JPH0541708B2 - - Google Patents

Info

Publication number
JPH0541708B2
JPH0541708B2 JP23423787A JP23423787A JPH0541708B2 JP H0541708 B2 JPH0541708 B2 JP H0541708B2 JP 23423787 A JP23423787 A JP 23423787A JP 23423787 A JP23423787 A JP 23423787A JP H0541708 B2 JPH0541708 B2 JP H0541708B2
Authority
JP
Japan
Prior art keywords
coated
sio
water vapor
dew point
molybdenum wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23423787A
Other languages
Japanese (ja)
Other versions
JPS6475683A (en
Inventor
Migiwa Ando
Hideyasu Aoki
Takashi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP23423787A priority Critical patent/JPS6475683A/en
Publication of JPS6475683A publication Critical patent/JPS6475683A/en
Publication of JPH0541708B2 publication Critical patent/JPH0541708B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、IC基板、発熱体基板、真空スイツ
チ外囲器等の電力・電子部品、又は耐熱・耐食反
射鏡等の光学部品に好適に利用される。 「従来の技術」 シリカ系ガラス、就中、石英ガラスは、その優
れた耐酸性、耐熱性、平滑性、高電気絶縁性ゆえ
に各種基体材料の保護、機能の向上を目指した有
用な被覆材として活用されている。そして被覆技
術として、(1)スパツタリング法、(2)CVD法、(3)
ゾル−ゲル法、(4)プラズマ溶射法、が知られてい
る。 「発明が解決しようとする問題点」 しかし、上記(1)及び(2)はバツチ操作で処理量が
少ないため、コストが高くなるし、(3)及び(4)は被
膜の緻密性に劣り、また被膜にクラツクが入り易
い等の問題がある。 本発明は、かかる問題を解決し、低コストで緻
密性に優れたシリカ系ガラスの被膜をセラミツク
又は金属の表面に形成することを目的とする。 「問題点を解決するための手段」 その手段は、固体ケイ素を被覆対象物の近傍に
置き、水蒸気を含む還元雰囲気中、温度1200℃以
上、露点−20〜+25℃で加熱するところにある。 「作用」 還元雰囲気中に含まれた水蒸気は温度が高くく
なるとその一部が酸素と水素とに分解する。この
酸素が固体ケイ素と反応して固体ケイ素表面に
SiOを生成する。SiOは揮発して被覆対象物の表
面に達し、更に酸素と反応してSiO2ガラスの被
膜を形成する。但し、水蒸気の分解及びSiOの揮
発の両方を確実に起こさせるためには雰囲気温度
が1200℃以上であることが必要である。また、水
蒸気濃度が露点−20℃に満たないとSiO2まで酸
化されにくく、他方水蒸気濃度が露点25℃を越え
るとSiOからSiO2への酸化反応が速くなり過ぎて
固体ケイ素の表面がSiO2ガラスで覆われ、被覆
対象物表面へのSiOの供給が断たれることから、
水蒸気濃度は露点で−20℃以上25℃以下が望まし
い。 なお、純粋の固体ケイ素を用いた場合には、被
膜は石英ガラスで形成されるが、Mg,Na,Ca,
K等の不純物を含む低純度ケイ素の場合は、
SiO2を主成分とするガラスで形成される。 「実施例」 実施例 1 60メツシユ通過のケイ素粉末200g、第3ブチ
ルアルコール300ml及びポリビニルブチラール10
gを20mmφの高純度アルミナ球石600gとともに
容積600mlのポリエチレン製ポツトミルに入れ、
120rpmで15時間粉砕混合し、ペーストを調製し
た。ペースト中のケイ素粉末の平均粒径は1.5μで
あつた。別途、大きさ50×50×0.8tmm、Al2O3
有量99.5重量%のセラミツク基板(以下「被覆対
象基板」という)及びこれと同質で大きさ50×10
×0.8tmmのセラミツク基板(以下「ケイ素供給
板」という)を用意した。次にケイ素供給板の一
主面にレーザ溝入加工を施し、その上に前記ペー
ストを約0.5mmの厚さに塗布し、炉内にセツトし、
更に5mm程度離れた位置に被覆対象基板を並置し
た。露点3℃、流量800/hrの水素雰囲気中、
第1表に示す種々の温度で30分保持することによ
つて被覆対象基板に被膜を形成した。各温度条件
に対応する被膜の厚さ及び材質を第1表に併記し
た。いずれの被膜にもクラツクは無かつた。
"Industrial Application Field" The present invention is suitably applied to power/electronic components such as IC boards, heating element boards, vacuum switch envelopes, or optical components such as heat-resistant/corrosion-resistant reflectors. "Prior Art" Silica glass, especially quartz glass, has excellent acid resistance, heat resistance, smoothness, and high electrical insulation properties, making it a useful coating material for protecting various base materials and improving their functionality. It is being utilized. The coating techniques include (1) sputtering method, (2) CVD method, (3)
The sol-gel method and (4) plasma spray method are known. ``Problems to be solved by the invention'' However, the above (1) and (2) are batch operations and the throughput is small, resulting in high costs, and (3) and (4) have poor film density. There are also problems such as the tendency for cracks to form in the film. The object of the present invention is to solve this problem and form a low-cost, highly dense silica-based glass coating on the surface of ceramic or metal. "Means for Solving the Problem" The method consists in placing solid silicon near the object to be coated and heating it in a reducing atmosphere containing water vapor at a temperature of 1200°C or higher and a dew point of -20 to +25°C. "Operation" When the temperature of water vapor contained in a reducing atmosphere increases, a portion of it decomposes into oxygen and hydrogen. This oxygen reacts with solid silicon and forms on the solid silicon surface.
Generates SiO. SiO evaporates and reaches the surface of the object to be coated, and further reacts with oxygen to form a SiO 2 glass coating. However, in order to ensure that both the decomposition of water vapor and the volatilization of SiO occur, the ambient temperature needs to be 1200° C. or higher. Additionally, if the water vapor concentration is below the dew point of -20°C, it will be difficult to oxidize to SiO 2 , while if the water vapor concentration exceeds the dew point of 25°C, the oxidation reaction from SiO to SiO 2 will be too fast, and the surface of solid silicon will become SiO 2. Since it is covered with glass and the supply of SiO to the surface of the object to be coated is cut off,
The water vapor concentration is preferably -20°C or higher and 25°C or lower at the dew point. Note that when pure solid silicon is used, the coating is formed of silica glass, but Mg, Na, Ca,
In the case of low-purity silicon containing impurities such as K,
It is made of glass whose main component is SiO2 . "Example" Example 1 200g of silicon powder passed through 60 meshes, 300ml of tertiary butyl alcohol and 10% of polyvinyl butyral
Put g into a polyethylene pot mill with a capacity of 600 ml together with 600 g of high-purity alumina ball with a diameter of 20 mm.
A paste was prepared by grinding and mixing at 120 rpm for 15 hours. The average particle size of the silicon powder in the paste was 1.5μ. Separately, a ceramic substrate with a size of 50 x 50 x 0.8 tmm and an Al 2 O 3 content of 99.5% by weight (hereinafter referred to as "substrate to be coated") and a similar material with a size of 50 x 10
A ceramic substrate (hereinafter referred to as "silicon supply plate") of ×0.8 tmm was prepared. Next, laser grooving was performed on one main surface of the silicon supply plate, the paste was applied to a thickness of about 0.5 mm, and the plate was set in a furnace.
Furthermore, the substrates to be coated were placed side by side at positions separated by about 5 mm. In a hydrogen atmosphere with a dew point of 3℃ and a flow rate of 800/hr.
A film was formed on the substrate to be coated by holding it for 30 minutes at various temperatures shown in Table 1. The thickness and material of the coating corresponding to each temperature condition are also listed in Table 1. There were no cracks in any of the coatings.

【表】 実施例 2 第1図は本発明方法に従つて電気炉を用いてモ
リブデンワイヤに石英ガラスを被覆しているとこ
ろを示す断面図である。1は直径0.3mmのモリブ
デンワイヤ、2は内径50mm、外径60mm、長さ1000
mm、気孔率52%のアルミナ磁器製碍管、3はヒー
タ、4は電気炉、5はモリブデンワイヤを移送す
るローラである。 碍管2の内壁に実施例1で調製したペーストと
同質のペーストを約1mmの厚さに塗布し、電気炉
4内にセツトし、碍管2の貫通孔にモリブデンワ
イヤ1を挿入し、電気炉4内をアンモニア分解ガ
ス中温度1350℃に保持した状態でモリブデンワイ
ヤ1を速度50mm/minで移送することによつてワ
イヤ1の表面に被膜を形成した。アンモニア分解
ガスの露点を種々変化させ、それに対応する被膜
の厚さ及び材質を観察した結果を第2表に示す。
[Table] Example 2 FIG. 1 is a cross-sectional view showing a molybdenum wire coated with quartz glass using an electric furnace according to the method of the present invention. 1 is a molybdenum wire with a diameter of 0.3 mm, 2 is an inner diameter of 50 mm, an outer diameter of 60 mm, and a length of 1000 mm.
3 is a heater, 4 is an electric furnace, and 5 is a roller for transporting molybdenum wire. A paste of the same quality as the paste prepared in Example 1 was applied to the inner wall of the insulator tube 2 to a thickness of about 1 mm, and the insulator tube 2 was set in the electric furnace 4. The molybdenum wire 1 was inserted into the through hole of the insulator tube 2. A film was formed on the surface of the molybdenum wire 1 by transporting the molybdenum wire 1 at a speed of 50 mm/min while the temperature inside the wire was maintained at 1350° C. in ammonia decomposition gas. Table 2 shows the results of observing the thickness and material of the film corresponding to various changes in the dew point of the ammonia decomposition gas.

【表】 なお、いずれの被膜にもクラツクは見られなか
つた。 「発明の効果」 被覆対象物の形態は上記実施例に限定されるこ
となく、フアイバやウイスカーであつてもよく、
また大きさも限定されることがないから、通信
用、ヒータ用等の耐熱・耐食絶縁ケーブル、耐熱
反射鏡など応用範囲が広くなる。
[Table] Note that no cracks were observed in any of the films. "Effects of the Invention" The form of the object to be coated is not limited to the above embodiments, and may be fibers or whiskers.
Furthermore, since the size is not limited, the range of applications is wide, including heat-resistant and corrosion-resistant insulated cables for communications and heaters, and heat-resistant reflectors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明被覆方法の一実施例に従つて
モリブデンワイヤに石英ガラスを被覆していると
ころを示す断面図である。 1……モリブデンワイヤ。
FIG. 1 is a sectional view showing a molybdenum wire coated with quartz glass according to an embodiment of the coating method of the present invention. 1...Molybdenum wire.

Claims (1)

【特許請求の範囲】[Claims] 1 固体ケイ素を被覆対象物の近傍に置き、水蒸
気を含む還元雰囲気中、温度1200℃以上、露点−
20〜+25℃で加熱することを特徴とするセラミツ
ク又は金属へのシリカ系ガラスの被覆方法。
1. Place solid silicon near the object to be coated, and place it in a reducing atmosphere containing water vapor at a temperature of 1200℃ or higher and a dew point of -
A method for coating ceramic or metal with silica-based glass, which comprises heating at 20 to +25°C.
JP23423787A 1987-09-18 1987-09-18 Coating method with silica-based glass Granted JPS6475683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23423787A JPS6475683A (en) 1987-09-18 1987-09-18 Coating method with silica-based glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23423787A JPS6475683A (en) 1987-09-18 1987-09-18 Coating method with silica-based glass

Publications (2)

Publication Number Publication Date
JPS6475683A JPS6475683A (en) 1989-03-22
JPH0541708B2 true JPH0541708B2 (en) 1993-06-24

Family

ID=16967832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23423787A Granted JPS6475683A (en) 1987-09-18 1987-09-18 Coating method with silica-based glass

Country Status (1)

Country Link
JP (1) JPS6475683A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168454A (en) * 2010-02-19 2011-09-01 Asahi Glass Co Ltd Method of producing porous quartz glass preform

Also Published As

Publication number Publication date
JPS6475683A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
EP1899508B1 (en) Crucible for the crystallization of silicon and process for its preparation
JPH0466819B2 (en)
US4499147A (en) Silicon carbide substrates and a method of producing the same
US3542572A (en) Germania-silica glasses
WO2019109753A1 (en) Anti-oxidation coating for tungsten-rhenium thermocouple with high thermal shock resistance and application thereof
JPS5951721B2 (en) thick film composition
KR970005142B1 (en) Fabrication of semiconductor devices using phosphosilicate glasses
CH328875A (en) Electrical resistance and method of manufacturing same
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPH0541708B2 (en)
US4088609A (en) Current-conducting film for electric resistance heaters
JPH11310423A (en) Synthetic quartz glass and its production
US3119717A (en) Electrically conductive silicate ceramics and method of making the same
JP3698372B2 (en) CVD-SiC coated member
JPS6349903B2 (en)
Gupta et al. Electrical conduction and electron microscopy of vitreous solids in the K2O-SiO2 system
JPH0851001A (en) Ceramic resistor
US3754980A (en) Devitrification-resistant coating for high-silica glasses
JPS6410100B2 (en)
EP0327068B1 (en) Substrate used for fabrication of thick film circuit
JPH0436100B2 (en)
JP2000351615A (en) Silicon carbide body
Ishii et al. Preparation of Nd‐Al Co‐doped SiO2 Glass by Plasma Torch CVD and Its Fluorescence Properties
JPH059395B2 (en)
JP2002348174A (en) HEATER MATERIAL CONTAINING MoSi2 AS ITS MAIN COMPONENT WITH LOW-OXYGEN DIFFUSE VITREOUS COATING FILM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees