吐出流量が1 001/min以上のときは、前述の通り、方向制御弁55,55の入口圧と出 口圧の差が一定に保たれる(=20kg/cm2 )ため、ストロークによって流 量制御ができ、501/minずつ流量分配することはできる。 次に、油圧ポンプ80の最大吐出量が701/minになったとする。二つの 方向制御弁55,55の入口圧は前述の通り120kg/cm2 、30kg/c m2 であるので、高圧側の方向制御弁55への流量が501/minから201 /minに減る。低圧側の方向制御弁55への流量は、501/minのままで ある。二つの方向制御弁55,55のストローク(開口面積)を変えないとする と、高圧側の方向制御弁55の入口圧と出口圧の差圧が流量が減った分、20k g/cm2 から下がる。いま、差圧が14kg/cm2 、すなわち、入口圧が、 120kg/cm2 から114(100+14)kg/cm2 に下がったとする 。この時圧力補償弁75の減圧弁部74の二つの圧力室65,66の圧力は、と もに100kg/cm2 のままであるから、減圧弁部74は弱いばね69によっ てチェック弁部63に当接しているだけであり、チェック弁部63の閉じる方向 の圧力室b内の圧力が120kg/cm2 から114kg/cm2 に減少すれば 、チェック弁部63が開いたまま(ストロークエンド)で、チェック弁部63の 開く方向の圧力室a内の圧力、すなわち、ポンプ吐出圧が120kg/cm2 か ら114kg/cm2 に減少する。この時(ポンプ吐出流量不足時)にはポンプ 吐出圧は、ポンプ調整用方向制御弁85の制御によらなくなる。 一方、低圧側の圧力補償弁75の減圧弁部74の二つの圧力室65と66は、 100kg/cm2 、10kg/cm2 のままで、その差圧90kg/cm2 で チェック弁部63の閉じる方向に付勢し続ける。一方、チェック弁部63の開く 方向の圧力室a内の圧力、すなわちポンプ吐出圧が114kg/cm2 に減少し たので、チェック弁部63の閉じる方向の圧力室b内の圧力が30kg/cm2 から24kg/cm2 に減少した状態でチェック弁部63及び減圧弁部74が圧 力バランスする。よって、低圧側の方向制御弁55の入口圧と出口圧の差圧は2 0kg/cm2 から14kg/cm2 (24−10)に減少する。方向制御弁5 5のこの差圧の減少により低圧側のアクチュエータ88への供給流量は501/ minから減少し、その分高圧側のアクチュエータ88への供給流量が201/ minから増える。 すなわち、方向制御弁55および55の入口圧と出口圧の差圧が等しく、かつ 、二つのアクチュエータ88,88への供給量がともに351/minずつに分 配される状態で、この油圧制御系がつり合う。-When the total flow rate required for each actuator 88, 88 is greater than or equal to the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and the required flow rate of the actuator 88, 88 left actuator 88 is 100kg / cm 2, 501 / min , the right actuator 88 and 10kg / cm 2, 501 / min . When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, the difference between the inlet pressure and the outlet pressure of the directional control valves 55, 55 is kept constant (= 20 kg / cm 2 ) as described above. The flow rate can be controlled by the stroke, and the flow rate can be distributed by 501 / min. Next, assume that the maximum discharge amount of the hydraulic pump 80 becomes 701 / min. Since the inlet pressure of the two directional control valves 55, 55 are described above 120kg / cm 2, 30kg / c m 2, flow to the direction control valve 55 of the high-pressure side is reduced to 201 / min from 501 / min. The flow rate to the directional control valve 55 on the low pressure side remains 501 / min. Assuming that the stroke (opening area) of the two directional control valves 55, 55 is not changed, the pressure difference between the inlet pressure and the outlet pressure of the directional control valve 55 on the high pressure side is reduced by 20 kg / cm 2 due to the decrease in the flow rate. Go down. Now, it is assumed that the differential pressure is 14 kg / cm 2 , that is, the inlet pressure is reduced from 120 kg / cm 2 to 114 (100 + 14) kg / cm 2 . At this time, the pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 remain at 100 kg / cm 2 , and therefore the pressure reducing valve portion 74 is checked by the weak spring 69. If the pressure in the pressure chamber b in the closing direction of the check valve portion 63 decreases from 120 kg / cm 2 to 114 kg / cm 2 , the check valve portion 63 remains open (stroke end). ), the pressure in the direction of the pressure chamber a to open the check valve unit 63, i.e., the pump discharge pressure is reduced to 120 kg / cm 2 or et 114 kg / cm 2. At this time (when the pump discharge flow rate is insufficient), the pump discharge pressure is not controlled by the pump adjustment directional control valve 85. On the other hand, the two pressure chambers 65 and 66 of the pressure reducing valve portion 74 of the pressure compensating valve 75 on the low pressure side remain 100 kg / cm 2 and 10 kg / cm 2 , and the differential pressure of 90 kg / cm 2 causes the check valve portion 63 of Continue to push in the closing direction. On the other hand, since the pressure in the pressure chamber a in the opening direction of the check valve portion 63, that is, the pump discharge pressure is reduced to 114 kg / cm 2 , the pressure in the pressure chamber b in the closing direction of the check valve portion 63 is 30 kg / cm 2. With the pressure reduced from 2 to 24 kg / cm 2 , the check valve portion 63 and the pressure reducing valve portion 74 balance the pressure. Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 55 on the low pressure side is reduced from 20 kg / cm 2 to 14 kg / cm 2 (24-10). Due to the decrease in the differential pressure of the directional control valve 55, the supply flow rate to the low-pressure side actuator 88 decreases from 501 / min, and the supply flow rate to the high-pressure side actuator 88 increases from 201 / min. That is, in the state where the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 55 and 55 is equal, and the supply amounts to the two actuators 88 and 88 are both divided into 351 / min, the hydraulic control system is controlled. Balance.

