JPH0542155Y2 - - Google Patents

Info

Publication number
JPH0542155Y2
JPH0542155Y2 JP2412388U JP2412388U JPH0542155Y2 JP H0542155 Y2 JPH0542155 Y2 JP H0542155Y2 JP 2412388 U JP2412388 U JP 2412388U JP 2412388 U JP2412388 U JP 2412388U JP H0542155 Y2 JPH0542155 Y2 JP H0542155Y2
Authority
JP
Japan
Prior art keywords
valve
switching valve
propulsion jack
propulsion
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2412388U
Other languages
Japanese (ja)
Other versions
JPH01136592U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2412388U priority Critical patent/JPH0542155Y2/ja
Publication of JPH01136592U publication Critical patent/JPH01136592U/ja
Application granted granted Critical
Publication of JPH0542155Y2 publication Critical patent/JPH0542155Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、シールド掘進機掘削運転中に無負荷
追従運転されている推進ジヤツキが地山から反力
を受けた場合、反力に対して抵抗しないようにし
たシールド掘進機自動方向制御装置の液圧回路に
関するものである。
[Detailed description of the invention] [Industrial application field] This invention is designed to prevent the propulsion jack from receiving a reaction force from the ground when the propulsion jack, which is being operated under no load during the excavation operation of a shield excavator, receives a reaction force from the ground. This invention relates to a hydraulic circuit for an automatic direction control device for a shield tunneling machine that is designed to avoid resistance.

[従来の技術] シールド掘進機には、掘進のため、シールドフ
レーム円周方向に複数の推進ジヤツキが配設され
ている。而してシールド掘進機の前進は、推進ジ
ヤツキの後端をセグメントに支持させた状態で推
進ジヤツキに圧油を供給し、ピストンロツドを突
出させることにより行う。
[Prior Art] A shield tunneling machine is provided with a plurality of propulsion jacks in the circumferential direction of a shield frame for digging. The shield tunneling machine moves forward by supplying pressure oil to the propulsion jack while the rear end of the propulsion jack is supported by the segment, thereby causing the piston rod to protrude.

又シールド掘進機の前進時にカーブさせる場合
には、複数の推進ジヤツキのうち所定の推進ジヤ
ツキには、高圧油を供給してピストンロツドを突
出させるが、残りの推進ジヤツキには高圧油を供
給せず低圧油を供給してピストンロツドを突出さ
せる無負荷追従運転を行う必要がある。
In addition, when making a curve as the shield tunneling machine moves forward, high-pressure oil is supplied to certain of the multiple propulsion jacks to extend their piston rods, while no-load following operation is required in which high-pressure oil is not supplied to the remaining propulsion jacks but low-pressure oil is supplied to them to extend their piston rods.

上述のシールド掘進機に適用する従来の自動方
向制御装置の油圧回路を第3図により説明する
と、タンク1の油を吸引し加圧して送出すように
した油圧ポンプ2の吐出側には、管路3が接続さ
れ、管路3の先端には、主切換弁4が連結され、
主切換弁4には、油をタンク1に戻す戻し用の管
路5が接続されている。
The hydraulic circuit of the conventional automatic direction control device applied to the above-mentioned shield tunneling machine will be explained with reference to FIG. A main switching valve 4 is connected to the tip of the pipe 3,
A return pipe 5 for returning oil to the tank 1 is connected to the main switching valve 4 .

主切換弁4には別の管路6,11が接続され、
管路6は2本の管路7a,7bに分岐し、管路7
a,7bは推進ジヤツキ側切換弁8a,8b、管
路9a,9bを介して推進ジヤツキ10a,10
bのヘツド側油室22a,22bに接続されてい
る。又管路11は2本の管路12a,12bに分
岐し推進ジヤツキ10a,10bのロツド側油室
23a,23bに連結されている。
Another pipe line 6, 11 is connected to the main switching valve 4,
The pipe line 6 branches into two pipe lines 7a and 7b, and the pipe line 7
a, 7b are connected to the propulsion jacks 10a, 10 via propulsion jack side switching valves 8a, 8b and pipes 9a, 9b.
It is connected to the head side oil chambers 22a and 22b of b. Further, the pipe line 11 is branched into two pipe lines 12a and 12b, which are connected to rod side oil chambers 23a and 23b of the propulsion jacks 10a and 10b.

無負荷追従バルブブロツク13は、切換弁1
4、切換弁14から送られて来た油の圧力を減圧
する減圧弁15、減圧弁15からの油が流れる流
路16、油が減圧弁15側へ逆流しないようにし
た逆止弁17a,17bを備え、管路7aと切換
弁14とは管路18により接続され、管路9a,
9bと逆止弁17a,17bは管路19a,19
bにより接続されている。
The no-load following valve block 13 is the switching valve 1
4. A pressure reducing valve 15 that reduces the pressure of the oil sent from the switching valve 14, a flow path 16 through which the oil from the pressure reducing valve 15 flows, a check valve 17a that prevents oil from flowing back toward the pressure reducing valve 15, 17b, the pipe line 7a and the switching valve 14 are connected by a pipe line 18, and the pipe line 9a,
9b and check valves 17a, 17b are pipes 19a, 19
connected by b.

管路11に接続した管路20には、管路21が
接続され、管路21は管路19a,19bに接続
されている。図中24,25は安全弁である。又
推進ジヤツキは2本図示しているが、実際には、
推進ジヤツキ10a,10bと並列に2本よりも
多数の推進ジヤツキが配設されている。更に、安
全弁24,25のセツト圧P1,P2と減圧弁15
のセツト圧P3はP1≒P2 ≫P3に調整されている。
A conduit 21 is connected to a conduit 20 connected to the conduit 11, and the conduit 21 is connected to conduits 19a and 19b. In the figure, 24 and 25 are safety valves. Also, although two propulsion jacks are shown in the diagram, in reality,
More than two propulsion jacks are arranged in parallel with the propulsion jacks 10a, 10b. Furthermore, the set pressures P 1 and P 2 of the safety valves 24 and 25 and the pressure reducing valve 15
The set pressure P 3 is adjusted so that P 1 ≒P 2 ≫P 3 .

シールド掘進機を直進させる場合には、管路3
と6、5と11が連通するよう主切換弁4を開
き、管路7a,7bと9a,9bが連通するよう
切換弁8a,8bを開き、切換弁14を閉じる。
このため、油圧ポンプ2から吐出された油は、管
路3、主切換弁4、管路6,7a,7b、切換弁
8a,8b、管路9a,9bから推進ジヤツキ1
0a,10bのヘツド側油室22a,22bへ送
られ、ピストンロツドが突出してシールド掘進機
が直進する。又推進ジヤツキ10a,10bのピ
ストンロツドの突出により、ロツド側油室23
a,23bの油は、管路12a,12b,11、
主切換弁4、管路5を通つてタンク1へ戻る。
When the shield tunneling machine goes straight, pipe 3
The main switching valve 4 is opened so that the lines 6, 5 and 11 communicate with each other, the switching valves 8a and 8b are opened so that the pipes 7a and 7b and 9a and 9b communicate with each other, and the switching valve 14 is closed.
Therefore, the oil discharged from the hydraulic pump 2 is transferred to the propulsion jack 1 from the pipe 3, the main switching valve 4, the pipes 6, 7a, 7b, the switching valves 8a, 8b, and the pipes 9a, 9b.
The oil is sent to the head side oil chambers 22a and 22b of 0a and 10b, the piston rod protrudes, and the shield excavator moves straight. Also, due to the protrusion of the piston rods of the propulsion jacks 10a and 10b, the rod side oil chamber 23
The oil in a and 23b is supplied to the pipes 12a, 12b, 11,
It returns to the tank 1 through the main switching valve 4 and the pipe 5.

シールド掘進機をカーブさせる場合は、推進ジ
ヤツキの一部に低圧油を供給する無負荷追従運転
を行う必要がある。
When making a curve in a shield tunneling machine, it is necessary to perform no-load follow-up operation by supplying low-pressure oil to part of the propulsion jack.

例えば、推進ジヤツキ10bを無負荷追従運転
する場合には、主切換弁4をシールド掘進機直進
時の切換状態に保持したまま切換弁8bを第3図
に示すように閉じ、切換弁14を管路18の油が
減圧弁15へ送られるよう開く。油圧ポンプ2か
ら吐出された高圧油のうち半分は、管路3、主切
換弁4、管路6,7a、切換弁8a、管路9aか
ら推進ジヤツキ10aのヘツド側油室22aへ供
給され、推進ジヤツキ10aのピストンロツドが
シールド掘進機を押す。
For example, when the propulsion jack 10b is operated in a no-load follow-up operation, the main switching valve 4 is maintained in the switching state when the shield tunneling machine goes straight, and the switching valve 8b is closed as shown in FIG. The oil in line 18 is opened to flow to the pressure reducing valve 15. Half of the high pressure oil discharged from the hydraulic pump 2 is supplied to the head side oil chamber 22a of the propulsion jack 10a from the pipe 3, the main switching valve 4, the pipes 6 and 7a, the switching valve 8a, and the pipe 9a, The piston rod of the propulsion jack 10a pushes the shield excavator.

一方、油圧ポンプ2から吐出された高圧油の残
りの半分は、切換弁8bが閉じられ切換弁14が
開いているため、管路18、切換弁14、減圧弁
15を通り、減圧弁15で減圧されて低圧油とな
り、管路16、逆止弁17b、管路19b,9b
を経て推進ジヤツキ10bのヘツド側油室22b
へ送給される。このため、推進ジヤツキ10bの
ピストンロツドは推進ジヤツキ10aのピストン
ロツドに追従して無負荷状態で前進する。
On the other hand, since the switching valve 8b is closed and the switching valve 14 is open, the remaining half of the high-pressure oil discharged from the hydraulic pump 2 passes through the pipe 18, the switching valve 14, and the pressure reducing valve 15, and then passes through the pressure reducing valve 15. The pressure is reduced and the oil becomes low pressure oil, which flows through the pipe 16, the check valve 17b, and the pipes 19b and 9b.
to the head side oil chamber 22b of the propulsion jack 10b.
sent to. Therefore, the piston rod of the propulsion jack 10b moves forward under no load, following the piston rod of the propulsion jack 10a.

推進ジヤツキ10bのピストンロツドが地山か
ら反力を受けると、該ピストンロツドを後退しよ
うとするためヘツド側油室22bの油圧は管路9
b,19b,21,20、安全弁25を経てタン
ク1へ逃げる。
When the piston rod of the propulsion jack 10b receives a reaction force from the earth, the piston rod tries to retreat, so the oil pressure in the head side oil chamber 22b is reduced to the line 9.
b, 19b, 21, 20, and escapes to tank 1 via safety valve 25.

[考案が解決しようとする課題] しかしながら、上述の油圧回路では無負荷追従
運転されている推進ジヤツキが地山から反力を受
けた場合、油圧は、高圧にセツトされている安全
弁25を経てタンク1へ逃がす必要があるため、
無負荷追従運転されている推進ジヤツキが安全弁
25のセツト圧により地山に抵抗することにな
り、従つてトンネル掘進機を円滑にカーブさせる
ことができないという問題があつた。
[Problem to be solved by the invention] However, in the above-mentioned hydraulic circuit, when the propulsion jack in a no-load follow-up operation receives a reaction force from the ground, the hydraulic pressure is transferred to the tank via the safety valve 25 which is set at high pressure. Because it is necessary to escape to 1,
There was a problem in that the propulsion jack, which is being operated under no load, resists the ground due to the set pressure of the safety valve 25, and therefore the tunnel boring machine cannot curve smoothly.

本考案は上述の実情に鑑み、無負荷追従運転し
ている推進ジヤツキの地山に対する抵抗を小さく
し、シールド掘進機が円滑にカーブし得るように
することを目的としてなしたものである。
The present invention was developed in view of the above-mentioned circumstances, with the purpose of reducing the resistance of the propulsion jack against the ground during no-load follow-up operation, so that the shield tunneling machine can curve smoothly.

[課題を解決するための手段] 本考案は、並列に配列された複数の推進ジヤツ
キのヘツド側液室或いはロツド側液室へ主切換弁
及び推進ジヤツキ側切換弁を介して液を送給し得
るようにした液圧ポンプと、前記主切換弁及び推
進ジヤツキ側切換弁を結ぶ管路の中途部に接続さ
れ無負荷追従運転される推進ジヤツキのヘツド側
液室へ液圧ポンプからの液を減圧して送り得るよ
う切換弁及び減圧弁を備えると共に無負荷追従運
転をしている推進ジヤツキのヘツド側液室に地山
から反力がかかつた場合に液をタンクへ戻す安全
弁を備えた無負荷追従バルブブロツクと、該無負
荷追従バルブブロツクと前記推進ジヤツキ側切換
弁及び推進ジヤツキヘツド側液室を結ぶ管路との
間に配設された、ノンリーク弁を備えたシールド
後退防止圧制御バルブブロツクを設けた構成を備
えている。
[Means for Solving the Problems] The present invention supplies liquid to the head side liquid chambers or rod side liquid chambers of a plurality of propulsion jacks arranged in parallel via a main switching valve and a propulsion jack side switching valve. The liquid from the hydraulic pump is connected to the middle part of the pipe connecting the main switching valve and the propulsion jack side switching valve, and the liquid is supplied to the head side liquid chamber of the propulsion jack which is operated under no load. It is equipped with a switching valve and a pressure reducing valve so that it can be sent under reduced pressure, as well as a safety valve that returns the liquid to the tank in the event that a reaction force from the ground is applied to the head side liquid chamber of the propulsion jack during no-load follow-up operation. A shield retreat prevention pressure control valve equipped with a non-leak valve, disposed between a no-load follow-up valve block and a conduit connecting the no-load follow-up valve block and the propulsion jack side switching valve and the propulsion jack head side liquid chamber. It has a structure with blocks.

[作用] シールド掘進機直進時には、液圧ポンプから吐
出された圧液は主切換弁、切換弁を介して推進ジ
ヤツキのヘツド側液室に送給される。シールド掘
進機カーブ時には、液圧ポンプから吐出された圧
液は、無負荷追従運転しない推進ジヤツキのヘツ
ド側液室には、主切換弁、切換弁を介して送給さ
れ、無負荷追従運転する推進ジヤツキのヘツド側
液室には、主切換弁、無負荷追従バルブブロツ
ク、シールド後退防止圧制御バルブブロツクを介
して送給される。又無負荷追従運転をしている推
進ジヤツキのヘツド側液室に地山の反力が掛かつ
た場合には、液圧はシールド後退防止圧制御バル
ブブロツク、無負荷追従バルブブロツクのセツト
圧の低い安全弁を介してタンクへ戻る。このた
め、無負荷追従運転をしている推進ジヤツキの地
山に対する抵抗は小さく、従つてシールド掘進機
は円滑にカーブすることができる。
[Operation] When the shield tunneling machine moves straight ahead, the pressure liquid discharged from the hydraulic pump is sent to the head side liquid chamber of the propulsion jack via the main switching valve and the switching valve. When the shield tunnel machine curves, the pressure fluid discharged from the hydraulic pump is sent to the head side liquid chamber of the propulsion jack, which does not perform no-load follow-up operation, through the main switching valve and the switching valve, and the no-load follow-up operation is carried out. The liquid is supplied to the head side liquid chamber of the propulsion jack via the main switching valve, no-load following valve block, and shield backback prevention pressure control valve block. In addition, if the reaction force of the ground is applied to the head side liquid chamber of the propulsion jack during no-load follow-up operation, the liquid pressure will be equal to the set pressure of the shield backback prevention pressure control valve block and the no-load follow-up valve block. Return to tank via low safety valve. Therefore, the resistance of the propulsion jack against the ground during no-load follow-up operation is small, and therefore the shield tunneling machine can curve smoothly.

[実施例] 以下、本考案の実施例を添付図面を参照しつつ
説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本考案の一実施例であり、本実施例で
は、第3図の従来例から管路20,21、安全弁
25、逆止弁17a,17bが撤去されている。
又無負荷追従バルブブロツク13の流路16中途
部には、流路26を介して安全弁27が接続さ
れ、油を安全弁27からタンク1へ戻し得るよう
になつており、管路19a,19bには、ノンリ
ーク弁29a,29bを備え無負荷追従バルブブ
ロツク13と接続されたシールド後退防止圧制御
バルブブロツク28が接続されている。なお、第
1図中第3図に示すものと同一のものには同一の
符号が付してある。更に、安全弁24のセツト圧
P1、減圧弁15のセツト圧P3、安全弁27のセ
ツト圧P4は、P1≫P3≧P4に調整されている。
FIG. 1 shows an embodiment of the present invention, and in this embodiment, the pipes 20, 21, the safety valve 25, and the check valves 17a, 17b are removed from the conventional example shown in FIG.
In addition, a safety valve 27 is connected to the middle part of the flow path 16 of the no-load follow-up valve block 13 via a flow path 26, so that oil can be returned from the safety valve 27 to the tank 1. is connected to a shield backback prevention pressure control valve block 28 which is provided with non-leak valves 29a and 29b and is connected to the no-load following valve block 13. Components in FIG. 1 that are the same as those shown in FIG. 3 are given the same reference numerals. Furthermore, the set pressure of the safety valve 24
P 1 , the set pressure P 3 of the pressure reducing valve 15, and the set pressure P 4 of the safety valve 27 are adjusted to satisfy P 1 ≫P 3 ≧P 4 .

シールド掘進機を直進させる場合には、管路3
と6、5と11が連通するように主切換弁4を開
き、管路7a,7bと9a,9bが連通するよう
切換弁8a,8bを開き、管路18と流路16が
遮断されるよう切換弁14を閉じ、流路16と1
9a,19bが遮断されるようノンリーク弁29
a,29bを閉じておく。このため、油圧ポンプ
2から吐出された高圧油は第2図の場合と同様の
経路を通つて推進ジヤツキ10a,10bヘツド
側油室22a,22bへ送給される。従つて、推
進ジヤツキ10a,10bのピストンロツドが突
出し、シールド掘進機が直進する。
When the shield tunneling machine goes straight, pipe 3
The main switching valve 4 is opened so that 6, 5 and 11 communicate with each other, and the switching valves 8a and 8b are opened so that pipes 7a, 7b and 9a, 9b communicate with each other, and the pipe 18 and flow path 16 are cut off. Then, close the switching valve 14 and open the flow paths 16 and 1.
Non-leak valve 29 so that 9a and 19b are shut off.
Close a and 29b. Therefore, the high pressure oil discharged from the hydraulic pump 2 is sent to the head side oil chambers 22a, 22b of the propulsion jacks 10a, 10b through the same path as in the case of FIG. Therefore, the piston rods of the propulsion jacks 10a, 10b protrude, and the shield tunneling machine moves straight.

シールド掘進機をカーブさせるために例えば推
進ジヤツキ10bを無負荷追従運転する場合に
は、主切換弁4をシールド掘進機直進時の切換状
態に保持したまま切換弁8bを第1図に示すよう
に閉じ、切換弁14を管路18の油が減圧弁15
へ流れるように開き、ノンリーク弁29bを流路
16と管路19bが連通するよう開く。
For example, when the propulsion jack 10b is operated under no load to curve the shield tunneling machine, the main switching valve 4 is held in the switching state when the shield tunneling machine moves straight, and the switching valve 8b is turned as shown in FIG. When the oil in the pipe line 18 is closed, the switching valve 14 is transferred to the pressure reducing valve 15.
The non-leak valve 29b is opened so that the channel 16 and the pipe 19b communicate with each other.

油圧ポンプ2から突出された高圧油のうち半分
は、管路3、主切換弁4、管路6,7a、切換弁
8a,管路9aから推進ジヤツキ10aのヘツド
側油室22aへ供給され、第3図の場合と同様、
推進ジヤツキ10aのピストンロツドがシールド
掘進機を押す。
Half of the high pressure oil projected from the hydraulic pump 2 is supplied to the head side oil chamber 22a of the propulsion jack 10a from the pipe 3, the main switching valve 4, the pipes 6 and 7a, the switching valve 8a, and the pipe 9a, As in the case of Figure 3,
The piston rod of the propulsion jack 10a pushes the shield excavator.

一方、油圧ポンプ2から吐出された高圧油の残
りの半分は、切換弁8bが閉じられ切換弁14が
開いているため、管路18、切換弁14、減圧弁
15を通り、減圧弁15で減圧されて低圧油とな
り、管路16、ノンリーク弁29b、管路19
b,9bを経て推進ジヤツキ10bのヘツド側油
室22bへ供給される。このため、推進ジヤツキ
10bのピストンロツドは推進ジヤツキ10aの
ピストンロツドに追従して無負荷状態で前進す
る。
On the other hand, since the switching valve 8b is closed and the switching valve 14 is open, the remaining half of the high-pressure oil discharged from the hydraulic pump 2 passes through the pipe 18, the switching valve 14, and the pressure reducing valve 15, and then passes through the pressure reducing valve 15. The pressure is reduced and the oil becomes low pressure oil, which flows through the pipe 16, the non-leak valve 29b, and the pipe 19.
The oil is supplied to the head-side oil chamber 22b of the propulsion jack 10b through the oil pumps b and 9b. Therefore, the piston rod of the propulsion jack 10b moves forward under no load, following the piston rod of the propulsion jack 10a.

推進ジヤツキ10bのピストンロツドが地山か
ら反力を受けると、該ピストンロツドは後退しよ
うとするためヘツド側油室22bの油圧は、管路
9b,19b、ノンリーク弁29b、流路16,
26、安全弁27を経てタンク1へ逃げる。安全
弁27のセツト圧は低圧であるため、推進ジヤツ
キ10bの地山に対する抵抗は小さく、従つてト
ンネル掘進機は前進しつつ円滑にカーブすること
ができる。
When the piston rod of the propulsion jack 10b receives a reaction force from the earth, the piston rod tries to retreat, so the oil pressure in the head side oil chamber 22b is transferred to the pipes 9b, 19b, the non-leak valve 29b, the flow path 16,
26, escapes to tank 1 via safety valve 27. Since the set pressure of the safety valve 27 is low, the resistance of the propulsion jack 10b against the ground is small, so that the tunnel boring machine can smoothly curve while moving forward.

第1図の油圧回路が適用される制御装置のブロ
ツク図は第2図に示され、図中31はシールド掘
進機の姿勢検出装置、32はシールド掘進機方向
制御のため第1図の推進ジヤツキ10a,10b
のうちどれを運転しどれを運転しないか選択する
ための運転ジヤツキ選択演算装置、33は負荷押
し運転ジヤツキ操作指令信号、34は無負荷追従
運転ジヤツキ操作指令信号、35,36は第1図
の油圧回路中に設けた切換弁8a,8b,14、
ノンリーク弁29a,29b等の弁を示す。
A block diagram of a control device to which the hydraulic circuit of FIG. 1 is applied is shown in FIG. 2, in which 31 is a shield tunneling machine attitude detection device, and 32 is a propulsion jack of FIG. 1 for direction control of the shield tunneling machine. 10a, 10b
33 is a load pushing operation jack operation command signal, 34 is a no-load follow-up operation jack operation command signal, 35 and 36 are the ones shown in FIG. Switching valves 8a, 8b, 14 provided in the hydraulic circuit,
Valves such as non-leak valves 29a and 29b are shown.

シールド掘進機の姿勢変化は姿勢検出装置31
により検出されて運転ジヤツキ選択演算装置32
へ与えられ、該演算装置32において、第1図の
推進ジヤツキ10a,10bのうちどの推進ジヤ
ツキを負荷押し運転しどの推進ジヤツキを無負荷
追従運転するかが演算され、所定の切換弁8a又
は8b,14、ノンリーク弁29a又は29bに
負荷押し運転ジヤツキ操作指令信号33又は無負
荷追従運転ジヤツキ操作指令信号34が与えられ
る。而して、推進ジヤツキ10aを負荷押し運転
し、推進ジヤツキ10bを無負荷追従運転する場
合は、負荷押し運転ジヤツキ操作指令信号33に
より第1図の切換弁8aは管路7a,9aが連通
するよう切換えられて開き、無負荷追従運転ジヤ
ツキ操作指令信号34により第1図の切換弁1
4、ノンリーク弁29が開き、上述したような運
転が行われる。従つて、負荷押し運転される推進
ジヤツキ及び無負荷追従運転される推進ジヤツキ
は自動的に選定されると共に、無負荷追従運転さ
れる推進ジヤツキは必ず負荷押し運転される推進
ジヤツキと同じタイミングで伸びることになる。
このため、従来の場合のように、負荷押し運転も
無負荷追従運転もされていない静止している推進
ジヤツキ(従来の場合は、シールド掘進機の方向
を変える際必らず静止している推進ジヤツキがあ
るが、本考案では斯かる推進ジヤツキはない。)
が突然伸びることがなく、安全に作業を行うこと
ができる。
The attitude detection device 31 detects the attitude change of the shield tunneling machine.
is detected by the driving jerk selection calculation device 32.
The calculation device 32 calculates which of the propulsion jacks 10a and 10b shown in FIG. , 14, a load pushing operation jack operation command signal 33 or a no-load following operation jack operation command signal 34 is given to the non-leak valve 29a or 29b. Therefore, when the propulsion jack 10a is operated to push a load and the propulsion jack 10b is operated to follow a load, the switching valve 8a shown in FIG. The switching valve 1 shown in FIG. 1 is switched open as shown in FIG.
4. The non-leak valve 29 is opened and the operation as described above is performed. Therefore, the propulsion jacks that are operated with load pushing and the propulsion jacks that are operated with no-load follow-up are automatically selected, and the propulsion jacks that are operated with no-load follow-up are always extended at the same timing as the propulsion jacks that are operated with load push. It turns out.
For this reason, unlike in the conventional case, a stationary propulsion jack that is not operated with a load or a no-load follow-up operation (in the conventional case, when changing the direction of a shield excavator, it is necessary to There is some propulsion jerk, but there is no such propulsion jerk in the present invention.)
There is no sudden stretching and the work can be carried out safely.

又、シールド掘進機の自動方向制御のためには
推進ジヤツキの推力を適宜変更する必要があり、
この推力の変更はタイムリーに行う必要がある。
このため、全数の推進ジヤツキのうち、負荷押し
運転ジヤツキと、無負荷追従運転ジヤツキを上述
のように一緒に伸ばしつつ必要推進力の変化に対
応して第1図の切換弁8a,8b,14、ノンリ
ーク弁29a,29bを適宜切換える。このた
め、従来のように方向制御時に推進ジヤツキを作
業員が手段で操作して負荷押し運転している推進
ジヤツキを無負荷追従運転に切換えたり、無負荷
追従運転している推進ジヤツキを負荷押し運転に
切換えたりする必要がないから、推進力の変更を
時間遅れなく迅速に行うことができる。
In addition, in order to automatically control the direction of the shield tunneling machine, it is necessary to change the thrust of the propulsion jack as appropriate.
This thrust change needs to be done in a timely manner.
For this reason, among the total number of propulsion jacks, the load pushing operation jack and the no-load follow-up operation jack are extended together as described above, and the switching valves 8a, 8b, 14 in FIG. , appropriately switch the non-leak valves 29a and 29b. For this reason, it is possible to switch a propulsion jack that is currently operating by pushing a load by manually operating the propulsion jack during direction control to a no-load follow-up operation, or to switch a propulsion jack that is operating a no-load follow-up operation to push the load. Since there is no need to switch to operation, the propulsion force can be changed quickly without any time delay.

前記ノンリーク弁29a,29bは通常の切換
弁を使用してもよい。この場合、切換弁の内部リ
ークにより負荷押し運転ジヤツキ回路の圧油が若
干低圧側に逃げてエネルギー損失にはなるが、本
考案の効果を阻害するものではない。
The non-leak valves 29a, 29b may be ordinary switching valves. In this case, due to the internal leakage of the switching valve, the pressure oil in the load pushing operation jack circuit slightly escapes to the low pressure side, resulting in energy loss, but this does not impede the effects of the present invention.

なお本考案の実施例では油を用いる場合につい
て説明したが、油に限らず他の液体でも実施し得
ること、その他、本考案の要旨を逸脱しない範囲
内で種々変更を加え得ること、等は勿論である。
Although the embodiments of the present invention have been explained using oil, it is possible to implement the invention not only with oil but also with other liquids, and to make various changes without departing from the gist of the present invention. Of course.

[考案の効果] 本考案のシールド掘進機自動方向制御装置の液
圧回路によれば、無負荷追従運転をしている推進
ジヤツキが地山から反力を受けた場合、抵抗が小
さいため、シールド掘進機は容易に前進しつつ円
滑にカーブすることができるという優れた効果を
奏し得る。
[Effects of the invention] According to the hydraulic circuit of the shield tunneling machine automatic direction control device of the invention, when the propulsion jack during no-load follow-up operation receives a reaction force from the ground, the shield The tunneling machine has the excellent effect of being able to move forward easily and curve smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の説明図、第2図は
本考案が適用される制御装置のブロツク図、第3
図は従来例の説明図である。 図中1はタンク、2は油圧ポンプ、3は管路、
4は主切換弁、5,6,7a,7bは管路、8
a,8bは推進ジヤツキ側切換弁、9a,9bは
管路、10a,10bは推進ジヤツキ、11は管
路、12a,12bは管路、13は無負荷追従バ
ルブブロツク、14は切換弁、15は減圧弁、1
6は流路、18,19a,19bは管路、22
a,22bはヘツド側油室、23a,23bはロ
ツド側油室、27は安全弁、28はシールド後退
防止圧制御バルブブロツク、29a,29bはノ
ンリーク弁を示す。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a block diagram of a control device to which the present invention is applied, and Fig. 3 is a block diagram of a control device to which the present invention is applied.
The figure is an explanatory diagram of a conventional example. In the figure, 1 is a tank, 2 is a hydraulic pump, 3 is a pipe,
4 is the main switching valve, 5, 6, 7a, 7b are pipelines, 8
a, 8b are propulsion jack side switching valves, 9a, 9b are pipes, 10a, 10b are propulsion jacks, 11 are pipes, 12a, 12b are pipes, 13 is a no-load following valve block, 14 is a switching valve, 15 is a pressure reducing valve, 1
6 is a flow path, 18, 19a, 19b are pipes, 22
Reference numerals a and 22b indicate oil chambers on the head side, 23a and 23b indicate oil chambers on the rod side, 27 a safety valve, 28 a shield backback prevention pressure control valve block, and 29a and 29b non-leak valves.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 並列に配列された複数の推進ジヤツキのヘツド
側液室或いはロツド側液室へ主切換弁及び推進ジ
ヤツキ側切換弁を介して液を送給し得るようにし
た液圧ポンプと、前記主切換弁及び推進ジヤツキ
側切換弁を結ぶ管路の中途部に接続され無負荷追
従運転される推進ジヤツキのヘツド側液室へ液圧
ポンプからの液を減圧して送り得るよう切換弁及
び減圧弁を備えると共に無負荷追従運転をしてい
る推進ジヤツキのヘツド側液室に地山から反力が
かかつた場合に液をタンクへ戻す安全弁を備えた
無負荷追従バルブブロツクと、該無負荷追従バル
ブブロツクと前記推進ジヤツキ側切換弁及び推進
ジヤツキヘツド側液室を結ぶ管路との間に配設さ
れた、ノンリーク弁を備えたシールド後退防止圧
制御バルブブロツクを設けたことを特徴とするシ
ールド掘進機自動方向制御装置の液圧回路。
A hydraulic pump capable of supplying liquid to the head side liquid chambers or rod side liquid chambers of a plurality of propulsion jacks arranged in parallel via a main switching valve and a propulsion jack side switching valve, and the main switching valve. A switching valve and a pressure reducing valve are provided so that the liquid from the hydraulic pump can be reduced in pressure and sent to the head side liquid chamber of the propulsion jack which is connected to the middle part of the pipe connecting the propulsion jack side switching valve and is operated under no load. and a no-load follow-up valve block equipped with a safety valve that returns liquid to the tank when a reaction force from the earth is applied to the head-side liquid chamber of a propulsion jack that is in no-load follow-up operation, and the no-load follow-up valve block. and a pipeline connecting the propulsion jack side switching valve and the propulsion jack head side liquid chamber, and a shield retreat prevention pressure control valve block equipped with a non-leak valve is provided. Hydraulic circuit of directional control device.
JP2412388U 1988-02-25 1988-02-25 Expired - Lifetime JPH0542155Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412388U JPH0542155Y2 (en) 1988-02-25 1988-02-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412388U JPH0542155Y2 (en) 1988-02-25 1988-02-25

Publications (2)

Publication Number Publication Date
JPH01136592U JPH01136592U (en) 1989-09-19
JPH0542155Y2 true JPH0542155Y2 (en) 1993-10-25

Family

ID=31243699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412388U Expired - Lifetime JPH0542155Y2 (en) 1988-02-25 1988-02-25

Country Status (1)

Country Link
JP (1) JPH0542155Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745794B2 (en) * 1989-12-20 1995-05-17 株式会社トキメック Automatic direction control device for shield machine
JP2553720Y2 (en) * 1991-05-01 1997-11-12 株式会社小松製作所 Buckling prevention device for shield machine

Also Published As

Publication number Publication date
JPH01136592U (en) 1989-09-19

Similar Documents

Publication Publication Date Title
EP0393195B1 (en) Fluid control mechanism for power shovels
US4194436A (en) Speedup device for reciprocating cylinders
KR100324108B1 (en) Engine speed control system for construction machine
JP4907445B2 (en) Hydraulic control device for attachments in construction machinery
US20130047592A1 (en) Meterless hydraulic system having restricted primary makeup
US4558629A (en) Hydraulic control means for pipe thrust-jacking apparatus
JPH0542155Y2 (en)
JP2602695B2 (en) Hydraulic circuit of hydraulic excavator and hydraulic switching valve
JP3289852B2 (en) Direction control valve for flow rate support
EP0404946A4 (en) Hydraulic circuit device of construction vehicle
JP2551543B2 (en) Hydraulic circuit of hydraulic excavator
KR102101054B1 (en) Hydraulic circuit for construction machine
US4308787A (en) Priority flow divider
JP2799045B2 (en) Hydraulic circuit for crane
JP2654484B2 (en) Hydraulic circuit of construction machinery
JP2005068718A (en) Hydraulic drive unit of construction machinery
JPH078633Y2 (en) Hydraulic circuit of shield machine automatic direction control device
CN114151397B (en) Casing clamping device and full casing full-circle drilling machine
JP3553186B2 (en) Hydraulic circuit of telescopic cylinder
JPH04297626A (en) Hydraulic circuit for construction machine
JP2008115942A (en) Hydraulic driving device of working machine
JPS62220705A (en) Variable regeneration circuit valve for hydraulic cylinder
JP6860400B2 (en) Hydraulic control device for construction machinery
JPS58193906A (en) Hydraulic circuit for construction machine
JP2573129Y2 (en) Hydraulic switching device of demolition machine