JP2764337B2 - Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method - Google Patents

Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method

Info

Publication number
JP2764337B2
JP2764337B2 JP12041090A JP12041090A JP2764337B2 JP 2764337 B2 JP2764337 B2 JP 2764337B2 JP 12041090 A JP12041090 A JP 12041090A JP 12041090 A JP12041090 A JP 12041090A JP 2764337 B2 JP2764337 B2 JP 2764337B2
Authority
JP
Japan
Prior art keywords
solution
plating
alloy
sulfuric acid
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12041090A
Other languages
Japanese (ja)
Other versions
JPH0417693A (en
Inventor
健 植村
雅彦 四本松
敬太郎 柴田
隆司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12041090A priority Critical patent/JP2764337B2/en
Publication of JPH0417693A publication Critical patent/JPH0417693A/en
Application granted granted Critical
Publication of JP2764337B2 publication Critical patent/JP2764337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属表面にNi又はNi−Zn合金又はNi−Zn−Co
合金メッキを施すプロセスにおいて、メッキ浴溶液中の
成分濃度を変化させることなくメッキされるNiイオンの
減少分のみを連続的にかつ制御しつつメッキ浴液中へ供
給するNi又はNi−Zn合金又はNi−Zn−Co合金メッキ方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a Ni or Ni-Zn alloy or Ni-Zn-Co
In the process of applying alloy plating, Ni or Ni-Zn alloy or Ni or Ni-Zn alloy supplied to the plating bath while continuously and controlling only the reduced amount of Ni ions to be plated without changing the component concentration in the plating bath solution or The present invention relates to a Ni-Zn-Co alloy plating method.

〔従来の技術〕[Conventional technology]

Niのメッキでは通常、不溶性の陽極を用いて電気メッ
キしており、メッキが進行するとメッキされる溶液中の
Niイオンが消費される。このため、溶液中へこれらのNi
イオンを供給する目的で、Niの炭酸塩、硝酸塩、硫酸
塩、水酸化物等の工業試薬をメッキ槽へ供給する方法が
一般的である。しかし、この試薬が粉末状であるため、
供給方法が断続的であることや試薬の溶解に伴った量の
酸が消費されることから溶液濃度の制御・管理が難し
く、手間もかかる。
In nickel plating, electroplating is usually performed using an insoluble anode.
Ni ions are consumed. For this reason, these Ni
In general, a method of supplying industrial reagents such as Ni carbonate, nitrate, sulfate, and hydroxide to a plating tank for the purpose of supplying ions. However, because this reagent is in powder form,
Since the supply method is intermittent and an amount of acid is consumed due to the dissolution of the reagent, control and management of the solution concentration is difficult and time-consuming.

このようなNiイオンを供給する方法として、ニッケル
溶出陽極(ニッケル陽極)が存在する陽極室と対極(陰
極)が存在する陰極室とがイオン交換膜によって区画さ
れたニッケル溶出用電解槽の陽極室へメッキ槽からメッ
キ浴溶液を循環させ、他方陰極室には食塩などの電解質
溶液を満たして通電し、ニッケル溶出陽極からニッケル
イオンを溶出させることによって、他のメッキ浴組成の
バランスを損なうことなくメッキによって減少したNiイ
オン量を供給する方法が提案されている(特開昭60−12
1299号公報)。
As a method of supplying such Ni ions, an anode chamber in which a nickel elution anode (nickel anode) is present and a cathode chamber in which a counter electrode (cathode) is present are separated by an ion exchange membrane in an anode chamber of a nickel elution electrolytic cell. The plating bath solution is circulated from the plating bath, while the cathode chamber is filled with an electrolyte solution such as salt and energized, and nickel ions are eluted from the nickel elution anode, without disturbing the balance of other plating bath compositions. A method of supplying a reduced amount of Ni ions by plating has been proposed (Japanese Patent Laid-Open No. 60-12 / 1985).
No. 1299).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

溶液組成をNi又はNi,Zn又はNi,Zn,Coを含む硫酸溶液
とし、かつ、陰極室の電解質溶液を硫酸にして、電気分
解を行うのに好ましいとされている水素イオン選択透過
性陽イオン交換膜を用いて上記方法(特開昭60−121299
号公報)を適用した場合、陽極室から陰極室への水素イ
オンの透過量は、通電量に対して約40%であるため、電
解効率が悪く、かつ、陽極室での水素イオン濃度が増加
する。このように、当該溶液組成では、メッキをしなが
らNiイオンを供給する場合、電流効率が悪いため電力コ
ストが高くなること、陽極室での水素イオン濃度が増加
するためメッキの性状性が悪くなること等の問題ある。
したがって、陽極室から水素イオンを除去しかつ陽極室
と陰極室との間のイオンの移動を容易にする必要があ
る。
The solution composition is a sulfuric acid solution containing Ni or Ni, Zn or Ni, Zn, Co, and the electrolytic solution in the cathode chamber is sulfuric acid, and hydrogen ion selective permeable cations which are considered to be preferable for performing electrolysis Using an exchange membrane (see JP-A-60-121299)
In this case, the permeation amount of hydrogen ions from the anode chamber to the cathode chamber is about 40% of the amount of electricity, so the electrolysis efficiency is poor and the hydrogen ion concentration in the anode chamber increases. I do. As described above, in the solution composition, when supplying Ni ions while plating, power efficiency is increased due to poor current efficiency, and the hydrogen ion concentration in the anode chamber is increased, thereby deteriorating plating properties. There are problems.
Therefore, there is a need to remove hydrogen ions from the anode compartment and to facilitate the transfer of ions between the anode compartment and the cathode compartment.

メッキ槽ではメッキに伴う水の電気分解で水素イオン
が生成するために、溶液中の水素イオン濃度が増加す
る。また、溶液中の水素イオン濃度は、メッキ性状に大
きく影響することがわかっている。
In the plating tank, hydrogen ions are generated by electrolysis of water accompanying plating, so that the concentration of hydrogen ions in the solution increases. Also, it has been found that the hydrogen ion concentration in the solution greatly affects the plating properties.

一方、陰極室内では陰極での水素ガスの発生により水
素イオンは減少する。消費するNiイオンと供給するNiイ
オンは等しくすることから、メッキ電流量と電気分解電
流量とは等しく、メッキ浴での水素イオンの増加量と電
解槽の陰極室での減少量は等しいためキャンセルされ
る。しかし、実際は、上記のように水素イオンのイオン
交換膜を透過する量は通電量に対して約40%と小さいた
め、陰極室の水素イオン濃度が増加する。また、水素イ
オン選択透過性陽イオン交換膜のため、水素イオンを除
く他のイオンの移動がなく、電解効率が悪い。
On the other hand, in the cathode chamber, hydrogen ions decrease due to generation of hydrogen gas at the cathode. Since the consumed Ni ions and the supplied Ni ions are the same, the amount of plating current and the amount of electrolysis current are equal, and the amount of increase in hydrogen ions in the plating bath and the amount of decrease in the cathode compartment of the electrolytic cell are cancelled. Is done. However, in actuality, the amount of hydrogen ions permeating the ion exchange membrane as described above is as small as about 40% of the amount of electricity, so that the hydrogen ion concentration in the cathode chamber increases. In addition, since the cation exchange membrane is selectively permeable to hydrogen ions, there is no movement of ions other than hydrogen ions, and the electrolysis efficiency is poor.

以上のように、Ni又はNi,Zn又はNi,Zn,Coを含む硫酸
溶液で陰極室の電解質溶液として硫酸を用いてNiを電気
分解する場合、メッキ浴および電解槽の陽極室から水素
イオンを除去し、かつ陽極室と陰極室との間のイオンの
移動を容易にする必要がある。
As described above, when Ni or Ni, Zn or Ni, Zn, Co is electrolyzed with sulfuric acid as the electrolyte solution of the cathode compartment using a sulfuric acid solution containing Ni, Zn, Co, hydrogen ions are removed from the plating bath and the anode compartment of the electrolytic bath. There is a need to remove and facilitate the transfer of ions between the anode and cathode compartments.

本発明は、メッキ槽での水素イオンの増加にともなう
メッキ性状性の低下および陽極室と陰極室との間のイオ
ンの移動が少ないことによる電解効率の悪化をさせるこ
となく、長時間にわたって溶液濃度をコントロールする
ことによって、安定なメッキを可能にすることを目的と
する。
The present invention provides a method for reducing the concentration of a solution over a long period of time without deteriorating the plating properties due to an increase in hydrogen ions in the plating tank and reducing the electrolysis efficiency due to the small movement of ions between the anode chamber and the cathode chamber. The purpose of the present invention is to enable stable plating by controlling the temperature.

〔課題を解決するための手段〕[Means for solving the problem]

電気分解が進んでいくと、陰極室では水素イオンが水
素ガスとして放出されるため水素イオンが消費され、一
方、メッキ槽では水素イオン濃度が増加する。また、消
費されるNi量と生成するNi量は等しくすることから、メ
ッキ電流量と電気分解電流量は等しいからメッキ槽で増
加する水素イオン濃度と電解槽の陰極室で減少する水素
イオン濃度は等しい。
As the electrolysis proceeds, the hydrogen ions are consumed as hydrogen ions are released as hydrogen gas in the cathode chamber, while the hydrogen ion concentration increases in the plating tank. Further, since the amount of Ni consumed and the amount of Ni generated are equal, the plating current amount and the electrolysis current amount are equal, so that the hydrogen ion concentration that increases in the plating tank and the hydrogen ion concentration that decreases in the cathode chamber of the electrolytic tank are: equal.

そこで、本発明はあらかじめ、電解槽の陰極室の水素
イオン濃度をメッキ槽の水素イオン濃度よりも低くした
溶液と、水素イオンが生成するメッキ槽の溶液を陰イオ
ン交換膜を介して、その両側にメッキ槽の溶液と電解槽
の陰極室の溶液をそれぞれ通すことにより、陰イオン交
換膜を境界にして生じる水素イオンの濃度差を駆動力と
して拡散透析する拡散透析槽(旭硝子株式会社製)を用
いて、メッキ槽の溶液の水素イオンを硫酸として電解槽
側の陰極室へ移動させメッキ浴の溶液はメッキ槽へ、電
解槽の陰極室の溶液は陰極室へ循環して、かつ、電解槽
の陽極室と陰極室との間には硫酸イオンの移動の容易な
陰イオン交換膜を用いることによって、電気分解による
水素イオン濃度の変化をコントロールし、メッキ性状性
の低下や電解効率を悪化させることなく、長時間にわた
って安定なメッキを可能にする方法を提供するものであ
る。なお、陽極室と陰極室間に用いる陰イオン交換膜で
は硫酸イオンおよび水素イオンが透過して、通電量に対
してNiイオン供給量は90〜100%である。また、電解槽
および拡散透析槽では陰イオン交換膜を使用するため水
素イオン以外の陽イオンの量は無視できるほど小さい。
Therefore, the present invention provides a solution in which the hydrogen ion concentration in the cathode chamber of the electrolytic cell is lower than the hydrogen ion concentration in the plating tank and a solution in the plating tank in which hydrogen ions are generated. A diffusion dialysis tank (manufactured by Asahi Glass Co., Ltd.) that performs diffusion dialysis using the difference in the concentration of hydrogen ions generated at the boundary of the anion exchange membrane as a driving force by allowing the solution in the plating tank and the solution in the cathode chamber of the electrolytic tank to pass through each other. The hydrogen ions in the solution in the plating tank are transferred to the cathode chamber on the electrolytic cell side as sulfuric acid, and the solution in the plating bath is circulated to the plating tank, the solution in the cathode chamber of the electrolytic tank is circulated to the cathode chamber, and The use of an anion exchange membrane, which facilitates the transfer of sulfate ions, between the anode and cathode compartments of the anode controls changes in hydrogen ion concentration due to electrolysis, thereby reducing plating properties and reducing electrolytic efficiency. Without reduction, it is to provide a method which enables stable plating for a long time. In the anion exchange membrane used between the anode chamber and the cathode chamber, sulfate ions and hydrogen ions permeate, and the supply amount of Ni ions is 90 to 100% with respect to the amount of electricity. Further, since an anion exchange membrane is used in the electrolytic cell and the diffusion dialysis cell, the amount of cations other than hydrogen ions is so small as to be negligible.

〔実施例〕〔Example〕

本発明を以下の実施例で詳細に説明する。システムの
概要を模式的に第1図に示したように、電解槽Aの陽極
室aとメッキ槽Bを連結し、拡散透析槽Cはメッキ槽B
および電解槽Aの陰極室bにそれぞれ連結しており、そ
れぞれの溶液が循環する構造になっている。電解槽Aの
詳細を第2図に示したように、陰イオン交換膜3を介し
て、陽極1と陰極9が設けられており、それぞれの室に
流入口5,6を介して、溶液がセル内に流れ込み、流出口
7,8を介してセル外へ流れ出る構造であり、厚さが約5cm
のセルを一単位として100セルを並列に配置し、電流を
直流に流すようになっている。また、電解槽Aの陽極室
aにはTi製のバスケット型陽極1を備え、この中に直径
約5〜10mmの球状のNiペレット2を入れることができ、
かつ、電解によってペレットが小さくなってもバスケッ
ト型陽極から脱離しないような構造になっている。Niペ
レット2は硫黄を適当量含有するものが好ましいが、こ
の硫黄がメッキ性状性に影響する場合には、硫黄含有量
の低いNiペレットでもかまわない。また、Ni源としては
できるだけ表面積を大きくするために、球状のNiペレッ
トを用いたが、板状あるいは棒状のものでもかまはな
い。一方、陰極室bには溶液中の不純物として混入して
いる金属イオンが陰極に析出しにくいように、水素過電
圧が低い電極が好ましいが、実施例としては、ステンレ
ス性電極を陰極9として用いた。また、陰イオン交換膜
4を使用している拡散透析槽Cの一方をメッキ槽B、他
方を電解槽Aの陰極室bへ連結している。ここでは、最
初の溶液は、硫酸ニッケル、硫酸亜鉛、硫酸コバルト、
硫酸で第1表に示した組成に調製し、メッキによる亜鉛
・コバルトの消費分は工業試薬の添加により適時補充し
た。また、メッキおよび電気分解での各条件は第2表に
示した如くである。
The present invention is described in detail in the following examples. As schematically shown in FIG. 1, the outline of the system is such that the anode chamber a of the electrolytic cell A is connected to the plating cell B, and the diffusion dialysis cell C is the plating cell B.
And the cathode chamber b of the electrolytic cell A, so that the respective solutions circulate. As shown in FIG. 2 for details of the electrolytic cell A, an anode 1 and a cathode 9 are provided via an anion exchange membrane 3, and the solution is supplied to the respective chambers via inlets 5 and 6. Flow into cell, outlet
It is a structure that flows out of the cell through 7, 8 and is about 5 cm thick
100 cells are arranged in parallel with each cell as one unit, and a current flows to DC. The anode chamber a of the electrolytic cell A is provided with a basket-type anode 1 made of Ti, into which a spherical Ni pellet 2 having a diameter of about 5 to 10 mm can be put.
In addition, the structure is such that the pellet is not detached from the basket-type anode even if the pellet is reduced by electrolysis. It is preferable that the Ni pellets 2 contain an appropriate amount of sulfur. However, if the sulfur affects plating properties, Ni pellets having a low sulfur content may be used. As the Ni source, spherical Ni pellets were used in order to increase the surface area as much as possible. However, a plate-shaped or rod-shaped Ni source may be used. On the other hand, in the cathode chamber b, an electrode having a low hydrogen overvoltage is preferable so that metal ions mixed as impurities in the solution are unlikely to be deposited on the cathode. In the embodiment, a stainless steel electrode is used as the cathode 9. . One of the diffusion dialysis tanks C using the anion exchange membrane 4 is connected to the plating tank B, and the other is connected to the cathode chamber b of the electrolytic cell A. Here, the first solution is nickel sulfate, zinc sulfate, cobalt sulfate,
The composition was adjusted to the composition shown in Table 1 with sulfuric acid, and the consumption of zinc and cobalt by plating was replenished as necessary by adding industrial reagents. The conditions for plating and electrolysis are as shown in Table 2.

