JPH0542287B2 - - Google Patents

Info

Publication number
JPH0542287B2
JPH0542287B2 JP87121049A JP12104987A JPH0542287B2 JP H0542287 B2 JPH0542287 B2 JP H0542287B2 JP 87121049 A JP87121049 A JP 87121049A JP 12104987 A JP12104987 A JP 12104987A JP H0542287 B2 JPH0542287 B2 JP H0542287B2
Authority
JP
Japan
Prior art keywords
membrane
heat
fraction
hour
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP87121049A
Other languages
Japanese (ja)
Other versions
JPS63107722A (en
Inventor
Koichi Hashimoto
Kohei Ninomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPS63107722A publication Critical patent/JPS63107722A/en
Publication of JPH0542287B2 publication Critical patent/JPH0542287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/363Vapour permeation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2以上の揮発性成分を含んで成る液
体中の該成分を選択透過性を有する膜により気相
状態で相互に分離するための省エネルギー方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating two or more volatile components in a liquid in a gas phase using a permselective membrane. Concerning energy saving methods.

〔従来の技術〕[Conventional technology]

2以上の揮発性成分を含んで成る液体中の各成
分をそれらの揮発度の差異に基いて分離する方法
は、蒸留法、精留法等として古くから知られてお
り、また広く工業的に知られている。
Methods for separating components in a liquid containing two or more volatile components based on their volatility differences have long been known as distillation methods, rectification methods, etc., and are widely used industrially. Are known.

液体中の複数の成分を選択透過性の膜を用いて
液の状態で相互に分離する方法もよく知られてお
り、すでに実用化されている。最近では複数の成
分から成る気体成分を選択透過性を有する膜を用
いて相互に分離する方法も報告されている。しか
しながらこの後者の方法は工業的規模で実用化さ
れるには至つていない。
A method of separating a plurality of components in a liquid from each other using a permselective membrane is also well known and has already been put into practical use. Recently, a method has also been reported in which gas components consisting of a plurality of components are separated from each other using a membrane having selective permselectivity. However, this latter method has not yet been put into practical use on an industrial scale.

熱交換器により液体を加熱して蒸留又は蒸発濃
縮を行う方法は古くから知られており、そして広
く実施されている。
Methods of distilling or evaporating a liquid by heating it with a heat exchanger have been known for a long time and are widely practiced.

気体を断熱圧縮した場合に圧力及び温度が上昇
する熱力学的現象は古くから知られている。
The thermodynamic phenomenon that pressure and temperature increase when a gas is compressed adiabatically has been known for a long time.

しかしながら、熱交換加熱による液体の気化、
気体の断熱的圧縮による圧力及び温度の上昇、及
び選択透過成膜による複数の気体成分の相互分離
を巧みに組み合わせて、熱を効率よく回収して循
環使用することにより熱の使用量が顕しく改良さ
れた分離システムは知られていない。
However, vaporization of liquid by heat exchange heating,
By cleverly combining the increase in pressure and temperature through adiabatic compression of the gas and the mutual separation of multiple gas components through selective permeation film formation, heat is efficiently recovered and recycled for use, which reduces the amount of heat used. No improved separation systems are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従つて、本発明は、熱交換加熱による液体の蒸
発、蒸気の圧縮による圧力及び温度の上昇、選択
透過性膜による複数の気体成分の相互分離等を巧
みに組み合わせて熱を効率よく循環使用すること
ができるようにした省エネルギー型の揮発性成分
の分離システム、すなわち分離方法、及び分離装
置を提供しようとするものである。
Therefore, the present invention efficiently circulates and uses heat by skillfully combining liquid evaporation through heat exchange heating, pressure and temperature increase through vapor compression, and mutual separation of multiple gas components through a selectively permeable membrane. The present invention aims to provide an energy-saving volatile component separation system, ie, a separation method, and a separation device that enable the separation of volatile components.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、2種類以上の揮発性成分を含ん
で成る液体中の該揮発性成分を相互に分離する方
法において、(1)2種類以上の揮発性成分を含んで
成る原料液体を加熱蒸発せしめることにより該揮
発性性成分の混合物からなる蒸気混合物を生成せ
しめ、(2)該蒸気混合物を圧縮することによりその
温度及び圧力を上昇せしめ、(3)該圧縮された混合
蒸気を、該混合蒸気の構成成分に対して選択透過
性を有する膜に適用することにより膜透過画分と
膜非透過画分とに分離し、(4)前記画分の少なくと
1方を熱交換可能な隔壁を介して前記段階(1)の原
料液体と接触せしめることにより該画分が有する
熱を該液体成分の蒸発のための熱源として使用
し、そして(5)前記膜透過画分及に膜非透過画分の
一方又は両方を回収する段階を含んで成る方法;
及び2種類以上の揮発性成分を含んで成る液体中
の該揮発性成分を相互に分離する装置であつて、
(1)後記(3)の膜分離器により分離された画分が導入
される1個又は複数個の熱交換器、原料液体供給
部、蒸発残液排出部、及び場合によつては補助加
熱器を有する蒸発器、(2)該蒸発器から発生した混
合蒸気を圧縮するための圧縮機、並びに(3)該圧縮
機により圧縮された混合蒸気が適用される、該混
合蒸気の構成成分に対して選択透過膜性である膜
を有する膜分離器 を有する装置により達成される。
The above purpose is to (1) heat and evaporate a raw material liquid containing two or more types of volatile components in a method for mutually separating volatile components in a liquid containing two or more types of volatile components; (2) compressing the vapor mixture to increase its temperature and pressure; and (3) compressing the compressed vapor mixture into the mixture. (4) A partition wall capable of heat exchange with at least one of the fractions, which is separated into a membrane-permeable fraction and a non-membrane-permeable fraction by being applied to a membrane having selective permselectivity for the constituent components of the vapor. (5) use the heat possessed by the fraction as a heat source for evaporation of the liquid component by bringing the fraction into contact with the raw material liquid of step (1); A method comprising the step of recovering one or both of the fractions;
and an apparatus for mutually separating volatile components in a liquid containing two or more types of volatile components,
(1) One or more heat exchangers into which the fraction separated by the membrane separator described in (3) below is introduced, a raw material liquid supply section, an evaporation residual liquid discharge section, and in some cases auxiliary heating (2) a compressor for compressing the mixed vapor generated from the evaporator; and (3) a component of the mixed vapor to which the mixed vapor compressed by the compressor is applied. This is achieved by a device having a membrane separator with a membrane that is permselectively permeable.

〔作用及び効果〕[Action and effect]

本発明によれば、原料液体を熱交換器による加
熱によつて蒸発せしめ、この蒸気を圧縮してその
圧力及び温度を上昇せしめ、この上昇した圧力を
膜分離のための駆動力(ドライブフオース)とし
て利用し、他方、上昇した温度、すなわち圧縮さ
れた蒸気(膜透過画分及び膜非透過画分の一方又
は両方)の温度と原料液体の蒸発温度との間の温
度差、を利用して熱交換器を介して蒸気が有す熱
量を効率よく回収して原料液体を蒸発せしめるた
めの蒸発熱の一部として使用することができる。
従つて原料液体を蒸発せしめるために必要な熱の
多くの部分を循環使用することができ、蒸気を圧
縮するための圧縮機の作動用のエネルギー(通常
は電力)、原料液体をその蒸発温度以上の所望の
温度に上昇せしめるための熱、蒸発器の補助加熱
のための熱等、比較的少量のエネルギーを外部か
ら供給すればよいから、本発明の分離システム
は、エネルギー経済の観点から極めて有利であ
る。
According to the present invention, a raw material liquid is evaporated by heating with a heat exchanger, this vapor is compressed to increase its pressure and temperature, and this increased pressure is used as a driving force for membrane separation. ), and on the other hand, the increased temperature, i.e. the temperature difference between the temperature of the compressed vapor (membrane-permeable fraction and/or non-membrane-permeable fraction) and the evaporation temperature of the raw liquid. The amount of heat contained in the steam can be efficiently recovered via a heat exchanger and used as part of the heat of evaporation for evaporating the raw material liquid.
Therefore, a large portion of the heat required to vaporize the feedstock liquid can be recycled and used to provide the energy (usually electricity) for operating the compressor to compress the vapor to bring the feedstock liquid above its evaporation temperature. The separation system of the present invention is extremely advantageous from an energy economic point of view because a relatively small amount of energy, such as heat to raise the temperature to the desired temperature and heat for auxiliary heating of the evaporator, needs to be supplied from the outside. It is.

〔具体的な説明〕[Specific explanation]

本発明の方法においては、揮発性成分の混合物
を気相において選択透過性膜により相互分離する
ので、分離される成分の揮発度が異ることは必要
でなく、膜を適切に選択することにより種々の成
分の混合物を分離することができる。この発明の
方法により分離することができる混合物系とし
て、例えば水と有機物との混合物系としては水/
メタノール、水/エタノール、水/プロパノー
ル、水/ブタノール、水/アセトン、水/酢酸、
水/アセトニトリル、水/アクリロニトリル、
水/ベンゼン、水/酢酸エチル、水/石炭酸、等
を挙げることができる。また、本発明の方法は有
機物混合物の分離にも使用することができ、この
場合の分離対象混合系としては、例えばアセト/
n−ヘキサン、エタノール/アセトン、スチレ
ン/エチルベンゼン、ベンゼン/アニリン、等
種々の系を挙げることができる。
In the method of the present invention, since a mixture of volatile components is separated from each other in the gas phase by a permselective membrane, it is not necessary that the components to be separated have different volatilities; Mixtures of various components can be separated. As a mixture system that can be separated by the method of this invention, for example, a mixture system of water and organic matter is water/
Methanol, water/ethanol, water/propanol, water/butanol, water/acetone, water/acetic acid,
water/acetonitrile, water/acrylonitrile,
Examples include water/benzene, water/ethyl acetate, water/carbolic acid, and the like. Furthermore, the method of the present invention can also be used to separate organic mixtures, and in this case, the mixture system to be separated is, for example, acetate/
Various systems such as n-hexane, ethanol/acetone, styrene/ethylbenzene, benzene/aniline, etc. can be mentioned.

本発明において使用する蒸発器は、1個又は複
数個の内部熱交換器、液体原料供給部及び蒸発残
液排出部を有し、場合によつてはさらに補助加熱
器を有する。本発明の方法においては、揮発度の
差異を用いて成分を相互に分離するのではないか
ら、蒸発器が蒸留分離機能を備えていることは必
ずしも必要ではなく、従つて常用の蒸発器を用い
ることができる。
The evaporator used in the present invention has one or more internal heat exchangers, a liquid raw material supply section, an evaporation residue discharge section, and optionally an auxiliary heater. In the method of the present invention, since the components are not separated from each other using differences in volatility, it is not necessarily necessary for the evaporator to have a distillation separation function, and therefore a conventional evaporator is used. be able to.

本発明の方法においては、前記蒸発器中で発生
した蒸気を加圧することによつて該蒸気の圧力及
び温度を上昇せしめる。このために用いる蒸気圧
縮機としては、高温蒸気を圧縮するために常用さ
れている圧縮機中から任意に選択すればよい。こ
のような圧縮機として、例えばルーツブロワー型
圧縮機、軸流送風機型圧縮機等を挙げることがで
きる。
In the method of the present invention, the pressure and temperature of the vapor generated in the evaporator are increased by pressurizing the vapor. The vapor compressor used for this purpose may be arbitrarily selected from compressors commonly used for compressing high-temperature vapor. Examples of such a compressor include a Roots blower compressor, an axial blower compressor, and the like.

次に、上記のようにして圧縮された混合蒸気
を、その上昇した圧力を駆動力(ドライブフオー
ス)として利用して選択透過性膜により膜透過画
分と膜非透過画分とに分画する。このための透過
膜の種類は分離しようとする成分の種類、濃度等
に依存して選択しなければならない。例えば、水
とエタノールとの混合物を分離する場合におい
て、エタノールの含有量が低い場合にはシリコン
ゴム、のごときエタノールを優先的に透過せしめ
る膜を用いるのが有利であり、他方水の含有量が
少い場合にはセルロースアセテート膜、ポリフエ
ニレンオキサイド膜、ポリイミド膜、シリカ−ア
ルミナ系微細多孔質膜のごとき水を優先的に透過
せしめる膜を使用するのが有利である。
Next, the mixed vapor compressed as described above is fractionated into a membrane permeable fraction and a membrane non-permeable fraction using a selectively permeable membrane using the increased pressure as a driving force. do. The type of permeable membrane for this purpose must be selected depending on the type, concentration, etc. of the components to be separated. For example, when separating a mixture of water and ethanol, it is advantageous to use a membrane that preferentially allows ethanol to pass through, such as silicone rubber, if the ethanol content is low; If the amount is small, it is advantageous to use a membrane that allows water to permeate preferentially, such as a cellulose acetate membrane, a polyphenylene oxide membrane, a polyimide membrane, or a silica-alumina microporous membrane.

一般に、シリコン膜等特殊な膜の除けば、通常
の間では水の透過速度が有機物に比べて格段に速
く透過側に水が濃縮され、非透過側のエタノール
濃度が高くなる。特にポリイミド膜は水の透過速
度が早く、水と有機蒸気の分離度が大きく本発明
のプロセスに好適に用いることができる。この
時、水の透過速度は高圧側の圧力が高い程、低圧
側の圧力は低い程速くなる。
In general, except for special membranes such as silicon membranes, the permeation rate of water is much faster than that of organic substances, and water is concentrated on the permeate side and the ethanol concentration on the non-permeate side becomes high. In particular, polyimide membranes have a high water permeation rate and a high degree of separation between water and organic vapor, and can be suitably used in the process of the present invention. At this time, the higher the pressure on the high pressure side and the lower the pressure on the low pressure side, the faster the water permeation rate becomes.

又供給液中の水の濃度が高い程、透過速度も速
い、低圧側に濃縮された水の凝縮を防ぐために、
低圧側を不活性ガス(N2、空気等)でパージす
るのは通常行われる操作である。
In addition, the higher the concentration of water in the feed liquid, the faster the permeation rate.To prevent condensation of concentrated water on the low pressure side,
Purging the low pressure side with an inert gas (N 2 , air, etc.) is a common practice.

本発明の分離膜としては80℃以上で用いること
ができる膜が好ましいが、ポリイミド膜では100
℃以上で用いることができ好適である。芳香族テ
トラカルボン酸又はそのジ無水物と芳香族ジアミ
ンとから成る芳香族ポリイミドの膜が特に好まし
い。ポリイミド膜では膜の性能も優れており、水
の透過速度P′H2Oは運転条件にもよるが、0.5〜5
×10-5c.c./cm2.sec.cmHg、好ましくは0.1〜5×
10-3c.c./cm2.sec.cmHgと非常に速く、分離性能
も水−エタノールの場合を例にとるとP′H2O
P′EtOHが50〜400好ましくは100〜300と高い。
The separation membrane of the present invention is preferably a membrane that can be used at temperatures of 80°C or higher, but polyimide membranes with temperatures of 100°C or higher are preferable.
It is suitable for use at temperatures above .degree. Particularly preferred is an aromatic polyimide film comprising an aromatic tetracarboxylic acid or its dianhydride and an aromatic diamine. Polyimide membranes also have excellent membrane performance, with a water permeation rate P′ H2O of 0.5 to 5, depending on operating conditions.
×10 -5 cc/cm 2 . sec.cmHg, preferably 0.1-5×
10 -3 cc/cm 2 . sec.cmHg, and the separation performance is P′ H2O /
P′ EtOH is as high as 50-400, preferably 100-300.

膜の形状としては平膜、中空系膜、チユープラ
ー型等が使用でき、特に中空系膜が効果的であ
る。
As for the shape of the membrane, flat membranes, hollow membranes, tupular membranes, etc. can be used, and hollow membranes are particularly effective.

次に、このようにして分画された蒸気画分の内
非透過画分(高圧画分、高圧側等と称する場合が
ある)は依然として高温・高圧の状態にあり他方
透過画分は圧力は低下しているが、依然として高
温状態にある。従つて、これらの両者を別個に、
又はその一方のみを前記の蒸発器内の熱交換器に
導入して、これらが含有する熱を原料液体の蒸発
のための熱として回収し再利用する。
Next, of the vapor fractions fractionated in this way, the non-permeated fraction (sometimes referred to as the high-pressure fraction, high-pressure side, etc.) is still at high temperature and high pressure, while the permeated fraction has a low pressure. Although the temperature has decreased, the temperature is still high. Therefore, separately,
Alternatively, only one of them is introduced into the heat exchanger in the evaporator, and the heat contained therein is recovered and reused as heat for evaporating the raw material liquid.

次に、図面に言及しながら、本発明の方法の実
施の態様及び作動原理をさらに具体的に説明す
る。第1図における原料供給部11から少なくと
も2種類の揮発性成分を含んで成る原料液体を蒸
発器1に導入する。次に予備加熱器9に熱源例え
ば蒸気を通すことにより原料液体を加熱し蒸発せ
しめる。蒸発器1から発生した蒸気は蒸気導管及
び飛沫分離器2を通過する間に蒸気に同伴してい
る飛沫が分離される。この蒸気はモーター15に
より駆動される蒸気圧縮機14により圧縮さ、膜
分離器3に供給される。膜分離器3は高圧部5、
及び低圧部6、並びに両者を隔てる選択透過性膜
4を有し、高圧部5は弁18を調節することによ
り所望の高圧に維持され、他方低圧部6は弁13
を開放することによつて例えば大気圧にされ、又
は必要な真空度に維持される。この圧力差によつ
て蒸気中の成分が透過画分と非透過画分とに分画
される。本発明の装置は好ましくは全的に断熱材
により保温されており、前記圧縮機14による蒸
気の断熱圧縮に近い状態で行われ、この結果とし
て蒸気の温度は蒸発器1中での蒸発温度よりもか
なり上昇する。この温度は膜分離器6を経た後の
非透過画分蒸気及び透過画分蒸気においても実質
上保持されている。従つて、これらの画分を蒸発
器1中の熱交換器7及び/又は8に供給し、その
凝縮熱を蒸発器1中での原料液体の蒸発熱の一部
として使用することができる。従つて、起動に際
しては補助加熱器9から熱を供給する必要がある
が、一旦起動した後は前記圧縮機14により系に
加えられるエネルギーに加えて、補助加熱機によ
り熱を供給する必要がないか、又は必要があると
してもその量は極めて少なくてよい。
Next, embodiments and operating principles of the method of the present invention will be explained in more detail with reference to the drawings. A raw material liquid containing at least two types of volatile components is introduced into the evaporator 1 from a raw material supply section 11 in FIG. Next, the raw material liquid is heated and evaporated by passing a heat source such as steam through the preheater 9. While the steam generated from the evaporator 1 passes through a steam conduit and a droplet separator 2, droplets accompanying the steam are separated. This vapor is compressed by a vapor compressor 14 driven by a motor 15 and supplied to the membrane separator 3. The membrane separator 3 has a high pressure section 5,
and a low pressure section 6, and a permselective membrane 4 separating the two, the high pressure section 5 being maintained at a desired high pressure by adjusting the valve 18, while the low pressure section 6 is maintained at a desired high pressure by adjusting the valve 13.
By opening, for example, the pressure is brought to atmospheric pressure, or the required degree of vacuum is maintained. This pressure difference separates the components in the vapor into a permeated fraction and a non-permeated fraction. The apparatus of the present invention is preferably entirely insulated by heat insulating material, and the vapor is nearly adiabaticly compressed by the compressor 14, so that the temperature of the vapor is lower than the evaporation temperature in the evaporator 1. will also rise considerably. This temperature is substantially maintained in the non-permeated fraction vapor and the permeated fraction vapor after passing through the membrane separator 6. These fractions can therefore be fed to the heat exchangers 7 and/or 8 in the evaporator 1 and their heat of condensation can be used as part of the heat of vaporization of the raw liquid in the evaporator 1. Therefore, when starting up, it is necessary to supply heat from the auxiliary heater 9, but once started, there is no need to supply heat from the auxiliary heater in addition to the energy added to the system by the compressor 14. Or, if necessary, the amount may be extremely small.

蒸発器1における蒸発は回分式に行うこともで
き、又連続式に行うこともできる。回分式に行う
場合には、液体原料を原料供給部11及び原料供
給弁16を介して蒸発器1に導入し、弁16及び
蒸発残液排出弁17を共に閉止して蒸発を行い、
所望の揮発性成分の蒸発が終つた後両弁16及び
17を開放して蒸発残液を排出する。原料液体が
実質上揮発性物質のみから成り、これらをすべて
蒸発せしめる場合には、各・分毎に残液を排出す
る必要はない。蒸発を連続式に行う場合には、蒸
発器1から蒸発する成分を補うのに適切な一定の
流速で原料液体を弁16及び原料液体供給部11
を介して連続的に蒸発器1に供給し、そして蒸発
残液を蒸発残液排出部に及び弁17を介して連続
的に排出する。原料液体が実質上揮発成分のみか
ら成り、これをすべて蒸発せしめる場合には蒸発
残液の連続排出を行う必要はない。原料液体の供
給及び蒸発残液の排出の両方又はいずれか一方を
間欠的に行うことにより半連続運転を行うことも
できる。
Evaporation in the evaporator 1 can be performed batchwise or continuously. When performing the batch process, the liquid raw material is introduced into the evaporator 1 via the raw material supply section 11 and the raw material supply valve 16, and the evaporation is performed by closing both the valve 16 and the evaporation residual liquid discharge valve 17.
After the desired volatile components have been evaporated, both valves 16 and 17 are opened to discharge the evaporation residual liquid. If the feed liquid consists essentially only of volatile substances and all of these are evaporated, it is not necessary to drain the residual liquid every minute. When evaporation is performed continuously, the raw material liquid is supplied from the evaporator 1 to the valve 16 and the raw material liquid supply section 11 at a constant flow rate suitable for supplementing the evaporated components.
The evaporator 1 is continuously supplied to the evaporator 1 via the evaporator 1, and the evaporation residue is continuously discharged to the evaporation residue discharge part and via the valve 17. If the raw material liquid consists essentially only of volatile components and all of them are evaporated, it is not necessary to continuously discharge the evaporation residual liquid. Semi-continuous operation can also be performed by intermittently supplying the raw material liquid and/or discharging the evaporation residual liquid.

次に、本発明の方法を連続式に行つた場合にお
ける定常状態での熱収支についてさらに詳しく説
明する。本発明の系に導入される熱は原料液体に
より持ち込まれる熱、圧縮機14により導入され
る熱、及び補助加熱器9により導入される熱から
成り、他方系か排出される熱は、蒸発器1中の熱
交換器から排出される凝縮された分離分液(製
品)により持ち出される熱、蒸発残液により持ち
出される熱、及び装置の表面から系外に放出され
る損熱から成る。今、蒸発器1中の熱交換器7及
び/又は8により原料液に与えられる熱(すなわ
ち分離された画分蒸気の凝縮熱)が蒸発器1中で
原料液を蒸発せしめるのに必要な熱よりも少ない
場合、その不足分の熱を補助加熱器9により補う
必要がある。このような場合として、蒸発器1に
供給される原料液体の温度がかなり低い場合が考
えられる。なお、補助加熱装置9は必ずしも蒸発
器1中に設ける必要はなく、系内に供給される原
料液体を加熱するための系外加熱器として設けて
もよい。このことは、供給される原料液体の温度
を適切に調節することにより定常状態を維持する
ことができることを意味する。
Next, the heat balance in a steady state when the method of the present invention is carried out continuously will be explained in more detail. The heat introduced into the system of the present invention consists of the heat introduced by the feed liquid, the heat introduced by the compressor 14, and the heat introduced by the auxiliary heater 9, while the heat exhausted from the system consists of the heat introduced by the feed liquid, the heat introduced by the compressor 14, and the heat introduced by the auxiliary heater 9. It consists of heat carried out by the condensed separated liquid (product) discharged from the heat exchanger in the heat exchanger, heat carried out by the evaporation residual liquid, and heat loss released from the surface of the apparatus to the outside of the system. Now, the heat given to the raw material liquid by the heat exchanger 7 and/or 8 in the evaporator 1 (i.e., the heat of condensation of the separated fraction vapor) is the heat necessary to evaporate the raw material liquid in the evaporator 1. If the amount of heat is less than , it is necessary to compensate for the lack of heat with the auxiliary heater 9. In such a case, the temperature of the raw material liquid supplied to the evaporator 1 may be considerably low. Note that the auxiliary heating device 9 does not necessarily need to be provided in the evaporator 1, and may be provided as an external heater for heating the raw material liquid supplied into the system. This means that a steady state can be maintained by appropriately adjusting the temperature of the supplied raw material liquid.

次に、膜分離器3から蒸発器1中の熱交換器7
及び/又は8に供給される蒸気の有する凝縮熱が
蒸発器1中で原料液体を蒸発せしめるのに必要な
熱より多い場合がある。これは、原料液体により
持ち込まれる熱が多い場合、すなわち供給される
原料液体の温度が高い場合、及び蒸気圧縮機14
により系内に導入される熱が多い場合に起こり得
る。この場合には、供給される原料液体の温度を
低下せしめることにより定常状態にもどされる。
別の方法として、蒸発器1中の熱交換器7及び/
又は8から排出さる画分(製品)を完全に凝縮し
ない状態で取り出し、この製品を外部冷却器(図
には示していない)により冷却することもでき
る。
Next, from the membrane separator 3 to the heat exchanger 7 in the evaporator 1
and/or the heat of condensation of the steam supplied to the evaporator 8 may be greater than the heat required to evaporate the raw material liquid in the evaporator 1. This occurs when there is a lot of heat brought in by the raw liquid, i.e. when the temperature of the supplied raw liquid is high, and when the vapor compressor 14
This can occur when a large amount of heat is introduced into the system. In this case, the steady state is restored by lowering the temperature of the supplied raw material liquid.
Alternatively, the heat exchanger 7 in the evaporator 1 and/or
Alternatively, the fraction (product) discharged from 8 can be taken out without being completely condensed and this product can be cooled by an external cooler (not shown).

なお、排出される製品及び蒸発残液の温度は相
当に高いので、これらを別の熱交換器(図には示
していない)に供給して、供給される原料液体の
系外加熱を行うこともできる。
Note that the temperature of the discharged product and evaporation residual liquid is quite high, so these should be supplied to another heat exchanger (not shown in the diagram) to heat the supplied raw material liquid outside the system. You can also do it.

実施例 1 エタノールの凝縮 黒糖(含蜜砂糖)の様な含水有機固体を精製す
るために約80%濃度のエタノール水が使用され、
約60%濃度のエタノール水が回収される。この回
収されたエタノール水は原料糖に含まれていた水
分、糖分、灰分、色素、その他の不純物を含有し
ている。従つて回収されたエタノール水を再度使
用するためには、これらの不純物を除去すると共
に、エタノール濃度が80%以上となるように濃縮
しなければならない。このため、本発明の方法に
よりエタノールの濃縮を行つた。
Example 1 Ethanol Condensation Ethanol water at a concentration of approximately 80% is used to purify a water-containing organic solid such as brown sugar (cane sugar).
Ethanol water with a concentration of approximately 60% is recovered. This recovered ethanol water contains water, sugar, ash, pigment, and other impurities contained in the raw sugar. Therefore, in order to use the recovered ethanol water again, these impurities must be removed and the water must be concentrated to an ethanol concentration of 80% or more. For this reason, ethanol was concentrated using the method of the present invention.

100の原料エタノール水(エタノール60、
水40)を第1図に模式的に示す装置を仕込み、
補助加熱器9に蒸気を通して原料液の液温が約86
℃になるまで加熱したところ蒸発が始つた。その
後は原料エタノール水を20/時(エタノール12
/時、水8/時)の速度で定常的に連続供給
し、蒸発残液を3/時(エタノール0.07/
時、その他水、糖、灰分等)の速度で排出した。
補助加熱器9から、蒸気により約100Kcal/時の
熱を補つた。
100 raw materials ethanol water (ethanol 60,
Water 40) was prepared using the equipment schematically shown in Figure 1.
Steam is passed through the auxiliary heater 9 until the temperature of the raw material liquid reaches approximately 86°C.
When heated to ℃, evaporation began. After that, add raw ethanol water at 20/hour (ethanol 12/hour).
The evaporation residue was supplied at a constant rate of 3/hour (ethanol 0.07/hour), water 8/hour), and ethanol 0.07/hour.
water, sugar, ash, etc.).
Approximately 100 Kcal/hour of heat was supplemented by steam from the auxiliary heater 9.

1気圧において17/時の原料液(エタノール
11.93/時、水5.07/時に相当)が蒸発した。
この場合、蒸発に要する熱両は約5610Kcal/時
である。この蒸気を1.1KW軸馬力のモーターを
有する蒸気圧縮機により1.5気圧に圧縮したとこ
ろ温度は119℃に上昇した。この圧縮機により導
入されたエネルギーは約950Kcal/時である。こ
の圧縮された蒸気を、膜面積が約1m2のシリカ−
アルミナ系微多孔質膜面に沿つて1.5m/秒の流
速で流した。これにより膜非透過画分蒸気と膜透
過画分蒸気とに分離し、これらをそれぞれ別々の
蒸発器内の熱交換器に導入し、熱交換器の出口か
ら、膜非透過画分からの凝縮液13/時(エタノ
ール11.91/時、水1.09/時、エタノール濃
度約84%)、及び膜透過画分からの凝縮液4/
時(エタノール0.02/時、水3.98/時、エタ
ノール濃度0.5%)が得られた。
17/hour raw material liquid (ethanol) at 1 atm
11.93/hour, equivalent to 5.07/hour of water) was evaporated.
In this case, the heat required for evaporation is approximately 5610 Kcal/hour. When this steam was compressed to 1.5 atmospheres using a vapor compressor equipped with a 1.1KW shaft horsepower motor, the temperature rose to 119℃. The energy introduced by this compressor is approximately 950 Kcal/hour. This compressed vapor is transferred to a silica film with a membrane area of approximately 1 m2 .
It was flowed along the surface of the alumina-based microporous membrane at a flow rate of 1.5 m/sec. This separates the membrane non-permeable fraction vapor and the membrane permeable fraction vapor, which are introduced into a heat exchanger in a separate evaporator, and from the outlet of the heat exchanger, the condensate from the membrane non-permeable fraction is 13/hour (ethanol 11.91/hour, water 1.09/hour, ethanol concentration approximately 84%), and condensate from the membrane permeation fraction 4/hour.
hours (ethanol 0.02/hour, water 3.98/hour, ethanol concentration 0.5%) were obtained.

上記の熱交換において、膜非透過画分から約
3050Kcal/時の熱が回収され、膜透過画分から
約2440Kcal/時の熱が回収された(合計約
5490Kcal/時)。従つて、原料エタノール水溶液
を蒸発せしめるための熱の内約90%を回収熱によ
り賄うことができ、この結果として約
1050Kcal/時の熱〔補助加熱器からの熱約
100Kcal/時、及び蒸気圧縮機からの熱(電力)
約950Kcal/時〕を消費することにより20/時
の原料を処理することができた。
In the above heat exchange, approximately
3050Kcal/hour of heat was recovered, and approximately 2440Kcal/hour of heat was recovered from the membrane permeation fraction (total approx.
5490Kcal/hour). Therefore, approximately 90% of the heat required to evaporate the raw material ethanol aqueous solution can be covered by the recovered heat, resulting in approximately
1050Kcal/hour heat (approximate heat from auxiliary heater)
100Kcal/hour and heat (power) from vapor compressor
By consuming approximately 950 Kcal/hour], it was possible to process 20/hour of raw materials.

実施例 2 エタノールの濃縮 発酵法によりエタノールを製造しようとする場
合、アルコール濃度10%前後の発酵液が得られ
る。そこで、10%のエタノール水溶液をモデル液
として、本発明の方法によりエタノールの濃縮を
行つた。
Example 2 Concentration of ethanol When attempting to produce ethanol by fermentation, a fermented liquor with an alcohol concentration of around 10% is obtained. Therefore, ethanol was concentrated using the method of the present invention using a 10% aqueous ethanol solution as a model liquid.

実施例1の場合と同様の操作を行つた。但し、
原料液の蒸発温度は100℃に近く、そして供給原
料の全量を蒸発せしめ蒸発残液の排出は行わなか
つた。この場合、蒸発に必要な熱は約
11556Kcal/時である。補助加熱器による加熱は
行わなかつた。また蒸気の圧縮は4.5KW軸馬力
のモーターを有する圧縮ポンプを用いて圧力を
1.5気圧にした。この場合蒸気圧縮機により系内
に導入されるエネルギーは約3900Kcal/時であ
る。これにより蒸気の温度が約139℃に上昇した。
膜透過画分からの凝縮液が13/時(エタノール
濃度0.1%以下)得られ、膜非透過画分からの凝
縮液7/時(エタノール濃度30%以上)が得ら
れた。膜分離器からの画分から蒸発器中の熱交換
器により回収される熱は、膜非透過画分からは
378Kcal/時でり、膜透過画分からは
10500Kcal/時(合計10898Kcal/時)であつた。
従つて、原料液の蒸発のために必要な熱の内約94
%を回収熱により賄うことができ、この結果とし
て蒸気圧縮機により供給される約3900Kcal/時
の熱により20/時の原料液を処理することがで
きた。
The same operation as in Example 1 was performed. however,
The evaporation temperature of the raw material liquid was close to 100°C, and the entire amount of the feedstock was evaporated without discharging the evaporation residue. In this case, the heat required for evaporation is approximately
It is 11556Kcal/hour. Heating with an auxiliary heater was not performed. In addition, the steam is compressed using a compression pump with a 4.5KW shaft horsepower motor.
The pressure was set to 1.5 atm. In this case, the energy introduced into the system by the vapor compressor is approximately 3900 Kcal/hour. This increased the temperature of the steam to approximately 139°C.
A condensate of 13/hour (ethanol concentration of 0.1% or less) was obtained from the membrane-permeable fraction, and a condensate of 7/hour (ethanol concentration of 30% or more) was obtained from the membrane-unpermeable fraction. The heat recovered by the heat exchanger in the evaporator from the fraction from the membrane separator is recovered from the non-membrane fraction.
378Kcal/hour, from the membrane permeation fraction
It was 10,500Kcal/hour (total 10,898Kcal/hour).
Therefore, approximately 94% of the heat required for the evaporation of the raw material liquid
% could be covered by the recovered heat, and as a result, it was possible to process 20 Kcal/hour of raw material liquid with approximately 3900 Kcal/hour of heat supplied by the vapor compressor.

実施例 3 アクリロニトリルの脱水 アクリロニトリルには約3%の水が可溶である
が、合成繊維の原料として使用するアクリトニト
リルは実質上無水でなければならない。そこで、
水を飽和状態(約3%)で含有するアクリロニト
リルの脱水を本発明の方法により実施した。
Example 3 Dehydration of Acrylonitrile Although approximately 3% water is soluble in acrylonitrile, acrylonitrile used as a raw material for synthetic fibers must be substantially anhydrous. Therefore,
The dehydration of acrylonitrile containing saturated water (approximately 3%) was carried out by the method of the invention.

実施例1と同様の操作を行つた。但し、原料液
は40/時の速度で供給し、これをすべて蒸発せ
しめた。この場合の蒸発温度は24℃であり、蒸発
熱は23400Kcal/時であつた。蒸気は、2.5KW軸
馬力のモーターを有する蒸気圧縮機により大気圧
に圧縮した。この場合、圧縮機により系内に導入
される熱は2150Kcal/時であり、蒸気の温度は
100℃に上昇した。この圧縮された蒸気をシリ
カ・アルミナ系微多孔性膜により分画した。膜透
過画分からは水が1.2/時得られ、これには検
出できる量のアクリロニトリルは含まれていなか
つた。他方膜非透過画分からはアクリロニトリル
が38.8/時得られ、これには検出できる量の水
は含まれていなかつた。蒸発器中の熱交換器によ
り回収される熱は、膜透過画分からは約
720Kcal/時、膜非透過画分からは約7436Kcal/
時(合計8156Kcal/時)であつた。従つて、原
料液の蒸発に要する熱の内約35%が回収熱により
賄われ、この結果蒸気圧縮機により導入される
2150Kcal/時の熱により40/時の原料液が処
理できた。
The same operation as in Example 1 was performed. However, the raw material liquid was supplied at a rate of 40/hour and was completely evaporated. The evaporation temperature in this case was 24°C, and the heat of evaporation was 23,400 Kcal/hour. The steam was compressed to atmospheric pressure by a vapor compressor with a 2.5KW shaft horsepower motor. In this case, the heat introduced into the system by the compressor is 2150 Kcal/hour, and the temperature of the steam is
The temperature rose to 100℃. This compressed vapor was fractionated using a silica-alumina microporous membrane. Water was obtained at 1.2/h from the membrane permeation fraction, which did not contain detectable amounts of acrylonitrile. On the other hand, the non-permeable fraction yielded 38.8 acrylonitrile/hour, which did not contain detectable amounts of water. The heat recovered by the heat exchanger in the evaporator is approximately
720Kcal/hour, approximately 7436Kcal/hour from membrane non-permeable fraction
hours (total 8156 Kcal/hour). Therefore, approximately 35% of the heat required to evaporate the raw material liquid is covered by recovered heat, which is then introduced by the vapor compressor.
With heat of 2150Kcal/hour, 40/hour of raw material liquid could be processed.

実施例 4 エタノールの濃縮 400のエタノール水溶液(エタノール40+
水360、エタノール濃度10%)を装置に仕込み、
補助加熱器に蒸気を通して原料が99℃になるまで
加熱したところ蒸発がはじまつた。
Example 4 Concentration of ethanol 400 ethanol aqueous solution (ethanol 40+
Fill the device with water (360% water, 10% ethanol concentration),
When steam was passed through an auxiliary heater to heat the raw material until it reached 99°C, evaporation began.

その後は原料エタノール水を200/時(エタ
ノール20/時+水180/時)の速度で定常的
に連続供給し、全量蒸発させた。この場合、蒸発
に要する熱量は約113000Kcal/時である。この
蒸気を22KWの軸馬力モーターを有する蒸気圧縮
機により1.7気圧に圧縮したところ温度が146℃に
上昇した。この圧縮機により導入されたエネルギ
ーは約19000Kcal/時である。この圧縮された蒸
気を膜面積が約50m2のポリイミド中空系膜を備え
た分離膜モジユールに流速約1.0m/秒の流速で
流した。これにより膜非透過画分蒸気と膜透過画
分蒸気とに分離し、これらをそれぞれ別々に蒸発
器内の熱交換器に導入し、熱交換器の出口から、
膜非透過画分からの凝縮液35/時(エタノール
21/時+水14/時、エタノール濃度約60%)、
及び膜透過画分からの凝縮液165/時(エタノ
ール、ネグリジグル、水165/時、エタノール
濃度0.1%以下)が得られた。
Thereafter, the raw material ethanol water was constantly and continuously supplied at a rate of 200/hour (ethanol 20/hour + water 180/hour), and the entire amount was evaporated. In this case, the amount of heat required for evaporation is approximately 113,000 Kcal/hour. When this steam was compressed to 1.7 atmospheres using a vapor compressor equipped with a 22KW shaft horsepower motor, the temperature rose to 146℃. The energy introduced by this compressor is approximately 19000 Kcal/hour. This compressed vapor was passed through a separation membrane module equipped with a hollow polyimide membrane having a membrane area of about 50 m 2 at a flow rate of about 1.0 m/sec. This separates the membrane non-permeable fraction vapor and the membrane permeable fraction vapor, which are each separately introduced into a heat exchanger in the evaporator, and from the outlet of the heat exchanger,
Condensate from the non-membrane fraction 35/h (ethanol
21/hour + water 14/hour, ethanol concentration approximately 60%),
And 165/hour of condensate from the membrane permeation fraction (ethanol, Negurijiguru, water 165/hour, ethanol concentration 0.1% or less) was obtained.

上記の熱交換において、膜非透過画分から約
12000Kcal/時の熱が回収され膜透過画分から約
94000Kcal/時の熱が回収された(合計約
106000Kcal/時)。従つて、原料エタノール水溶
液を蒸発せしめるための熱の内約94%を回収熱に
より賄うことができ、この結果として約
18900Kcal/時の熱(全量が蒸気圧縮機からの
熱)を消費することにより20/時の原料を処理
することができた。
In the above heat exchange, approximately
Approximately 12,000 Kcal/hour of heat is recovered from the membrane permeation fraction.
94000Kcal/hour of heat was recovered (total approx.
106000Kcal/hour). Therefore, approximately 94% of the heat required to evaporate the raw material ethanol aqueous solution can be covered by the recovered heat, resulting in approximately
By consuming 18900 Kcal/hr of heat (all from the vapor compressor) it was possible to process 20/hr of feedstock.

上記の分離膜は芳香族テトラカルボン酸と芳香
族ジアミントからの芳香族ポリイミドの膜であ
り、その水透過速度P′H2Oは3×10-3c.c./cm2.sec.
cmHg以上であり、分離性能P′H2O/P′EtOHは200以
上であつた。
The above separation membrane is a membrane of aromatic polyimide made from aromatic tetracarboxylic acid and aromatic diamint, and its water permeation rate P' H2O is 3×10 -3 cc/cm 2 . sec.
cmHg or higher, and the separation performance P′ H2O /P′ EtOH was 200 or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を説明する原理図であ
る。 図中1は蒸発器、3は膜分離器、4は選択透過
膜、5は高圧部、6は低圧部、7及び8はそれぞ
れ熱交換器、9は補助加熱器、そして14は蒸気
圧縮機である。
FIG. 1 is a diagram illustrating the principle of the method of the present invention. In the figure, 1 is an evaporator, 3 is a membrane separator, 4 is a permselective membrane, 5 is a high pressure section, 6 is a low pressure section, 7 and 8 are heat exchangers, 9 is an auxiliary heater, and 14 is a vapor compressor. It is.

Claims (1)

【特許請求の範囲】 1 2種類以上の揮発性成分を含んで成る液体中
の該揮発性成分を相互に分離する方法において、 (1) 2種類以上の揮発性成分を含んで成る原料液
体を加熱蒸発せしめることにより該揮発性成分
の混合物からなる蒸気混合物を生成せしめ、 (2) 該蒸気混合物を圧縮することによりその温度
及び圧力を上昇せしめ、 (3) 該圧縮された混合蒸気を、該混合蒸気の構成
成分に対して選択透過性を有する膜に適用する
ことにより膜透過画分と膜非透過画分とに分離
し、 (4) 前記画分の少なくとも1方を熱交換可能な隔
壁を介して前記段階(1)の原料液体と接触せしめ
ることにより該画分が有する熱を該液体成分の
蒸発のための熱源として使用し、そして (5) 前記膜透過画分及び膜非透過画分の一方又は
両方を回収する、 段階を含んで成る方法。 2 前記の膜がポリイミド膜である特許請求の範
囲第1項に記載の方法。 3 2種類以上の揮発性成分を含んで成る液体中
の該揮発性成分を相互に分離する装置であつて、 (1) 後記(3)の膜分離器による分離された画分が導
入される1個又は複数個の熱交換器、原料液体
供給部、蒸発残液排出部、及び場合によつては
補助加熱器を有する蒸発器、 (2) 該蒸発器から発生した混合蒸気を圧縮するた
めの圧縮機、並びに (3) 該圧縮機により圧縮された混合蒸気が適用さ
れる、該混合蒸気の構成成分に対して選択透過
性である膜を有する膜分離器、 を有する装置。 4 前記膜がポリイミド膜である特許請求の範囲
第3項に記載の装置。
[Claims] 1. A method for separating volatile components from each other in a liquid containing two or more volatile components, including: (1) a raw material liquid containing two or more volatile components; (2) compressing the vapor mixture to increase its temperature and pressure; (3) converting the compressed vapor mixture into the vapor mixture; (4) separating the membrane-permeable fraction and the non-membrane-permeable fraction by applying the membrane to a membrane having selective permeability to the constituent components of the mixed vapor; (5) using the heat possessed by the fraction as a heat source for evaporation of the liquid component by bringing it into contact with the raw material liquid of step (1) through the membrane-permeating fraction and the membrane-non-permeating fraction; A method comprising the steps of recovering one or both of the components. 2. The method according to claim 1, wherein the membrane is a polyimide membrane. 3. An apparatus for mutually separating volatile components in a liquid containing two or more types of volatile components, wherein (1) the fraction separated by the membrane separator described in (3) below is introduced. an evaporator with one or more heat exchangers, a feed liquid supply, an evaporation residue discharge and optionally an auxiliary heater; (2) for compressing the mixed vapor generated from the evaporator; and (3) a membrane separator having a membrane selectively permeable to constituents of the mixed vapor, to which the mixed vapor compressed by the compressor is applied. 4. The device according to claim 3, wherein the membrane is a polyimide membrane.
JP62121049A 1986-05-20 1987-05-20 Method and apparatus for separating gas phase film Granted JPS63107722A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-113475 1986-05-20
JP11347586 1986-05-20

Publications (2)

Publication Number Publication Date
JPS63107722A JPS63107722A (en) 1988-05-12
JPH0542287B2 true JPH0542287B2 (en) 1993-06-28

Family

ID=14613206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121049A Granted JPS63107722A (en) 1986-05-20 1987-05-20 Method and apparatus for separating gas phase film

Country Status (2)

Country Link
US (1) US4911845A (en)
JP (1) JPS63107722A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463110A (en) * 1990-07-03 1992-02-28 Ube Ind Ltd Separation purification method of alcohol-containing reaction liquid
DK172606B1 (en) * 1996-11-15 1999-02-22 Funki Manura As Process and apparatus for separating volatile components from a liquid
JP4529204B2 (en) * 1999-09-03 2010-08-25 ダイキン工業株式会社 heat pump
DE10240604A1 (en) * 2002-09-03 2004-03-11 Basf Ag Membrane separation, e.g. of hydrocarbon liquids, in one or more stages, uses pressurized and vaporized feedstock, with thermal energy input, before supply to membrane module
DE602004025559D1 (en) * 2003-02-21 2010-04-01 Mitsubishi Chem Corp Method for concentrating water-soluble organic material
FI20085209A0 (en) * 2008-03-05 2008-03-05 St1 Biofuels Oy Process and apparatus for absoluteizing a mixture of ethanol and water
JP5750331B2 (en) * 2010-08-05 2015-07-22 新日鉄住金エンジニアリング株式会社 Membrane separation device and membrane separation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540986A (en) * 1967-05-15 1970-11-17 Louis Joseph Guarino Distillation condensation apparatus with vapor compression and semipermeable membrane
US4067805A (en) * 1970-06-16 1978-01-10 Monsanto Company Process for separating aqueous formaldehyde mixtures
US4316774A (en) * 1979-07-05 1982-02-23 United Technologies Corporation Thermoelectric integrated membrane evaporation system
US4466202A (en) * 1983-03-07 1984-08-21 Bend Research, Inc. Energy-efficient evaporation process with means for vapor recovery

Also Published As

Publication number Publication date
JPS63107722A (en) 1988-05-12
US4911845A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
US9266803B2 (en) Liquid separation by membrane assisted vapor stripping process
US4900402A (en) Pervaporation process of separating a liquid mixture
EP2331241B1 (en) Pervaporation process for separating liquid mixtures
WO2009123223A1 (en) Purification treatment method for fermented alcohol
JP2011502960A5 (en)
WO2009107840A1 (en) Method of purifying fermented alcohol
JP2011502960A (en) Method for dehydrating mainly a mixture of ethanol and water
US20150232348A1 (en) Water desalination and brine volume reduction process
CN101372442B (en) Apparatus and method for separating tert-butanol and water using batch fractionating and pervaporation
Matheswaran et al. Factors affecting flux and water separation performance in air gap membrane distillation
JPH07227517A (en) Separation of liquid mixture
JPH0463110A (en) Separation purification method of alcohol-containing reaction liquid
JP3025533B2 (en) Method of performing equilibrium reaction using gas permeation method
JPH0542287B2 (en)
JPH05177111A (en) Dehydration of water-organic matter solution
US5512179A (en) Membrane process for separation of fluid mixtures
JP2780323B2 (en) Method for producing concentrated aqueous solution of volatile organic liquid
JP2014046300A (en) Dehydration method of solution by membrane
JPH0234329B2 (en)
JPS63258601A (en) Concentration of aqueous organic solution
JP2676900B2 (en) Method for producing ethanol concentrate
Brüschke et al. Economics of industrial pervaporation processes
JPH06287153A (en) Production of anhydrous ethanol
JPH0671531B2 (en) Liquid-liquid separator
JPH05226A (en) Dehydration and concentration of aqueous solution of organic matter