【0015】 一つの油圧ポンプ80によって負荷されるアクチュエータが3つ以上のとき 。 アクチュエータが3つ以上のときも、方向制御弁と油圧ポンプの間に、同じチ ェック弁部63及び減圧弁部74を備えた圧力補償弁75を配設し、各減圧弁部 の閉じる方向の圧力差を負荷圧検出路82によってすべて連通するだけで、アク チュエータが3つ以上のときも前述の作動原理による作動が実現される。 以上の実施例では油圧ポンプ80を可変容量型としたが、油圧ポンプ80を固 定容量型としても良く、この場合には油圧ポンプ80のポンプ吐出路81にアン ロード弁を設ければ良い。When the number of actuators loaded by one hydraulic pump 80 is three or more. Even when there are three or more actuators, a pressure compensating valve 75 having the same check valve portion 63 and pressure reducing valve portion 74 is disposed between the directional control valve and the hydraulic pump, and the pressure compensating valve 75 is arranged in the closing direction of each pressure reducing valve portion. Even if the number of actuators is three or more, the operation according to the above-described operation principle can be realized by simply communicating all the pressure differences through the load pressure detection path 82. Although the hydraulic pump 80 is a variable displacement type in the above embodiments, the hydraulic pump 80 may be a fixed displacement type, and in this case, an unload valve may be provided in the pump discharge passage 81 of the hydraulic pump 80.

【0016】[0016]

【考案の効果】[Effect of the device]

複数の弁ブロック30を前後面40,41相互を重ね合せて連結することで、 各弁ブロック30の第1・第2圧力検出ポート100,101が透孔104より 安全弁105に連通し、かつ低圧側の圧力検出ポート100または101には高 圧油が流入しないから、複数の方向制御弁を備えた方向制御弁装置に安全弁を1 つ取付ければ良く、安全弁の数が減少してコストが安くなるばかりか、全体がコ ンパクトになって狭いスペースに取付けできし、特定の方向制御弁に接続したア クチュエータの最高作動力を安全弁セット圧より高くして他の方向制御弁に接続 したアクチュエータの最高作動圧力より高くできると共に、その最高作動圧力を 任意に調整できる。 By connecting the plurality of valve blocks 30 by overlapping the front and rear surfaces 40 and 41 with each other, the first and second pressure detection ports 100 and 101 of each valve block 30 communicate with the safety valve 105 through the through hole 104, and the low pressure. Since high pressure oil does not flow into the pressure detection port 100 or 101 on the side, it is sufficient to attach one safety valve to a directional control valve device equipped with multiple directional control valves, reducing the number of safety valves and reducing costs. Not only that, but the whole becomes compact and can be installed in a narrow space, and the maximum operating force of the actuator connected to a specific directional control valve is made higher than the safety valve set pressure, and that of an actuator connected to another directional control valve. It can be higher than the maximum working pressure and the maximum working pressure can be adjusted arbitrarily.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の方向制御弁の断面図である。FIG. 1 is a sectional view of a conventional directional control valve.

【図2】圧油供給装置の回路図である。FIG. 2 is a circuit diagram of a pressure oil supply device.

【図3】本考案の実施例を示す弁ブロックの斜視図であ
る。
FIG. 3 is a perspective view of a valve block according to an embodiment of the present invention.

【図4】弁ブロックに主スプール、スプールを組み込ん
だ状態の断面図である。
FIG. 4 is a sectional view showing a state where a main spool and a spool are incorporated in a valve block.

【図5】複数の弁ブロックの接続状態を示す圧力検出ポ
ート部分の横断面図である。
FIG. 5 is a cross-sectional view of a pressure detection port portion showing a connection state of a plurality of valve blocks.

【図6】複数の弁ブロックの接続状態を示す圧力検出ポ
ート部分の縦断面図である。
FIG. 6 is a vertical sectional view of a pressure detection port portion showing a connection state of a plurality of valve blocks.

【図7】複数の弁ブロックの接続状態を示す斜視図であ
る。
FIG. 7 is a perspective view showing a connected state of a plurality of valve blocks.

【図8】その油圧回路図である。FIG. 8 is a hydraulic circuit diagram thereof.

【符号の説明】[Explanation of symbols]

30…弁ブロック、31…スプール孔、34…第1アク
チュエータポート、35…第2アクチュエータポート、
37…チェック弁用孔、38…減圧弁用孔、39…ポン
プポート、42…第1ポート、43…第2ポート、44
…入力ポート、45…第1負荷圧検出ポート、46…第
2負荷圧検出ポート、47…第1タンクポート、48…
第2タンクポート、49…主スプール、53…凹部、5
6…油孔、58…油孔、60…スプール、63…チェッ
ク弁部、64…スプール、65…第1圧力室、66…第
2圧力室、69…ばね、74…減圧弁部、75…圧力補
償弁、80…油圧ポンプ、81…ポンプ吐出路、82…
負荷圧検出路、100…第1圧力検出ポート、101…
第2圧力検出ポート、102…連通用凹部、103…ボ
ール、104…透孔、106…バネ、107…安全弁、
110…カバーブロック、111…バネ力調整機構。
30 ... Valve block, 31 ... Spool hole, 34 ... First actuator port, 35 ... Second actuator port,
37 ... Check valve hole, 38 ... Pressure reducing valve hole, 39 ... Pump port, 42 ... First port, 43 ... Second port, 44
... Input port, 45 ... First load pressure detection port, 46 ... Second load pressure detection port, 47 ... First tank port, 48 ...
Second tank port, 49 ... Main spool, 53 ... Recessed portion, 5
6 ... Oil hole, 58 ... Oil hole, 60 ... Spool, 63 ... Check valve part, 64 ... Spool, 65 ... First pressure chamber, 66 ... Second pressure chamber, 69 ... Spring, 74 ... Pressure reducing valve part, 75 ... Pressure compensation valve, 80 ... Hydraulic pump, 81 ... Pump discharge passage, 82 ...
Load pressure detection path, 100 ... First pressure detection port, 101 ...
Second pressure detection port, 102 ... Communication recess, 103 ... Ball, 104 ... Through hole, 106 ... Spring, 107 ... Safety valve,
110 ... Cover block, 111 ... Spring force adjusting mechanism.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 弁ブロック30のスプール孔31内に主
スプール49を摺動自在に嵌挿して入力ポート44を第
1・第2アクチュエータポート34,35に連通・遮断
する方向制御弁とし、 前記弁ブロック30に第1、第2アクチュエータポート
34,35に連通した第1・第2圧力検出ポート10
0,101を形成し、この第1・第2圧力検出ポート1
00,101を弁ブロック30の一方の接合面に形成し
た連通用凹部102に開口し、かつ連通用凹部102か
ら圧力検出ポートへの圧油流れを阻止するボール103
を設け、その連通用凹部102と弁ブロック30の他方
の接合面に亘って透孔104を形成し、複数の弁ブロッ
ク30を接合して各第1・第2圧力検出ポート100,
101を透孔104に連通し、隣接する弁ブロック30
間に前記ボール103を第1・第2圧力検出ポート10
0,101に押しつけるバネ106を設け、最も端部に
位置する弁ブロック30の一方の接合面にカバーブロッ
ク110を設け、このカバーブロック110に前記ボー
ル103を第1・第2圧力検出ポート100,101に
押しつけるバネ114のバネ力を調整するバネ力調整機
構111を設け、その透孔104を1つの安全弁105
に連通したことを特徴とする方向制御弁装置。
1. A directional control valve that slidably inserts a main spool 49 into a spool hole 31 of a valve block 30 to connect / disconnect an input port 44 to first / second actuator ports 34, 35. The first and second pressure detection ports 10 that communicate with the valve block 30 and the first and second actuator ports 34 and 35.
0, 101 are formed, and the first and second pressure detection ports 1
Balls 103 that open 00, 101 to a communication recess 102 formed on one joint surface of the valve block 30 and prevent the flow of pressure oil from the communication recess 102 to the pressure detection port.
Is formed, a through hole 104 is formed across the communication recess 102 and the other joint surface of the valve block 30, and a plurality of valve blocks 30 are joined to each of the first and second pressure detection ports 100,
Valve block 30 adjacent to the valve block 30
The ball 103 is installed between the first and second pressure detection ports 10
A spring 106 that presses 0, 101 is provided, a cover block 110 is provided on one joint surface of the valve block 30 located at the end, and the ball 103 is provided on the cover block 110 for the first and second pressure detection ports 100, A spring force adjusting mechanism 111 for adjusting the spring force of the spring 114 to be pressed against 101 is provided, and the through hole 104 is provided as one safety valve 105.
A directional control valve device characterized by being communicated with the.
JP10063591U 1991-11-12 1991-11-12 Direction control valve device Expired - Lifetime JP2550774Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10063591U JP2550774Y2 (en) 1991-11-12 1991-11-12 Direction control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10063591U JP2550774Y2 (en) 1991-11-12 1991-11-12 Direction control valve device

Publications (2)

Publication Number Publication Date
JPH0542704U true JPH0542704U (en) 1993-06-11
JP2550774Y2 JP2550774Y2 (en) 1997-10-15

Family

ID=14279296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10063591U Expired - Lifetime JP2550774Y2 (en) 1991-11-12 1991-11-12 Direction control valve device

Country Status (1)

Country Link
JP (1) JP2550774Y2 (en)

Also Published As

Publication number Publication date
JP2550774Y2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
EP0747601B1 (en) Pressure oil supply system having a pressure compensating valve
JPH0419411A (en) Operation valve equipped with pressure compensation valve
JP2668744B2 (en) Pressure oil supply device
JP2550774Y2 (en) Direction control valve device
JP2550773Y2 (en) Direction control valve device
JP2575156Y2 (en) Pressure oil supply device
JPH04244605A (en) Pressure compensation valve
JP3119317B2 (en) Pressure oil supply device
JP2577675Y2 (en) Pressure oil supply device
JPH0643301U (en) Directional control valve device
JP2551546Y2 (en) Pressure oil supply device
JP2581853Y2 (en) Pressure compensation valve
JP2577676Y2 (en) Pressure oil supply device
JPH0828506A (en) Pressure compensating valve
JP2571234Y2 (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JP3824104B2 (en) Pressure compensation valve
JPH05332307A (en) Suction safety structure for pressure oil supply device
JP2578622Y2 (en) Directional control valve device with pressure compensating valve
JPH05332311A (en) Pressure oil supply device
JP2593967Y2 (en) Pressure compensation valve
JPH0596504U (en) Pressure oil supply device
JP3116564B2 (en) Pressure oil supply device
JPH06137305A (en) Pressure oil supplying device
JPH05332306A (en) Pressure oil supply device