以下、各槽の作用を説明する。まず、拡散透析を運転
しない場合について、第3図で説明する。電解槽Aに電
流を流すと陰極から水素が発生し、この時通電した電気
量に対応した水素イオン濃度が減少する。一方、メッキ
槽Bでは陰極で水が分解し、酸素ガスが発生するが、こ
の時同時に水素イオンも生成するため、水素イオン濃度
が増加する。この溶液は電解槽Aの陽極室aと循環して
いるため、メッキと電解が進行すると、電解槽Aの陽極
室aと陰極室bは陰イオン交換膜3を境に濃度差を生じ
る。通電後、8時間後には、第3表に示したような水素
イオン濃度となり、電解はほとんど進行しなくなり、ま
た、メッキの性状性が悪くなった。
Hereinafter, the operation of each tank will be described. First, the case where diffusion dialysis is not performed will be described with reference to FIG. When a current is applied to the electrolytic cell A, hydrogen is generated from the cathode, and the hydrogen ion concentration corresponding to the amount of electricity supplied at this time decreases. On the other hand, in the plating tank B, water is decomposed at the cathode to generate oxygen gas. At this time, hydrogen ions are generated at the same time, so that the hydrogen ion concentration increases. Since this solution is circulating with the anode chamber a of the electrolytic cell A, a concentration difference occurs between the anode chamber a and the cathode cell b of the electrolytic cell A with the anion exchange membrane 3 as the plating and electrolysis proceeds. Eight hours after the energization, the hydrogen ion concentration was as shown in Table 3, and the electrolysis hardly proceeded, and the properties of the plating deteriorated.

次に、拡散透析を運転した場合について説明する。上
記のように、メッキが進行すると、メッキ槽Bでは水素
イオン濃度が増加するが、電解槽Aの陰極室bの方を硫
酸の初期濃度を低めに設定していると、拡散透析槽Cの
陰イオン交換膜4を境界に水素イオンの濃度差ができ
る。これが駆動力になって、矢印Dのように硫酸が低濃
度側へ拡散し、この結果、メッキ槽Bへは脱硫酸された
溶液が矢印Eのように返送され、また、電解槽Aの陰極
室bには硫酸が拡散した溶液が矢印Fのように返送され
る。この時、拡散透析槽Cには陰イオン交換膜4を使用
しているため、Ni,Zn,Coイオンはほとんど低濃度溶液側
へは混入しない。拡散させる硫酸濃度はメッキ槽Bおよ
び電解槽Aの陰極室bでの各水素イオン濃度および循環
させる液流量に依るため、メッキ性状性・メッキおよび
電解の電流効率を考慮して、あらかじめ、実験を行うこ
とによって決定すればよい。ここでは、第4表のように
設定し、約8時間の連続運転を行った時の各槽の水素イ
オン濃度およびNi,Zn,Co濃度を示した。第4表からも明
らかなように、各槽の金属元素および水素イオン濃度の
変化はほとんどなく、安定してNiイオンが供給されたこ
とがわかる。
Next, the case where the diffusion dialysis is operated will be described. As described above, as the plating proceeds, the hydrogen ion concentration increases in the plating tank B. However, if the initial concentration of sulfuric acid is set lower in the cathode chamber b of the electrolytic tank A, the diffusion dialysis tank C A difference in hydrogen ion concentration occurs at the boundary of the anion exchange membrane 4. This becomes the driving force, and the sulfuric acid diffuses to the low concentration side as shown by the arrow D. As a result, the desulfurized solution is returned to the plating tank B as shown by the arrow E. The solution in which the sulfuric acid is diffused is returned to the chamber b as shown by an arrow F. At this time, since the anion exchange membrane 4 is used in the diffusion dialysis tank C, Ni, Zn, and Co ions hardly enter the low concentration solution side. The concentration of sulfuric acid to be diffused depends on each hydrogen ion concentration in the plating chamber B and the cathode chamber b of the electrolytic cell A and the flow rate of the circulating solution. What is necessary is just to determine by performing. Here, the hydrogen ion concentration and the Ni, Zn, and Co concentrations in each tank when the continuous operation was performed for about 8 hours, as set in Table 4, were shown. As is clear from Table 4, there is almost no change in the concentration of the metal element and the hydrogen ion in each tank, indicating that the Ni ions were supplied stably.

〔発明の効果〕 メッキにより生成した水素イオン濃度の増加分を拡散
透析槽を用いてメッキ槽から除去し、この硫酸によって
電気分解に伴う水素イオン減少分を補給することができ
るため、各槽での水素イオン濃度は常に一定であり、陽
極・陰極室間のイオンの移動が容易になるため電解効率
も良好であることから、長時間にわたって安定なメッキ
操業を行うことができる。また、硫酸を回収し、電解槽
の陰極へ供給して再利用が可能であることから、新たに
硫酸を補充する場合よりも、安価に操業を行うことがで
きる。
[Effects of the Invention] An increase in the concentration of hydrogen ions generated by plating is removed from the plating tank using a diffusion dialysis tank, and the amount of hydrogen ions reduced due to electrolysis can be replenished by the sulfuric acid. The concentration of hydrogen ions is always constant, and the ion transfer between the anode and cathode chambers is facilitated and the electrolysis efficiency is good, so that a stable plating operation can be performed for a long time. In addition, since sulfuric acid can be recovered and supplied to the cathode of the electrolytic cell for reuse, the operation can be performed at a lower cost than in the case where sulfuric acid is newly replenished.

【図面の簡単な説明】[Brief description of the drawings]

第1図は拡散透析槽を用いる本発明法の説明図、第2図
は第1図の電解槽の構成例の説明図、第3図は拡散透析
槽を用いない比較法の説明図である。 A:電解槽、B:メッキ槽、C:拡散透析槽、D:矢印、E:矢
印、F:矢印、a:陽極室、b:陰極室、1:陽極、2:Niペレッ
ト、3:陰イオン交換膜、4:陰イオン交換膜、5:流入口、
6:流入口、7:流出口、8:流出口、9:陰極。
FIG. 1 is an explanatory view of the method of the present invention using a diffusion dialysis tank, FIG. 2 is an explanatory view of a configuration example of the electrolytic cell of FIG. 1, and FIG. 3 is an explanatory view of a comparative method without using a diffusion dialysis tank. . A: electrolytic cell, B: plating cell, C: diffusion dialysis cell, D: arrow, E: arrow, F: arrow, a: anode chamber, b: cathode chamber, 1: anode, 2: Ni pellet, 3: shade Ion exchange membrane, 4: anion exchange membrane, 5: inlet,
6: inlet, 7: outlet, 8: outlet, 9: cathode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ni溶出陽極が存在する陽極室と対極が存在
する陰極室とがイオン交換膜によって区画されたNi溶出
用電解槽の陰極室へ、Ni又はNi−Zn合金又はNi−Zn−Co
合金メッキ槽から、Ni又はNi,Zn又はNi,Zn,Coを含む硫
酸溶液よりなるメッキ浴溶液を循環させ、他方陰極室に
は硫酸溶液を満たして通電し、Ni溶出陽極からNiイオン
をメッキ浴溶液中に補給し、Niイオン濃度を高めた溶液
をメッキ槽へ還流させるNi又はNi−Zn合金又はNi−Zn−
Co合金メッキ方法において、 上記電解槽のイオン交換膜として陰イオン交換膜を用い
ると共に上記電解槽の陰極室の硫酸濃度を上記メッキ槽
のメッキ浴溶液の硫酸濃度よりも低めておき、陰イオン
交換膜で区画された拡散透析槽の一方の区画室にメッキ
浴溶液を循環させ、他方の区画室に電解槽の陰極室の溶
液を循環させ、硫酸拡散によって脱硫酸された一方の区
画室の溶液をメッキ槽に還流させ、硫酸拡散によって加
硫酸された他方の区画室の溶液を電解槽の陰極室に還流
させることを特徴とするNi又はNi−Zn合金又はNi−Zn−
Co合金メッキ方法。
An Ni or Ni-Zn alloy or a Ni-Zn-Ni-Zn alloy is charged into a cathode chamber of a Ni eluting electrolytic cell in which an anode chamber in which a Ni eluting anode is present and a cathode chamber in which a counter electrode is present are partitioned by an ion exchange membrane. Co
From the alloy plating bath, a plating bath solution consisting of a sulfuric acid solution containing Ni or Ni, Zn or Ni, Zn, Co is circulated, while the cathode chamber is filled with a sulfuric acid solution and energized, and Ni ions are plated from the Ni eluting anode. Ni or Ni-Zn alloy or Ni-Zn- which replenishes the bath solution and refluxes the solution having an increased Ni ion concentration to the plating tank.
In the Co alloy plating method, an anion exchange membrane is used as the ion exchange membrane of the electrolytic cell, and the sulfuric acid concentration of the cathode chamber of the electrolytic cell is set lower than the sulfuric acid concentration of the plating bath solution of the plating tank. The plating bath solution is circulated in one compartment of the diffusion dialysis tank partitioned by the membrane, the solution in the cathode compartment of the electrolytic cell is circulated in the other compartment, and the solution in one compartment which has been desulfated by sulfuric acid diffusion. To the plating bath, Ni or Ni-Zn alloy or Ni-Zn- characterized by refluxing the solution in the other compartment sulfurized by sulfuric acid diffusion to the cathode compartment of the electrolytic bath
Co alloy plating method.
JP12041090A 1990-05-10 1990-05-10 Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method Expired - Lifetime JP2764337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12041090A JP2764337B2 (en) 1990-05-10 1990-05-10 Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12041090A JP2764337B2 (en) 1990-05-10 1990-05-10 Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method

Publications (2)

Publication Number Publication Date
JPH0417693A JPH0417693A (en) 1992-01-22
JP2764337B2 true JP2764337B2 (en) 1998-06-11

Family

ID=14785534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12041090A Expired - Lifetime JP2764337B2 (en) 1990-05-10 1990-05-10 Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method

Country Status (1)

Country Link
JP (1) JP2764337B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686352B1 (en) * 1992-01-16 1995-06-16 Framatome Sa APPARATUS AND METHOD FOR ELECTROLYTIC COATING OF NICKEL.
DE19834353C2 (en) * 1998-07-30 2000-08-17 Hillebrand Walter Gmbh & Co Kg Alkaline zinc-nickel bath
DE19848467C5 (en) * 1998-10-21 2006-04-27 Walter Hillebrand Gmbh & Co. Kg Galvanotechnik Alkaline zinc-nickel bath
JP4441725B2 (en) * 2003-11-04 2010-03-31 石原薬品株式会社 Electric tin alloy plating method
DE102010044551A1 (en) * 2010-09-07 2012-03-08 Coventya Gmbh Anode and their use in an alkaline electroplating bath

Also Published As

Publication number Publication date
JPH0417693A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
EP1458905B1 (en) Electrolzsis cell for restoring the concentration of metal ions in electroplating processes
CN112714803B (en) Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
JP3455709B2 (en) Plating method and plating solution precursor used for it
EP0018848B1 (en) Method and apparatus for the electrolytic regeneration of etchants for metals
JPH10314740A (en) Electrolytic bath for acidic water production
US5419821A (en) Process and equipment for reforming and maintaining electroless metal baths
JP2019206755A (en) Separation plate integrated with electrode for use in water electrolysis, and water electrolysis stack
CN113818055B (en) Component adjusting method and device for acid copper electroplating plating solution or electroplating replenishment solution of insoluble anode
US5173170A (en) Process for electroplating metals
KR20020084086A (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
CN111133131A (en) Electrolytic cell device
JP2764337B2 (en) Ni or Ni-Zn alloy or Ni-Zn-Co alloy plating method
RU2292409C1 (en) Nickel-chrome alloy coating electrodeposition process
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
US5639360A (en) Electrode for an electrolytic cell, use thereof and method using same
CN117396638A (en) Device and method for coating a component or a semifinished product with a chromium layer
WO2001092604A2 (en) Electrolysis cell for restoring the concentration of metal ions in processes of electroplating
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JPH06158397A (en) Method for electroplating metal
JPS6015714B2 (en) Method of electrolytically extracting bulk zinc using a hydrogen anode
JPS5893888A (en) Supplying method for metallic ion in electroplating
JPS61104092A (en) Method for regenerating etching solution
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
KR800000028B1 (en) Elecfric tin plating method
JPH0541720B2 (en)