JPH0541757B2 - - Google Patents

Info

Publication number
JPH0541757B2
JPH0541757B2 JP59182782A JP18278284A JPH0541757B2 JP H0541757 B2 JPH0541757 B2 JP H0541757B2 JP 59182782 A JP59182782 A JP 59182782A JP 18278284 A JP18278284 A JP 18278284A JP H0541757 B2 JPH0541757 B2 JP H0541757B2
Authority
JP
Japan
Prior art keywords
weight
parts
copolymer latex
paper
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59182782A
Other languages
Japanese (ja)
Other versions
JPS6163795A (en
Inventor
Hiroshi Yoshida
Chisato Hamaguchi
Haruhiro Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP59182782A priority Critical patent/JPS6163795A/en
Publication of JPS6163795A publication Critical patent/JPS6163795A/en
Publication of JPH0541757B2 publication Critical patent/JPH0541757B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/56Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/58Polymers or oligomers of diolefins, aromatic vinyl monomers or unsaturated acids or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は改善された紙被覆組成物に関し、更に
詳しくはサイズプレスコータ、ゲートロールコー
ターなどのロールコーターを用いて塗工するさい
操業性が極めて良好でかつ紙塗工用として品質の
すぐれたロールコーター用に好適な紙被覆組成物
に関する。 〔従来技術〕 従来、顔料、充填剤、分散剤及び結合剤からな
る水性分散組成物は紙被覆組成物として広く使用
されている。 近年、上質紙、中質紙の印刷適性を改善するた
めサイズプレスコーター、ゲートロールコーター
などのオンマシンロールコーターにより1〜15
g/m2の軽量で紙の両面塗工をする方法が設備を
大幅に改造することなくかつ高い生産性でもつて
実施されている。 これらの塗工方式は他のブレードコーター、エ
アーナイフコーターなどとは異なり、ロール両面
から塗料を紙に押しつけて塗布されるので塗工時
に大きな剪断力がかかるため操業上及び紙質上種
種の問題点が発生する。サイズプレスコーター、
ゲートロールコーターなどのロールコーター用紙
被覆組成物に要求される性能として以下の点が挙
げられる。 (1) 機械的安定性が良好であること: これらのロールコーターによれば塗工時に塗
工液に機械的な高い剪断力が加えられるので操
業時ガムアツプないしロール汚れなどの問題を
生じる。このため紙被覆組成物は機械的安定性
が良好であることが必要である。 (2) 流動性がよく良好なレベリング性を与えるこ
と: サイズプレスコーター、ゲートロールコータ
ーの場合、ロールコーター特有の梨地模用が発
生し易く、平滑な塗工面が得られにくい。従つ
て紙被覆組成物は良好な流動性、レベリング性
を与える性能を有していることが必要である。 (3) 強度(接着強度及び耐水性)が良好であるこ
と: サイズプレスコーター、ゲートロールコータ
ーの場合、他の塗工方式に比べ高い剪断力が加
えられたり、またサイズプレスコーターの場合
紙塗工液の濃度が低いこともあり、顔料の結合
剤がかなり紙基質層内に移行するので、接着強
度や耐水性が低下することになる。これを改良
するため結合剤を多量に使用する必要がある
が、強度がすぐれた顔料の結合剤を使用すれば
その使用量は少量ですむことになる。 (4) 塗工表面のカバリング性が良好であること: 上記のロールコーターを用いて軽量塗工をす
る場合、塗工量が少ないのでブレード塗工の場
合の如き緻密な塗工面を形成しにくいため、印
刷光沢発現性がよくない。従つて紙被覆組成物
は表面のカバリング性良好で透気性が高くイン
キ浸透性の低い塗工面を与える性能を有するこ
とが必要である。 〔発明が解決しようとする問題点〕 紙被覆組成物中の顔料結合剤としては澱粉、変
性澱粉などの天然結合剤;スチレン−ブタジエン
系共重合体ラテツクス、カルボキシ変性スチレン
−ブタジエン系共重合体ラテツクス、ポリ酢酸ビ
ニルエマルジヨン、アクリル酸エステル系(共)
重合体ラテツクス、メタクリル酸エステル系
(共)重合体ラテツクス、ポリクロロプレンラテ
ツクス、ポリビニルアルコールなどの合成結合剤
が使用されている。しかし軽量塗工の場合、紙被
覆組成物の結合剤として上記の結合剤を用いる
と、機械的安定性、流動性、紙面強度が劣り、緻
密な塗工面を形成しにくいという問題があつた。 本発明の目的は良好な機械的安定性、流動性、
接着強度、耐水性を有しかつ塗工面にすぐれた光
沢発現性を付与する紙被覆組成物を提供すること
にある。 〔問題点を解決するための手段〕 本発明の紙被覆組成物は顔料100重量部に対し
て、 (i) エチレン系不飽和カルボン酸5〜40重量%、
脂肪族共役ジエン5〜40重量%、エチレン系不
飽和カルボン酸アルキルエステル10〜50重量%
及びアルケニル芳香族化合物10〜70重量%から
なる単量体混合物(イ)5〜35重量部を乳化重合さ
せ、 (ii) 得られた共重合体ラテツクスの存在下、脂肪
族共役ジエン20〜70重量%、アルケニル芳香族
化合物30〜80重量%及びエチレン系不飽和カル
ボン酸アルキルエステルとシアン化ビニルから
選ばれる1種以上の単量体0〜50重量%からな
る単量体混合物(ロ)63〜94重量部を添加し重合さ
せ、 (iii) 上記(ii)の単量体混合物の重合の開始後であつ
てかつ重合が実質的に終了しない間において不
飽和アミド(ハ)1.5〜6重量部を(イ)、(ロ)、(ハ)の合
計100重量部になるよう添加し重合させて得ら
れた共重合体ラテツクスであつてかつその平均
粒子径が0.06〜0.35μmでトルエン不溶分が55〜
98重量%である共重合体ラテツクスを上記顔料
結合剤として10〜35重量部含有することを特徴
とするものである。 尚ここでトルエン不溶分とは共重合体に含まれ
るトルエン不溶分を全共重合体に対して重量百分
率で示したものでありその測定法は実施例に記載
のとおりである。 本発明に使用する顔料としてはたとえばクレ
ー、硫酸バリウム、酸化チタン、サチンホワイ
ト、水酸化アルミニウム、及び炭酸カルシウム等
が挙げられる。 本発明の第1段階で重合される単量体において
エチレン系不飽和カルボン酸としてはたとえばア
クリル酸、メタクリル酸、フマル酸、マレイン酸
およびイタコン酸等が挙げられる。これらは一種
又は二種以上を使用することができる。エチレン
系不飽和カルボン酸は5〜40重量%の範囲で用い
られるが、5重量%未満では接着強度の低下、ラ
テツクスの安定性の低下を来し40重量%を越える
とラテツクスの粘度が高くなりすぎるので塗工性
及び取扱いの面からみて好ましくない。 脂肪族共役ジエン単量体としてはたとえば1,
3−ブタジエン、イソプレン、2−メチル−1,
3−ブタジエン及び2−クロル−1,3−ブタジ
エン等が挙げられる。脂肪族共役ジエンは5〜40
重量%で用いられるが、5重量%未満では接着強
度が低下し40重量%を越えると接着強度、耐水性
が低下する。 エチレン系不飽和カルボン酸アルキルエステル
としてはたとえばメチルアクリレート、メチルメ
タクリレート、エチルアクリレート、エチルメタ
クリレート、ブチルアクリレート、2−エチルヘ
キシルアクリレート、グリシジルメタクリレー
ト、ジメチルフマレート、ジエチルフマレート、
ジメチルマレエート、ジエチルマレエート、ジメ
チルイタコネート、モノメチルフマレート、およ
びモノエチルフマレート等が挙げられる。エチレ
ン系不飽和カルボン酸アルキルエステルは10〜50
重量%で用いられるが、10重量%未満では得られ
た共重合体ラテツクスを用いた塗工紙の耐光性が
低下し、50重量%を越えると接着強度、耐水性が
低下する。 アルケニル芳香族化合物としてはたとえばスチ
レン、アルフアメチルスチレン、およびビニルト
ルエン等が挙げられる。アルケニル芳香族化合物
は10〜70重量%で用いられるが10重量%未満では
接着強度、耐水性が低下する。70重量%を越える
と接着強度が低下する。 第1段階の重合に用てられる単量体混合物(イ)は
5〜35重量部であり5重量部未満ではラテツクス
の安定性が低下する。また35重量部を越えると得
られた共重合体ラテツクスを用いた塗工紙の耐水
性が低下する。 次いで第2段階で重合する単量体のうち脂肪族
共役ジエンは20〜70重量%で用いられるが20重量
%未満では接着強度が低下し70重量%を越えると
接着強度及び耐水性が低下する。アルケニル芳香
族化合物は30〜80重量%で用いられるが30重量%
未満では接着強度、耐水性が低下する。80重量%
を越えると接着強度が低下する。ここでエチレン
系不飽和カルボン酸エステル及びアクリロニトリ
ル等のシアン化ビニルから選ばれる1種以上の単
量体を50重量%以下、好ましくは30重量%以下を
共重合させ、接着強度の向上をはかることもでき
るが、耐水性を特に必要とする場合には使用しな
いことが好ましい。 第2段階で用いられる単量体混合物(ロ)は63〜94
重量部用いられるが63重量部未満ではラテツクス
の安定性が低下し94重量部を越えると得られた共
重合体ラテツクスを用いた塗工紙の耐水性が低下
する。 さらに該単量体混合物の重合開始後であつてか
つ重合が実質的に終了しない間(重合転化率約5
〜95%、好適には10〜70%の範囲)において不飽
和酸アミド1.5〜6重量部を添加し重合が行われ
る。不飽和酸アミドとしてはアクリルアミド、メ
タクリルアミド、N−メチロールアクリルアミ
ド、N−メチロールメタクリルアミド、N−ブト
キシメチルアクリルアミド等が挙げられる。不飽
和酸アミドは1.5〜6重量部好ましくは2〜5重
量部用いられるが、1.5重量部未満ではラテツク
スの安定性が低下し、6重量部を越えるとラテツ
クス粘度が高くなりすぎる。また不飽和酸アミド
の重合反応系への添加は第2段目の重合に使用す
る脂肪族共役ジエンとアルケニル芳香族化合物と
混合して、又は混合しないで同時に行なつてよ
い。また不飽和酸アミドは第2段目の重合が実質
的に終了する前に好ましくは重合転化率が約95%
に達する前に一括してもしくは分割して、または
連続して重合反応系に加えてもよい。第2段目の
重合終了後に添加するとラテツクス粘度が高くな
つたり塗工紙の耐水性、着肉性が悪くなる。 本発明の共重合体ラテツクスの製造法において
は第1段階、第2段階のいずれも公知の一括、分
割、連続添加重合法が行なわれる。また重合に際
しては公知の乳化剤、重合開始剤、連鎖移動剤等
が用いられる。重合温度は通常5〜95℃、好まし
くは50〜80℃である。 本発明における共重合体ラテツクスはその平均
粒子径が0.06〜0.35μ好ましくは0.1〜0.3μの範囲
でロールコーター用の紙被覆組成物の顔料結合剤
として用いた場合、機械的安定性、流動性、レベ
リング性等で優れた性能を得ることが出来る。平
均粒子径が0.06μ未満では梨地模様が発生し、イ
ンキ乾燥性の低下を来し0.35μを越えると流動性
の低下、および塗工紙の接着強度が低下する。 本発明ではトルエン不溶分は55〜98%、好まし
くは60〜95%の範囲においてロールコーター用の
紙被覆、組成物の顔料結合剤として用いた場合良
好な機械的安定性、かつ接着強度の優れた塗工紙
が得られる。トルエン不溶分が55%未満であると
接着強度の低下、かつ紙被覆組成物の機械的安定
性が低下する。一方トルエン不溶分が98%を越え
ると接着強度、及び耐水性が低下する。 本発明の共重合体ラテツクスの好ましい使用量
はロールコーターの塗工方式によつても異なる。
例えばサオズプレスコーターの場合顔料100重量
部に対して10〜35重量部、又ゲートロールコータ
ーの場合顔料100重量部に対して10〜25重量部使
用するのが好ましい。共重合体ラテツクス以外に
水溶性結合剤として澱粉、酸化澱粉、ポリビニル
アルコール等があると、これらの中から選ばれた
1種以上の水溶性結合剤を共重合体ラテツクスと
ともに紙被覆組成物に配合することもできる。水
溶性結合剤の使用量はサイズプレスコーターの場
合10〜30重量部、又ゲートロールコーターの場合
5〜20重量部使用するのが好ましい。実施例及び
比較例における試験方法は以下のとおりである。 (1) 紙被覆組成物の粘度測定方法: BM型粘度計を用いて25℃、60rpmにおける
粘度で表示。 (2) 高速流動性の見掛け粘度測定方法: 熊ケ谷理機工業製ハーキユレス高剪断粘度計
を用い回転数8800rpm、ボブF、トルクレンジ
2の条件で測定した。Tmax(dyne−cm)を用
いて次式より算出する。 見掛け粘度=9.55×8×10-5×Tmax/8800×100 高速塗工の塗工性の指標となるもので数値が
大きいと塗工性が劣る傾向にある。 (3) ガムアツプテストの測定方法: ロール汚れ性の指標となるもので熊ケ谷理機
製造のガムアツプテスターを用いて塗工液をゴ
ムロールで練り機械的剪断をかけてゴムロール
上に凝固物が発生するまでの時間(分)を測定
する。時間が長い方が良好である。 (4) 機械的安定性の測定方法: マーカン安定度試験機を用いて回転数
1000rpm、圧力10Kg、時間10分、塗工液の温度
を70℃の条件で発生する凝集物の量を乾燥重量
比で表示。数値は小さいほど良好。 (5) 梨地模様の測定方法: 熊ケ谷理機製造のテストサイズプレスコータ
ーを用いて塗工液を紙基質に塗工した後塗工表
面にカーボン粉を塗布し塗工表面の状態を観察
する。 〇(良);△(やや梨地模様発生);×(梨地
模様発生) (6) 塗工及び仕上げ方法: サイズプレス処方の場合 熊ケ谷理機のテストサイズプレスコーター
を用いて塗工液を紙基質に塗工し塗工紙を得
る。次に熱風乾燥機を用い温度120℃、時間
30秒の条件で塗工紙を乾燥し更にスーパーカ
レンダーを用いロール温度70℃、回転数
450rpm、線圧力70Kg/cm、通紙回数2回で
仕上げを行なつた。 ゲートロール処方の場合 コーテイングロツドNo.4を用いて塗工液を
紙基質に塗工し塗工紙を得る。以下乾燥条
件、スーパーカレンダー条件はサイズプレス
処方の条件と同じである。 上記で得られたそれぞれの塗工紙を用いて以下
の(7)〜(11)のテストを行なつた。 (7) Rドライ強度試験: 塗工紙の接着強度の指標となるもので明製作所
R−型印刷機を用いて東洋インキSMX
TV=15のインキを用いて印刷した。塗工紙接
着強度は次の評価基準で判定した。 〇(良) ピツキング発生せず △(やや不良) ピツキング少量発生 ×(不良) ピツキング多量発生 (8) Rウエツト強度試験: 塗工紙の耐水性の指標となるもので明製作所
R−型印刷機でモルトンロールを用い湿し
水を与えて印刷した時のピツキングの程度を次
の評価基準で判定した。なおインキは東洋イン
キSMX TV=15を用いた。 〇(良) ピツキング発生せず △(やや不良) ピツキング少量発生 ×(不良) ピツキング多量発生 (9) インキ乾燥性試験: 明製作所RI−型印刷機を用いて東洋イン
キ、ブライト墨インキを使用して印刷した後印
刷物に紙を押し当てインキの裏移りの程度を次
の評価基準で判定した。 〇(良) インキの裏移りなし △(やや不良) インキの裏移り若干有り ×(不良) インキの裏移り多く有り (10) 印刷光沢発現性: 明製作所R−型印刷機を用いて東洋イン
キブライト藍インキを使用して印刷した後自然
乾燥させる。得られた印刷物を村上式光沢度計
を使用して光沢度を測定する。数値は高い程良
好。 (11) 透気性試験: 塗工紙の緻密性の指標となるもので王研式透
気度試験機を用いて一定量のエアーが塗工紙を
通過するまでの時間(秒)を測定する。時間が
長い程緻密な塗工面を形成しているといえる。 (12) ラテツクスの平均粒子径測定方法: 共重合体ラテツクスをオスミウム酸で処理し
電子顕微鏡写真(30000倍)をとり粒子500個の
粒子径を測定し重量平均して求めた。 (13) ラテツクスのトルエン不溶分の測定方法: 水酸化ナトリウムでPH6〜8に調整した共重
合体ラテツクスをメタノールで凝固し、洗浄、
乾燥した後約0.3gの試料を100mlのトルエンに
20時間浸漬した後トルエン不溶分を測定し試料
に対する重量%で示した。 実施例 1 <共重合体ラテツクスの製造> 水160部、アルキルベンゼンスルホン酸ナトリ
ウム0.5部、炭酸水素ナトリウム0.6部、過硫酸カ
リウム0.5部を容積100のオートクレーブに仕込
んだ。次いでブタジエン4部、スチレン13部、メ
チルメタクリレート5部、アクリル酸1部、フマ
ル酸2部からなる単量体を一括添加し四塩化炭素
3部とともに仕込み、撹拌しながら70℃まで加温
し重合させた。2時間後ブタジエン27部、スチレ
ン45部からなる単量体混合物の均一な連続添加を
開始し15時間連続添加重合を継続した。この間第
2段階の重合開始3時間後(第2段階の転化率18
%)にアクリルアミド3部を一括添加し重合させ
た。重合時間24時間で重合転化率が100%に達し
た。得られた共重合体ラテツクスは重合様態が良
好で、凝固物の発生も少なかつた。この共重合体
ラテツクスに水酸化ナトリウム溶液を添加しPHを
7に調節した後モノマーストリツピング、減圧蒸
留により濃縮した。 実施例 2、3 <共重合体ラテツクスの製造> 表1に示す実施例2及び3は実施例1と同様の
製造法であるが、但し実施例2は不飽和酸アミド
であるアクリルアミドを5部、又実施例3はメタ
クリルアミドを2部用いて重合したものである。
又実施例2、3とも平均粒子径の調節は重合用
水、及び乳化剤を変量させることにより行ない、
トルエン不溶分については分子量調節剤を変量さ
せて共重合体ラテツクスを得た。 実施例 4、5 <共重合体ラテツクスの製造> 表1に示す実施例4及び5は実施例1と同様の
製造法であるが、但し実施例4は第2段階の単量
体混合物としてブタジエン27部、スチレン35及び
アクリロニトリル10部からなる混合物を用いて共
重合させ、又実施例5は第2段階の単量体混合物
としてブタジエン27部、スチレン35及びメチルメ
タクリレート10部からなる混合物を用いて共重合
させたものである。又実施例4、5とも平均粒子
径の調節は重合用水及び乳化剤を変量させること
によつて行つて共重合体ラテツクスを得た。 本発明の範囲内で得られた共重合体ラテツクス
の平均粒子径、及びトルエン不溶分を変量させた
ものを用いて以下に示すロールコーター用塗工液
を作成した。 塗工液の組成(乾燥重量部) サイズプレス ゲートロール 配合(表3) 配合(表4) カオリンクレー 70部 70部 炭酸カルシウム 30〃 30〃 酸化澱粉 13部 10部 共重合体 ラテツクス 17〃 15〃 塗工液濃度 40% 55% この塗工液を用いて先に示した試験法により本
発明の目的とする紙被覆組成物の高速塗工での流
動性、及び塗工性、機械的安定性、及び塗工紙の
性能について評価しその結果を表3(サイズプレ
ス配合)表4(ゲートロール配合)にまとめた。
本発明の目的とする塗工液物性、及び印刷特性の
ものが得られた。 比較例 1、2 表2に示す比較例1、2は実施例1と同様の製
造法である。 比較例1は共重合体ラテツクスの平均粒子径が
本発明の範囲より小さい場合であり、一方比較例
2は逆に大きい平均粒子径の共重合体ラテツクス
を使用した例である。平均粒子径の調節は重合用
水、及び乳化剤を変量させることにより行われ
る。表3及び表4に示すデータから明らかなよう
に比較例1は塗工液のガムアツプ適性が劣り、梨
地模様も発生する。又印刷特性としてインキ乾燥
性が劣る。一方比較例2は塗工液の粘性、及び高
速流動性が劣り印刷特性として接着強度、耐水性
が劣り好ましくない。 比較例 3、4 表2に示す比較例3、4は実施例1と同様の製
造法であるが比較例3は本発明の共重合体ラテツ
クスのトルエン不溶分が本発明で規定された範囲
より少ない例であり一方比較例4は逆にトルエン
不溶分が多い共重合体ラテツクスを使用した例で
ある。トルエン不溶分の調節は分子量調節剤を変
量させることにより行なわれる。表3及び表4に
示すデータから明らかなように比較例3は塗工液
の機械的安定性、ガムアツプ適性が劣り印刷特性
として接着強度が劣る。一方比較例4は印刷特性
として接着強度、耐水性、及びインキ乾燥性が劣
り好ましくない。 比較例 5、6 表2に示す比較例5、6は実施例1と同様の製
造法であるが比較例5は本発明の共重合体ラテツ
クスに使用した不飽和酸アミドが本発明で規定さ
れた範囲より少ない例であり一方比較例6は逆に
不飽和酸アミドが多い共重合体ラテツクスを使用
した例である。 表3及び表4に示すデータから明らかなように
比較例5は塗工液の機械的安定性、ガムアツプ適
性が劣り梨地模様も若干発生する。印刷適性とし
て接着強度、耐水性、インキ乾燥性、及び印刷光
沢が劣り好ましくない。一方比較例6は塗工液の
粘度、高速流動性が劣り好ましくない。 比較例 7、8 比較例7、8は実施例1の共重合体ラテツクス
を用いその使用量を変えた例である。 比較例7は共重合体ラテツクスの使用量を本発
明で規定された範囲より少なくした例であり、一
方比較例8は逆に多く使用した例である。表3及
び表4に示すデータから明らかなように比較例7
は印刷特性として接着強度、耐水性が劣る。一方
比較例8は塗工液のガムアツプ適性が劣り梨地模
様も発生する。又印刷特性としてインキ乾燥性が
劣り好ましくない。
[Industrial Application Field] The present invention relates to an improved paper coating composition, and more particularly, the present invention relates to an improved paper coating composition, and more specifically, it has extremely good operability when coated using a roll coater such as a size press coater or a gate roll coater, and has excellent paper coating composition. The present invention relates to a paper coating composition suitable for use in a roll coater with excellent quality. [Prior Art] Conventionally, aqueous dispersion compositions consisting of pigments, fillers, dispersants and binders have been widely used as paper coating compositions. In recent years, on-machine roll coaters such as size press coaters and gate roll coaters have been used to improve the printability of high-quality paper and medium-quality paper.
A method of coating both sides of paper with a light weight of g/m 2 has been implemented without major modification of equipment and with high productivity. Unlike other blade coaters, air knife coaters, etc., these coating methods apply by pressing the paint onto the paper from both sides of the roll, which creates a large shearing force during coating, which causes various problems in terms of operation and paper quality. occurs. size press coater,
The following properties are required for paper coating compositions for roll coaters such as gate roll coaters. (1) Good mechanical stability: These roll coaters apply high mechanical shearing force to the coating solution during coating, which causes problems such as gum build-up and roll staining during operation. For this reason, it is necessary that the paper coating composition has good mechanical stability. (2) Providing good leveling properties with good fluidity: In the case of size press coaters and gate roll coaters, the satin finish characteristic of roll coaters tends to occur, making it difficult to obtain a smooth coated surface. Therefore, the paper coating composition must have the ability to provide good fluidity and leveling properties. (3) Good strength (adhesive strength and water resistance): In the case of size press coaters and gate roll coaters, higher shearing force is applied compared to other coating methods, and in the case of size press coaters, paper coating Due in part to the low concentration of the solution, a significant amount of the pigment binder migrates into the paper substrate layer, reducing adhesive strength and water resistance. To improve this, it is necessary to use a large amount of binder, but if a pigment binder with excellent strength is used, the amount used can be reduced. (4) Good coverage of the coated surface: When performing lightweight coating using the roll coater described above, the amount of coating is small, making it difficult to form a dense coated surface as in the case of blade coating. Therefore, printing gloss development is not good. Therefore, the paper coating composition must have the ability to provide a coated surface with good surface coverage, high air permeability, and low ink permeability. [Problems to be solved by the invention] Pigment binders in the paper coating composition include natural binders such as starch and modified starch; styrene-butadiene copolymer latex, carboxy-modified styrene-butadiene copolymer latex; , polyvinyl acetate emulsion, acrylic ester type (co)
Synthetic binders such as polymer latex, methacrylic acid ester (co)polymer latex, polychloroprene latex, and polyvinyl alcohol are used. However, in the case of lightweight coating, when the above-mentioned binder is used as a binder in a paper coating composition, there is a problem that mechanical stability, fluidity, and paper surface strength are poor and it is difficult to form a dense coated surface. The object of the invention is to have good mechanical stability, fluidity,
The object of the present invention is to provide a paper coating composition that has adhesive strength, water resistance, and imparts excellent gloss to the coated surface. [Means for solving the problem] The paper coating composition of the present invention contains, based on 100 parts by weight of pigment, (i) 5 to 40% by weight of ethylenically unsaturated carboxylic acid;
Aliphatic conjugated diene 5-40% by weight, ethylenically unsaturated carboxylic acid alkyl ester 10-50% by weight
and a monomer mixture consisting of 10 to 70% by weight of an alkenyl aromatic compound (a) 5 to 35 parts by weight are emulsion polymerized, and (ii) in the presence of the obtained copolymer latex, 20 to 70% of aliphatic conjugated diene is Monomer mixture (b)63 consisting of 30 to 80 weight % of an alkenyl aromatic compound and 0 to 50 weight % of one or more monomers selected from ethylenically unsaturated carboxylic acid alkyl ester and vinyl cyanide. (iii) 1.5 to 6 parts by weight of unsaturated amide (c) after the start of the polymerization of the monomer mixture in (ii) but before the polymerization is substantially completed; A copolymer latex obtained by adding and polymerizing parts (a), (b), and (c) to a total of 100 parts by weight, with an average particle size of 0.06 to 0.35 μm, and a toluene-insoluble content. is 55~
It is characterized in that it contains 10 to 35 parts by weight of copolymer latex, which is 98% by weight, as the pigment binder. Note that the toluene-insoluble content herein refers to the toluene-insoluble content contained in the copolymer expressed as a weight percentage with respect to the total copolymer, and the method for measuring it is as described in the Examples. Examples of pigments used in the present invention include clay, barium sulfate, titanium oxide, satin white, aluminum hydroxide, and calcium carbonate. Examples of ethylenically unsaturated carboxylic acids in the monomers polymerized in the first step of the present invention include acrylic acid, methacrylic acid, fumaric acid, maleic acid, and itaconic acid. These can be used alone or in combination of two or more. Ethylenically unsaturated carboxylic acid is used in a range of 5 to 40% by weight, but if it is less than 5% by weight, the adhesive strength and stability of the latex will decrease, and if it exceeds 40% by weight, the viscosity of the latex will increase. This is unfavorable from the viewpoint of coating properties and handling. Examples of aliphatic conjugated diene monomers include 1,
3-butadiene, isoprene, 2-methyl-1,
Examples include 3-butadiene and 2-chloro-1,3-butadiene. Aliphatic conjugated diene is 5-40
It is used in weight percent, but if it is less than 5 weight percent, the adhesive strength will decrease, and if it exceeds 40 weight percent, the adhesive strength and water resistance will decrease. Examples of ethylenically unsaturated carboxylic acid alkyl esters include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, 2-ethylhexyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate,
Examples include dimethyl maleate, diethyl maleate, dimethyl itaconate, monomethyl fumarate, and monoethyl fumarate. Ethylenically unsaturated carboxylic acid alkyl ester is 10 to 50
It is used in weight percent, but if it is less than 10 weight percent, the light resistance of the coated paper using the obtained copolymer latex will decrease, and if it exceeds 50 weight percent, adhesive strength and water resistance will decrease. Examples of alkenyl aromatic compounds include styrene, alphamethylstyrene, and vinyltoluene. The alkenyl aromatic compound is used in an amount of 10 to 70% by weight, but if it is less than 10% by weight, adhesive strength and water resistance decrease. If it exceeds 70% by weight, the adhesive strength will decrease. The amount of the monomer mixture (a) used in the first stage polymerization is 5 to 35 parts by weight, and if it is less than 5 parts by weight, the stability of the latex will decrease. Moreover, if it exceeds 35 parts by weight, the water resistance of coated paper using the obtained copolymer latex will decrease. Of the monomers that are then polymerized in the second step, the aliphatic conjugated diene is used in an amount of 20 to 70% by weight, but if it is less than 20% by weight, the adhesive strength will decrease, and if it exceeds 70% by weight, the adhesive strength and water resistance will decrease. . Alkenyl aromatic compounds are used at 30-80% by weight, but 30% by weight
If it is less than that, adhesive strength and water resistance will decrease. 80% by weight
If it exceeds this, the adhesive strength will decrease. Here, one or more monomers selected from ethylenically unsaturated carboxylic acid esters and vinyl cyanides such as acrylonitrile are copolymerized in an amount of 50% by weight or less, preferably 30% by weight or less, in order to improve adhesive strength. However, it is preferable not to use it if water resistance is particularly required. The monomer mixture (b) used in the second stage is 63-94
It is used in parts by weight, but if it is less than 63 parts by weight, the stability of the latex will decrease, and if it exceeds 94 parts by weight, the water resistance of coated paper using the obtained copolymer latex will decrease. Further, after the start of polymerization of the monomer mixture and before the polymerization is substantially completed (polymerization conversion rate is about 5
~95%, preferably in the range of 10 to 70%), the polymerization is carried out by adding 1.5 to 6 parts by weight of unsaturated acid amide. Examples of the unsaturated acid amide include acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N-butoxymethylacrylamide, and the like. The unsaturated acid amide is used in an amount of 1.5 to 6 parts by weight, preferably 2 to 5 parts by weight, but if it is less than 1.5 parts by weight, the stability of the latex will decrease, and if it exceeds 6 parts by weight, the viscosity of the latex will become too high. Further, the unsaturated acid amide may be added to the polymerization reaction system simultaneously with or without mixing with the aliphatic conjugated diene and alkenyl aromatic compound used in the second stage polymerization. In addition, the unsaturated acid amide preferably has a polymerization conversion rate of about 95% before the second stage polymerization is substantially completed.
It may be added to the polymerization reaction system all at once, in portions, or continuously before reaching . If added after the completion of the second stage polymerization, the viscosity of the latex will increase and the water resistance and ink receptivity of the coated paper will deteriorate. In the method for producing a copolymer latex of the present invention, both the first and second stages are carried out by known bulk, divided, or continuous addition polymerization methods. Further, during polymerization, known emulsifiers, polymerization initiators, chain transfer agents, etc. are used. The polymerization temperature is usually 5 to 95°C, preferably 50 to 80°C. The copolymer latex of the present invention has an average particle diameter of 0.06 to 0.35μ, preferably 0.1 to 0.3μ, and when used as a pigment binder in a paper coating composition for a roll coater, has good mechanical stability and fluidity. , it is possible to obtain excellent performance in terms of leveling properties, etc. If the average particle size is less than 0.06μ, a satin pattern will occur and the ink drying properties will be reduced, and if it exceeds 0.35μ, the fluidity will be reduced and the adhesive strength of the coated paper will be reduced. In the present invention, when the toluene insoluble content is in the range of 55 to 98%, preferably 60 to 95%, good mechanical stability and excellent adhesive strength can be achieved when used as a paper coating for roll coaters or as a pigment binder in compositions. A coated paper is obtained. If the toluene insoluble content is less than 55%, the adhesive strength and mechanical stability of the paper coating composition will decrease. On the other hand, if the toluene insoluble content exceeds 98%, adhesive strength and water resistance will decrease. The preferred amount of the copolymer latex of the present invention varies depending on the coating method of the roll coater.
For example, in the case of a Saoz press coater, it is preferable to use 10 to 35 parts by weight per 100 parts by weight of pigment, and in the case of a gate roll coater, it is preferable to use 10 to 25 parts by weight per 100 parts by weight of pigment. If starch, oxidized starch, polyvinyl alcohol, etc. are used as water-soluble binders in addition to the copolymer latex, one or more water-soluble binders selected from these may be blended together with the copolymer latex into the paper coating composition. You can also. The amount of water-soluble binder used is preferably 10 to 30 parts by weight in the case of a size press coater, and 5 to 20 parts by weight in the case of a gate roll coater. The test methods in Examples and Comparative Examples are as follows. (1) Method for measuring viscosity of paper coating composition: Viscosity is expressed as viscosity at 25°C and 60 rpm using a BM type viscometer. (2) Apparent viscosity measurement method for high-speed fluidity: Measurement was performed using a Hercules high shear viscometer manufactured by Kumagaya Riki Kogyo under conditions of rotation speed 8800 rpm, bob F, and torque range 2. Calculate from the following formula using Tmax (dyne-cm). Apparent viscosity = 9.55 x 8 x 10 -5 x Tmax / 8800 x 100 This is an indicator of coatability in high-speed coating, and the higher the value, the worse the coatability tends to be. (3) Measuring method of gum up test: This is an indicator of roll staining property. Using a gum up tester manufactured by Kumagaya Riki, the coating liquid is kneaded with a rubber roll and mechanically sheared to form a coagulated substance on the rubber roll. Measure the time (minutes) until this occurs. The longer the time, the better. (4) Measuring method of mechanical stability: Using a Markan stability tester, the number of rotations was measured.
Displays the amount of aggregates generated under the conditions of 1000 rpm, 10 kg pressure, 10 minutes, and coating liquid temperature of 70°C as a dry weight ratio. The smaller the number, the better. (5) Measuring method for satin pattern: After applying the coating liquid to the paper substrate using a test size press coater manufactured by Kumagaya Riki, applying carbon powder to the coated surface and observing the condition of the coated surface. do. 〇 (Good); △ (Slightly satin pattern occurs); × (Simple pattern occurs) (6) Coating and finishing method: In the case of size press formulation Apply the coating liquid using Kumagaya Riki's test size press coater. Coat it on a paper substrate to obtain coated paper. Next, use a hot air dryer at a temperature of 120℃ for a period of time.
Dry the coated paper for 30 seconds, then use a super calendar to roll the paper at a temperature of 70°C and rotation speed.
Finishing was performed at 450 rpm, linear pressure of 70 kg/cm, and paper passing twice. In the case of gate roll formulation, coat the coating liquid onto the paper substrate using coating rod No. 4 to obtain coated paper. Hereinafter, the drying conditions and supercalender conditions are the same as those for size press formulation. The following tests (7) to (11) were conducted using each coated paper obtained above. (7) R dry strength test: This is an indicator of the adhesive strength of coated paper.
Printed using ink with TV=15. Coated paper adhesive strength was evaluated using the following evaluation criteria. 〇 (Good) No picking occurs △ (Slightly poor) A small amount of picking occurs × (Poor) A large amount of picking occurs (8) R wet strength test: This is an indicator of the water resistance of coated paper. Mei Seisakusho R-type printing machine The degree of picking when printing was performed using a Morton roll and applying dampening water was evaluated using the following evaluation criteria. The ink used was Toyo Ink SMX TV=15. 〇 (Good) No picking occurs △ (Slightly poor) A small amount of picking occurs × (Poor) A large amount of picking occurs (9) Ink drying test: Mei Seisakusho RI-type printing machine was used with Toyo Ink and Bright Sumi ink. After printing, paper was pressed against the printed matter and the degree of ink set-off was judged using the following evaluation criteria. 〇 (Good) No ink set-off △ (Slightly poor) Some ink set-off × (Poor) A lot of ink set-off (10) Printing gloss development: Toyo Ink using Mei Seisakusho R-type printing machine Print using bright indigo ink and let dry naturally. The glossiness of the resulting printed matter is measured using a Murakami glossmeter. The higher the number, the better. (11) Air permeability test: This is an indicator of the density of coated paper and measures the time (seconds) it takes for a certain amount of air to pass through the coated paper using an Oken air permeability tester. . It can be said that the longer the time, the more dense the coated surface is formed. (12) Method for measuring average particle diameter of latex: Copolymer latex was treated with osmic acid, an electron micrograph (30,000 times) was taken, and the particle diameter of 500 particles was measured and determined by weight average. (13) Method for measuring toluene insoluble content in latex: Copolymer latex adjusted to pH 6-8 with sodium hydroxide, coagulated with methanol, washed,
After drying, add about 0.3g of sample to 100ml of toluene.
After immersion for 20 hours, the toluene insoluble content was measured and expressed as weight % based on the sample. Example 1 <Manufacture of copolymer latex> 160 parts of water, 0.5 parts of sodium alkylbenzenesulfonate, 0.6 parts of sodium bicarbonate, and 0.5 parts of potassium persulfate were charged into an autoclave having a volume of 100. Next, monomers consisting of 4 parts of butadiene, 13 parts of styrene, 5 parts of methyl methacrylate, 1 part of acrylic acid, and 2 parts of fumaric acid were added in one batch along with 3 parts of carbon tetrachloride, and the mixture was heated to 70°C with stirring to polymerize. I let it happen. After 2 hours, uniform continuous addition of a monomer mixture consisting of 27 parts of butadiene and 45 parts of styrene was started, and continuous addition polymerization was continued for 15 hours. During this period, 3 hours after the start of the second stage polymerization (the conversion rate of the second stage was 18
%) and 3 parts of acrylamide were added all at once and polymerized. The polymerization conversion rate reached 100% in 24 hours. The resulting copolymer latex had a good polymerization pattern and little coagulation. A sodium hydroxide solution was added to this copolymer latex to adjust the pH to 7, followed by monomer stripping and concentration by vacuum distillation. Examples 2 and 3 <Manufacture of copolymer latex> Examples 2 and 3 shown in Table 1 were manufactured using the same method as Example 1, except that in Example 2, 5 parts of acrylamide, which is an unsaturated acid amide, was used. In Example 3, 2 parts of methacrylamide were used for polymerization.
In both Examples 2 and 3, the average particle diameter was adjusted by varying the amount of polymerization water and emulsifier.
Regarding the toluene-insoluble content, a copolymer latex was obtained by varying the molecular weight regulator. Examples 4 and 5 <Manufacture of copolymer latex> Examples 4 and 5 shown in Table 1 are the same manufacturing method as Example 1, except that Example 4 uses butadiene as the monomer mixture in the second stage. In Example 5, a mixture of 27 parts of butadiene, 35 parts of styrene and 10 parts of methyl methacrylate was used as the second stage monomer mixture. It is a copolymerized product. In both Examples 4 and 5, the average particle diameter was adjusted by varying the amount of water for polymerization and emulsifier, and copolymer latexes were obtained. Coating liquids for roll coaters shown below were prepared using copolymer latexes obtained within the scope of the present invention with varying average particle diameters and toluene insoluble content. Composition of coating liquid (parts by dry weight) Size press Gate roll Mixture (Table 3) Mixture (Table 4) Kaolin clay 70 parts 70 parts Calcium carbonate 30〃 30〃 Oxidized starch 13 parts 10 parts Copolymer latex 17〃 15〃 Coating liquid concentration 40% 55% Using this coating liquid, the above-described test method was used to determine the fluidity, coatability, and mechanical stability of the paper coating composition that is the object of the present invention during high-speed coating. , and the performance of the coated paper were evaluated and the results are summarized in Table 3 (size press formulation) and Table 4 (gate roll formulation).
The physical properties of the coating liquid and the printing characteristics targeted by the present invention were obtained. Comparative Examples 1 and 2 Comparative Examples 1 and 2 shown in Table 2 are produced using the same manufacturing method as Example 1. Comparative Example 1 is an example in which the average particle diameter of the copolymer latex is smaller than the range of the present invention, while Comparative Example 2 is an example in which a copolymer latex with a larger average particle diameter is used. The average particle size is adjusted by changing the amount of water for polymerization and emulsifier. As is clear from the data shown in Tables 3 and 4, in Comparative Example 1, the coating liquid had poor gum up suitability and a satin pattern also occurred. Also, as a printing property, ink drying properties are poor. On the other hand, Comparative Example 2 is not preferable because the coating liquid has poor viscosity and high-speed fluidity, and printing properties such as adhesive strength and water resistance are poor. Comparative Examples 3 and 4 Comparative Examples 3 and 4 shown in Table 2 were produced using the same manufacturing method as Example 1, but in Comparative Example 3, the toluene insoluble content of the copolymer latex of the present invention was lower than the range specified by the present invention. On the other hand, Comparative Example 4 is an example in which a copolymer latex with a large amount of toluene insoluble matter was used. The toluene-insoluble content is controlled by varying the molecular weight regulator. As is clear from the data shown in Tables 3 and 4, in Comparative Example 3, the coating liquid had poor mechanical stability and gum-up suitability, and its printing properties were poor in adhesive strength. On the other hand, Comparative Example 4 is unfavorable as it has inferior printing properties such as adhesive strength, water resistance, and ink drying properties. Comparative Examples 5 and 6 Comparative Examples 5 and 6 shown in Table 2 were produced using the same manufacturing method as Example 1, but in Comparative Example 5, the unsaturated acid amide used in the copolymer latex of the present invention was not specified by the present invention. On the other hand, Comparative Example 6 is an example in which a copolymer latex containing a large amount of unsaturated acid amide was used. As is clear from the data shown in Tables 3 and 4, in Comparative Example 5, the mechanical stability of the coating liquid and the suitability for gum up were poor, and a matte pattern was slightly generated. In terms of printing suitability, adhesive strength, water resistance, ink drying property, and printing gloss are inferior, making it unfavorable. On the other hand, Comparative Example 6 is not preferred because the viscosity of the coating liquid and high-speed fluidity are poor. Comparative Examples 7 and 8 Comparative Examples 7 and 8 are examples in which the copolymer latex of Example 1 was used but the amount used was changed. Comparative Example 7 is an example in which the amount of copolymer latex used was smaller than the range specified by the present invention, while Comparative Example 8 is an example in which a larger amount was used. As is clear from the data shown in Tables 3 and 4, Comparative Example 7
has inferior printing properties such as adhesive strength and water resistance. On the other hand, in Comparative Example 8, the gum-up suitability of the coating liquid was poor, and a satin pattern appeared. Also, as a printing property, the ink drying property is poor, which is not preferable.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

前記の実施例及び比較例より明らかであるとお
り、本発明のロールコーター用紙被覆組成物は良
好な機械的安定性、接着強度、耐水性を示し、高
速塗工における流動性ないし塗工性にすぐれ、ま
た塗工面に良好な光沢発現性を付与する。
As is clear from the above Examples and Comparative Examples, the roll coater paper coating composition of the present invention exhibits good mechanical stability, adhesive strength, and water resistance, and has excellent fluidity and coatability in high-speed coating. It also imparts good gloss to the coated surface.

Claims (1)

【特許請求の範囲】 1 顔料100重量部に対して、 (i) エチレン系不飽和カルボン酸5〜40重量%、
脂肪族共役ジエン5〜40重量%、エチレン系不
飽和カルボン酸アルキルエステル10〜50重量%
及びアルケニル芳香族化合物10〜70重量%から
なる単量体混合物(イ)5〜35重量部を乳化重合さ
せ、 (ii) 得られた共重合体ラテツクスの存在下、脂肪
族共役ジエン20〜70重量%、アルケニル芳香族
化合物30〜80重量%及びエチレン系不飽和カル
ボン酸アルキルエステルとシアン化ビニルから
選ばれる1種以上の単量体0〜50重量%からな
る単量体混合物(ロ)63〜94重量部を添加し重合さ
せ、 (iii) 上記(ii)の単量体混合物の重合の開始後であつ
てかつ重合が実質的に終了しない間において不
飽和酸アミド(ハ)1.5〜6重量部を(イ)、(ロ)、(ハ)の
合計100重量部になるよう添加し重合させて得
られた共重合体ラテツクスであつてかつその平
均粒子径が0.06〜0.35μmでトルエン不溶分が55
〜98重量%である共重合体ラテツクスを上記顔
料結合剤として10〜35重量部含有することを特
徴とする紙被覆組成物。
[Claims] 1. Based on 100 parts by weight of pigment, (i) 5 to 40% by weight of ethylenically unsaturated carboxylic acid;
Aliphatic conjugated diene 5-40% by weight, ethylenically unsaturated carboxylic acid alkyl ester 10-50% by weight
and a monomer mixture consisting of 10 to 70% by weight of an alkenyl aromatic compound (a) 5 to 35 parts by weight are emulsion polymerized, and (ii) in the presence of the obtained copolymer latex, 20 to 70% of aliphatic conjugated diene is Monomer mixture (b)63 consisting of 30 to 80 weight % of an alkenyl aromatic compound and 0 to 50 weight % of one or more monomers selected from ethylenically unsaturated carboxylic acid alkyl ester and vinyl cyanide. (iii) After the start of the polymerization of the monomer mixture in (ii) above and before the polymerization is substantially completed, 1.5 to 6 parts by weight of the unsaturated acid amide (c) is added. A copolymer latex obtained by adding and polymerizing parts by weight of (a), (b), and (c) to a total of 100 parts by weight, and having an average particle diameter of 0.06 to 0.35 μm and being insoluble in toluene. minutes is 55
A paper coating composition comprising 10 to 35 parts by weight of a copolymer latex of 98% by weight as the pigment binder.
JP59182782A 1984-09-03 1984-09-03 Paper coating composition Granted JPS6163795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182782A JPS6163795A (en) 1984-09-03 1984-09-03 Paper coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182782A JPS6163795A (en) 1984-09-03 1984-09-03 Paper coating composition

Publications (2)

Publication Number Publication Date
JPS6163795A JPS6163795A (en) 1986-04-01
JPH0541757B2 true JPH0541757B2 (en) 1993-06-24

Family

ID=16124321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182782A Granted JPS6163795A (en) 1984-09-03 1984-09-03 Paper coating composition

Country Status (1)

Country Link
JP (1) JPS6163795A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197497A (en) * 1984-10-15 1986-05-15 住友ノ−ガタツク株式会社 Gate roll coating paper
FR2583052B1 (en) * 1985-06-06 1991-11-29 Dequatre Claude LATEX OF HETEROGENEOUS PARTICLES OF STYRENE / BUTADIENE POLYMERS CONTAINING ALCENYLNITRILE AND ITS APPLICATION TO THE PRODUCTION OF COATED PAPER
JP2772791B2 (en) * 1986-11-08 1998-07-09 日本ピー・エム・シー 株式会社 Coating composition for gate roll paper
EP0304489A4 (en) * 1987-03-03 1990-10-10 Japan Synthetic Rubber Co., Ltd. Paper coating composition
CN1072685C (en) * 1997-08-14 2001-10-10 中国石油化工集团公司 Method for prepn. of latex for coating paper

Also Published As

Publication number Publication date
JPS6163795A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
EP0019716B2 (en) Aqueous polymeric dispersions and paper coating compositions
JP2002226508A (en) Copolymer latex and paper-coating composition
JPH0541757B2 (en)
JP2004182898A (en) Copolymer latex, method for producing the same and paper-coating composition
JP4123919B2 (en) Copolymer latex, method for producing the same, and composition for paper coating
US3719628A (en) Ethylene/vinyl chloride/acrylamide interpolymer and styrene/butadiene/unsaturated acid terpolymer polyblend
JP3082564B2 (en) Latex for paper coating and paper coating composition
JPS6231115B2 (en)
US3714298A (en) Polyblend of ethylene/vinyl chloride/acrylamide interpolymer and polyacrylamide
JP3099319B2 (en) Manufacturing method of double coated paper
US3714104A (en) Aqueous coating composition comprising a polyblend of e/vc/a and polyacrylamide
JPH0149838B2 (en)
JP2953134B2 (en) Offset printing paper coating composition
JPH0376896A (en) Coating composition for mat coated paper
JP2628305B2 (en) Composition for coated paperboard
JP2810405B2 (en) Double coated paper for rotary offset printing
JPH06211911A (en) Paper coating copolymer latex and paper coating composition containing the latex
JP3975098B2 (en) Copolymer latex, method for producing the same, and composition for paper coating
JP2820128B2 (en) Coating composition
JP4806931B2 (en) Copolymer latex, method for producing the same, and composition for paper coating
JP3788553B2 (en) Paper coating composition and coated paper
JP2006052365A (en) Copolymer latex, method for producing copolymer latex, composition for paper coating and coated paper
JPH0541756B2 (en)
JPH1150394A (en) Copolymer latex for paper-coating composition
JPH03137296A (en) Coated paper board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees