JPH0541720B2 - - Google Patents

Info

Publication number
JPH0541720B2
JPH0541720B2 JP29190986A JP29190986A JPH0541720B2 JP H0541720 B2 JPH0541720 B2 JP H0541720B2 JP 29190986 A JP29190986 A JP 29190986A JP 29190986 A JP29190986 A JP 29190986A JP H0541720 B2 JPH0541720 B2 JP H0541720B2
Authority
JP
Japan
Prior art keywords
plating solution
anode
plating
chamber
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29190986A
Other languages
Japanese (ja)
Other versions
JPS63145800A (en
Inventor
Shigeo Matsubara
Akinobu Takezoe
Takashi Komi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29190986A priority Critical patent/JPS63145800A/en
Publication of JPS63145800A publication Critical patent/JPS63145800A/en
Publication of JPH0541720B2 publication Critical patent/JPH0541720B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は鉄系電気めつき浴において、不溶性陽
極を用いてめつきする際生成するFe3+をFe2+
還元するめつき浴の管理方法に関する。 (従来技術) FeやFe−Zn系合金などの鉄系金属を工業的に
電気めつきする場合、陽極に不溶性陽極を主に使
用している。この不溶性陽極を使用する方法でめ
つきする場合、水の電気分解より陽極付近に酸素
が発生するので、めつき液中のFe2+はFe3+に酸
化される。また陽極での電極反応によつても
Fe2+はFe3+に酸化される。このためめつきを継
続すると次第にめつき浴中のFe3+は増加し、電
流効率の低下、合金成分の変動などの弊害が生じ
る。また生成したFe3+は水酸化物として沈澱し
易いので、容易にめつき層に入り、めつき層の延
性を劣化させたりする。これらのことから陽極に
不溶性陽極を使用するめつき方法の場合、Fe3+
をFe2+に還元することが従来より種々検討され
ている。 その方法として、(1)めつき液を金属粉または粒
子を入れた還元槽に導いて金属で還元後電解槽に
リサイクルする方法、(2)アニオン交換膜で電解槽
を陰極室と陽極室とに仕切つて、陰極室の方にめ
つき液を、また陽極室には酸や酸性塩の電解液を
入れて、陰極室のめつき液を循環させながら電解
してFe3+をFe2+に還元する方法などが提案され
ている。なおこの(2)方法の場合陰極室と陽極室と
はアニオン交換膜で仕切られているので、陰極室
のFe2+やFe3+が陽極室に移動せず、Fe3+はFe2+
に還元される。 (発明が解決しようとする問題点) しかし(1)の方法の場合、電解槽のめつき液を全
量リサイクルする方法であるため、還元槽は電解
槽に比べて著しく大容量のものを必要とし、また
(2)の方法の場合は陽極室に酸または酸性塩の電解
液を使用するため、管理が繁雑になるという欠点
があつた。 そこで本発明はめつき液だけを循環させて、電
解還元し、かつ金属還元による小容量の還元槽で
還元できる方法を提供するものである。 (問題点を解決するための手段) 本発明は前記(2)のようなめつき浴管理方法にお
いて、電解を継続してゆくと陽極室では陰極室よ
り透過してくる酸根と水の電気分解によるH+
生成により酸濃度が高くなる点に着目して、陰極
室には従来のようにめつき液を入れて循環させる
のであるが、陽極室にもめつき液が陰極室より少
なくなるように流して、電解中陽極室側のめつき
液酸濃度が高くなるようにし、これによりFe3+
を金属で還元する場合に還元が有利となるように
するとともに、陽極室出側に金属による還元槽を
接続して、電解槽と陽極室で生成したFe3+を金
属によりFe2+に還元するようにした。 すなわち本発明は陽極に不溶性陽極を使用した
電解槽をアニオン交換膜で陰極室と陽極室とに仕
切り、これらの両室にめつき液貯蔵槽よりFe2+
とFe3+とを含むめつき液を陽極室の方が陰極室
より少なくなるように供給しながら電解するとと
もに、陽極室出側に金属によるFe3+の還元槽を
接続してFe3+をFe2+に還元して、陰極室と還元
槽を通過しためつき液をめつき液貯蔵槽に循環さ
せ、めつき液だけで還元できるようにした。 本発明の場合不溶性陽極は公知のものでよい。
還元槽にはFeめつきの場合は還元剤として鉄の
粉または粒を、めつきがFe−Zn系合金の場合は
FeとZnの粉や粒をいれておく。陰極室および陽
極室へのめつき液供給比率は陰極室への供給量を
1とした場合陽極室を0.05〜0.5にするのが好ま
しい。 添付図面は本発明の管理方法の1例を示すもの
で、電解槽1をアニオン交換膜2で陰極室3と陽
極室4に仕切り、陰極室3には陰極5を、陽極室
4には不溶性陽極6を配置する。そしてこれらの
陰極室3および陽極室4の各めつき液入側とめつ
き液貯蔵槽7とを分岐部分にバルブ8,8aを有
する供給管9で接続する。一方陰極室3と陽極室
4の出側にはそれぞれ循環管10と連結管11と
を接続し、循環管10の先端はめつき液貯蔵槽7
に入れる。また連結管11の先端は鉄粉や亜鉛粉
の入つた還元槽12に接続し、この還元槽12に
は連結管11aを介して沈澱槽13に接続し、め
つき液中に含まれる鉄粉や亜鉛粉を除去する。そ
して沈澱槽13よりめつき液を管14でめつき液
貯蔵槽7に放出する。 (作用) この方法で管理するには供給管9により電解槽
1にめつき液貯蔵槽7のめつき液15を陽極室4
の方が陰極室3より著しく少なくなるようバルブ
8,8aで調整して供給し、陰極5および陽極6
で電解する。電解すると陰極室3ではめつき液の
Fe3+はFe2+に還元されるとともに、めつき液の
酸性度は低下する。しかし陰極室3へのめつき液
供給量は多いので、酸性度の低下は極く僅かで、
めつき液15は酸性の状態で循環管10を通つて
めつき液貯蔵槽7に返る。これに対して陽極室4
ではめつき液のFe2+はFe3+に酸化され、めつき
液酸性度は高くなる。しかして陽極室4へのめつ
き液15の供給量は陰極室3より著しく少ないの
で、酸性度は著しく大きくなり、鉄粉で還元する
のに有利な状態になる。従つてこの状態でめつき
液15が還元槽12に達するとFe3+は還元槽1
2の鉄粉や亜鉛粉により容易にFe2+に還元され
る。この還元槽12では鉄粉や亜鉛粉が溶解する
が、これらはめつき液15の鉄分や亜鉛分の補給
に充当する。また鉄粉や亜鉛粉の溶解に若干酸が
消費されるが、この酸の補給はめつき液貯蔵槽7
のPHを測定しながら行う。なお還元槽12はめつ
き液15の一部を循環させるだけであるので、小
容量にすることができる。 (実施例) 添付図面に示すフローチヤートに基づいて塩化
第一鉄(FeCl2・nH2O)600g/を含む塩酸酸
性めつき液(PH0.5)をめつき液貯蔵槽7より電
解槽1に陰極室/陽極室=1/0.2の割合で供給
して、陰極5に純鉄をめつきすることにより電解
鉄箔の製造を行つた。電解槽1の陰極5と不溶性
陽極6との間隔は15mmに、また不溶性陽極6とア
ニオン交換膜2との間隔は5mmにし、浴温100℃、
電流密度30〜50A/dm2で電解した。還元槽12
の還元剤としては鉄粒子を使用した。 第1表に電解時間によるFe3+濃度変化を示す。
また比較例としてイオン交換膜にカチオン交換膜
を使用して、同一条件で電解した場合(比較例
1)と、イオン交換膜および還元槽を使用しない
場合(比較例2)を示す。
(Industrial Application Field) The present invention relates to a method for managing a plating bath for reducing Fe 3+ produced during plating using an insoluble anode to Fe 2+ in an iron-based electroplating bath. (Prior Art) When industrially electroplating iron-based metals such as Fe and Fe-Zn alloys, insoluble anodes are mainly used as anodes. When plating is performed using this insoluble anode, oxygen is generated near the anode due to electrolysis of water, so Fe 2+ in the plating solution is oxidized to Fe 3+ . Also, due to the electrode reaction at the anode,
Fe 2+ is oxidized to Fe 3+ . Therefore, if plating is continued, Fe 3+ in the plating bath will gradually increase, causing problems such as a decrease in current efficiency and fluctuations in alloy components. In addition, the generated Fe 3+ tends to precipitate as hydroxide, so it easily enters the plating layer and deteriorating the ductility of the plating layer. For these reasons, in the case of plating methods that use insoluble anodes, Fe 3+
Conventionally, various studies have been made to reduce Fe 2+ to Fe 2+ . The methods for this are: (1) introducing the plating solution into a reduction tank containing metal powder or particles, reducing it with the metal and recycling it back to the electrolytic tank; (2) using an anion exchange membrane to separate the electrolytic tank into a cathode chamber and an anode chamber. The plating solution is placed in the cathode chamber, and the electrolyte containing acid or acidic salt is placed in the anode chamber.The plating solution in the cathode chamber is circulated and electrolyzed to convert Fe 3+ to Fe 2+ . Methods have been proposed to reduce the amount of In the case of method (2), the cathode chamber and the anode chamber are separated by an anion exchange membrane, so Fe 2+ and Fe 3+ in the cathode chamber do not move to the anode chamber, and Fe 3+ is replaced by Fe 2+
will be reduced to (Problem to be solved by the invention) However, in the case of method (1), since the entire plating solution in the electrolytic cell is recycled, the reduction tank requires a significantly larger capacity than the electrolytic cell. ,Also
In the case of method (2), an acid or acid salt electrolyte is used in the anode chamber, which has the disadvantage of making management complicated. Therefore, the present invention provides a method in which only the plating solution is circulated, electrolytically reduced, and metal reduction can be carried out in a small-capacity reduction tank. (Means for Solving the Problems) The present invention provides a method for managing a plating bath as described in (2) above, in which when electrolysis is continued, acid roots and water that permeate from the cathode chamber in the anode chamber are electrolyzed. Focusing on the fact that the acid concentration increases due to the production of H + , the plating solution is placed in the cathode chamber and circulated as before, but the plating solution is placed in the anode chamber so that it is less than the cathode chamber. The plating liquid acid concentration on the anode chamber side during electrolysis is increased by flowing Fe 3+
In addition, by connecting a metal reduction tank to the anode chamber outlet side, Fe 3+ generated in the electrolytic tank and anode chamber is reduced to Fe 2+ by metal. I decided to do so. That is, in the present invention, an electrolytic cell using an insoluble anode is divided into a cathode chamber and an anode chamber by an anion exchange membrane, and Fe 2+ is supplied to both chambers from a plating solution storage tank.
Electrolysis is carried out while supplying a plating solution containing Fe 3+ and Fe 3+ to the anode chamber so that the amount is less than that to the cathode chamber, and a metal Fe 3+ reduction tank is connected to the outlet side of the anode chamber to reduce Fe 3+ was reduced to Fe 2+ , and the plating solution that passed through the cathode chamber and the reduction tank was circulated to the plating solution storage tank, so that the plating solution alone could be used for reduction. In the case of the present invention, any known insoluble anode may be used.
In the reduction tank, iron powder or granules are used as a reducing agent in the case of Fe plating, and in the case of Fe-Zn alloy plating, iron powder or grains are added as a reducing agent.
Add Fe and Zn powder or grains. The ratio of plating solution supplied to the cathode chamber and the anode chamber is preferably 0.05 to 0.5 when the supply amount to the cathode chamber is 1. The attached drawing shows one example of the control method of the present invention, in which an electrolytic cell 1 is partitioned into a cathode chamber 3 and an anode chamber 4 by an anion exchange membrane 2, a cathode 5 is placed in the cathode chamber 3, and an insoluble material is placed in the anode chamber 4. Anode 6 is placed. The plating liquid inlet sides of the cathode chamber 3 and the anode chamber 4 are connected to the plating liquid storage tank 7 by a supply pipe 9 having valves 8 and 8a at the branched portions. On the other hand, a circulation pipe 10 and a connecting pipe 11 are connected to the outlet sides of the cathode chamber 3 and anode chamber 4, respectively, and the tip of the circulation pipe 10 is fitted with a plating liquid storage tank 7.
Put it in. Further, the tip of the connecting pipe 11 is connected to a reduction tank 12 containing iron powder or zinc powder, and this reduction tank 12 is connected to a settling tank 13 via a connecting pipe 11a to remove iron powder contained in the plating solution. and remove zinc dust. Then, the plating liquid is discharged from the settling tank 13 into the plating liquid storage tank 7 through a pipe 14. (Function) To manage this method, the plating solution 15 from the plating solution storage tank 7 is transferred to the electrolytic cell 1 through the supply pipe 9 to the anode chamber 4.
The supply is adjusted by valves 8 and 8a so that the amount of water is significantly smaller than that of cathode chamber 3, and the cathode 5 and anode 6 are
Electrolyze with When electrolyzing, plating solution is generated in cathode chamber 3.
Fe 3+ is reduced to Fe 2+ and the acidity of the plating solution decreases. However, since the amount of plating solution supplied to the cathode chamber 3 is large, the decrease in acidity is extremely small.
The plating liquid 15 is returned to the plating liquid storage tank 7 through the circulation pipe 10 in an acidic state. On the other hand, anode chamber 4
Then Fe 2+ in the plating solution is oxidized to Fe 3+ and the acidity of the plating solution increases. Since the amount of plating solution 15 supplied to the anode chamber 4 is significantly smaller than that supplied to the cathode chamber 3, the acidity becomes significantly higher, creating a state favorable for reduction with iron powder. Therefore, when the plating liquid 15 reaches the reduction tank 12 in this state, Fe 3+ is transferred to the reduction tank 1.
It is easily reduced to Fe 2+ by iron powder or zinc powder. Iron powder and zinc powder are dissolved in this reduction tank 12, and these are used to replenish the iron and zinc content of the plating solution 15. Also, some acid is consumed to dissolve iron powder and zinc powder, but this acid can be replenished in the plating solution storage tank 7.
This is done while measuring the PH. Note that since the reduction tank 12 only circulates a portion of the plating liquid 15, the capacity can be reduced. (Example) Based on the flowchart shown in the attached drawing, a hydrochloric acid acidic plating solution (PH0.5) containing 600 g of ferrous chloride (FeCl 2 .nH 2 O) was added to the electrolytic cell 1 from the plating solution storage tank 7. An electrolytic iron foil was produced by plating pure iron on the cathode 5 by supplying it to the cathode chamber/anode chamber at a ratio of 1/0.2. The spacing between the cathode 5 and the insoluble anode 6 of the electrolytic cell 1 was 15 mm, the spacing between the insoluble anode 6 and the anion exchange membrane 2 was 5 mm, and the bath temperature was 100°C.
Electrolysis was carried out at a current density of 30 to 50 A/dm 2 . Reduction tank 12
Iron particles were used as the reducing agent. Table 1 shows changes in Fe 3+ concentration depending on electrolysis time.
Further, as comparative examples, a case where a cation exchange membrane is used as the ion exchange membrane and electrolysis is carried out under the same conditions (Comparative Example 1), and a case where an ion exchange membrane and a reduction tank are not used (Comparative Example 2) are shown.

【表】 第1表より本発明法では陽極室4でFe3+が増
加するが、PHが低下して還元槽12で還元される
ため、めつき液中のFe3+をほぼ一定に保つこと
ができる。 (効果) 以上のごとく、本発明のめつき液を循環して電
解するだけでめつき液中のFe3+をFe2+に還元で
きる。従つて管理が非常に簡単である。また金属
による還元槽にはめつき液の一部を導くのである
から、還元槽は電解槽に比べ従来より小容量にす
ることができる。
[Table] From Table 1, in the method of the present invention, Fe 3+ increases in the anode chamber 4, but the pH decreases and is reduced in the reduction tank 12, so Fe 3+ in the plating solution is kept almost constant. be able to. (Effects) As described above, Fe 3+ in the plating solution can be reduced to Fe 2+ simply by circulating and electrolyzing the plating solution of the present invention. Therefore, management is very easy. Furthermore, since a portion of the plating solution is introduced into the metal reduction tank, the capacity of the reduction tank can be made smaller than that of the conventional electrolytic tank.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の管理方法のフローチヤート
例を示すものである。 1……電解槽、2……アニオン交換膜、3……
陰極室、4……陽極室、5……陰極、6……不溶
性陽極、7……めつき液貯蔵槽、8,8a……バ
ルブ、9……供給管、10……循環管、11,1
1a……連結管、12……還元槽、13……沈澱
槽、14……管、15……めつき液。
The accompanying drawings show an example of a flowchart of the management method of the present invention. 1... Electrolytic cell, 2... Anion exchange membrane, 3...
Cathode chamber, 4... Anode chamber, 5... Cathode, 6... Insoluble anode, 7... Plating solution storage tank, 8, 8a... Valve, 9... Supply pipe, 10... Circulation pipe, 11, 1
1a... Connecting pipe, 12... Reduction tank, 13... Sedimentation tank, 14... Pipe, 15... Plating liquid.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極に不溶性陽極を使用した電解槽をアニオ
ン交換膜で陰極室と陽極室とに仕切り、これらの
両室にめつき液貯蔵槽よりFe2+とFe3+とを含む
めつき液を陽極室の方が陰極室より少なくなるよ
うに供給しながら電解するとともに、陽極室出側
に金属によるFe3+の還元槽を接続してFe3+
Fe2+に還元して、陰極室と還元槽を通過しため
つき液をめつき貯蔵槽に循環させることを特徴と
する鉄系電気めつき浴の管理方法。
1 An electrolytic cell using an insoluble anode is divided into a cathode chamber and an anode chamber by an anion exchange membrane, and a plating solution containing Fe 2+ and Fe 3+ is supplied to both chambers from a plating solution storage tank as an anode. Electrolysis is carried out while supplying less Fe 3+ to the anode chamber than the cathode chamber, and a metal Fe 3+ reduction tank is connected to the output side of the anode chamber to reduce Fe 3+ .
A method for managing an iron-based electroplating bath characterized by reducing Fe 2+ and circulating the plating solution that has passed through a cathode chamber and a reduction tank to a plating storage tank.
JP29190986A 1986-12-08 1986-12-08 Method for managing iron-based electroplating bath Granted JPS63145800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29190986A JPS63145800A (en) 1986-12-08 1986-12-08 Method for managing iron-based electroplating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29190986A JPS63145800A (en) 1986-12-08 1986-12-08 Method for managing iron-based electroplating bath

Publications (2)

Publication Number Publication Date
JPS63145800A JPS63145800A (en) 1988-06-17
JPH0541720B2 true JPH0541720B2 (en) 1993-06-24

Family

ID=17775024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29190986A Granted JPS63145800A (en) 1986-12-08 1986-12-08 Method for managing iron-based electroplating bath

Country Status (1)

Country Link
JP (1) JPS63145800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716811A (en) * 1993-06-30 1995-01-20 Yoshida Kogyo Kk T-retaining wall block molding method and molding form therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE125310T1 (en) * 1991-05-30 1995-08-15 Sikel Nv ELECTRODE FOR AN ELECTROLYTIC CELL, USE AND METHOD THEREOF.
KR20010025116A (en) * 1999-04-06 2001-03-26 이데이 노부유끼 Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716811A (en) * 1993-06-30 1995-01-20 Yoshida Kogyo Kk T-retaining wall block molding method and molding form therefor

Also Published As

Publication number Publication date
JPS63145800A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
US4657644A (en) Electrolytic oxidation
US3764503A (en) Electrodialysis regeneration of metal containing acid solutions
JP4451445B2 (en) Method and apparatus for electrowinning copper using ferrous / ferric anode reactions
US5312539A (en) Electrolytic tin plating method
WO2010051118A1 (en) Process for plating chromium from a trivalent chromium plating bath
WO2020042870A1 (en) Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
Watson et al. The role of chromium II and VI in the electrodeposition of chromium nickel alloys from trivalent chromium—amide electrolytes
US3021267A (en) Plating bath and process
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
US3855089A (en) Process for the electrolytic refining of heavy metals
JPH0541720B2 (en)
US4164456A (en) Electrolytic process
JPS5887291A (en) Chromium electroplating bath
EP0088192B1 (en) Control of anode gas evolution in trivalent chromium plating bath
US5112447A (en) Process for electroplating
JP3110444U (en) Electrolytic recovery device for metal and electrolytic plating system
US2546547A (en) Electrodeposition of manganese
US3799850A (en) Electrolytic process of extracting metallic zinc
JPS5983785A (en) Preparation of highly concentrated aqueous cobalt sulfate solution
JP2764337B2 (en) Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JPS6363637B2 (en)
JPH06158397A (en) Method for electroplating metal
JP2000511594A (en) Method for pickling alloy products in the absence of nitric acid, method for recovering waste liquid from pickling, and apparatus therefor
Murase et al. Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel