JPH0541658A - Cmos logical gate circuit - Google Patents

Cmos logical gate circuit

Info

Publication number
JPH0541658A
JPH0541658A JP3197554A JP19755491A JPH0541658A JP H0541658 A JPH0541658 A JP H0541658A JP 3197554 A JP3197554 A JP 3197554A JP 19755491 A JP19755491 A JP 19755491A JP H0541658 A JPH0541658 A JP H0541658A
Authority
JP
Japan
Prior art keywords
channel mos
transistor
mos transistor
terminal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197554A
Other languages
Japanese (ja)
Inventor
Shoji Takayama
正二 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3197554A priority Critical patent/JPH0541658A/en
Publication of JPH0541658A publication Critical patent/JPH0541658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To easily reduce power consumption by serially inserting diode loads into a CMOS inverter constituting the logical gate circuit. CONSTITUTION:Gate electrodes G connected to an input terminal 1 are the common transistor for a P channel MOS transistor 5 and an N channel MOS transistor 6. An N channel MOS transistor 7 having the gate electrodes and drain electrodes with the same electric potential and having substrate electrodes with the same potential with an earth terminal 4 is serially connected between source electrodes N3 of the transistor 5 and a power supply terminal 3. When an input terminal 1 is at 'L' level, an output terminal 2 becomes 'H' level. The potential V2 rises only to the potential descended by the threshold voltage VT7 of the transistor 7 from the power supply terminal 3. Therefore, the voltage amplitude of the output terminal 2 reduces by the voltage VT7, and the charge/ discharge current can be reduced, resulting in low power consumption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCMOS論理ゲート回路
に関し、特に低消費電力のディジタル集積回路に適した
CMOS論理ゲート回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CMOS logic gate circuit, and more particularly to a CMOS logic gate circuit suitable for a low power consumption digital integrated circuit.

【0002】[0002]

【従来の技術】最近、集積回路の規模が大規模化し、動
作周波数が高周波になってくると、さらにゲート当りの
消費電力を小さくしたいという要望が出てくる。この様
な低消費電力化の方法として従来のCMOS論理ゲート
回路では、電源電圧を低くする方法,出力負荷容量を減
らす方法,トランジスタのサイズを小さくして寄生容量
を減らす方法等が考えられて来た。
2. Description of the Related Art Recently, as the scale of integrated circuits becomes larger and the operating frequency becomes higher, there is a demand for further reduction of power consumption per gate. In the conventional CMOS logic gate circuit, a method of reducing the power supply voltage, a method of reducing the output load capacitance, a method of reducing the size of the transistor to reduce the parasitic capacitance, etc. have been considered as such a method of reducing the power consumption. It was

【0003】従来のCMOS論理ゲート回路では、例え
ば図4に示す2入力NANDゲートを例にすると、出力
端子2と電源端子3との間にPチャネルMOSトランジ
スタ24,25が並列接続され、出力端子2と接地端子
4との間にNチャネルMOSトランジスタ26,27が
直列接続され、さらにPチャネルMOSトランジスタ2
4とNチャネルMOSトランジスタ26、PチャネルM
OSトランジスタ25とNチャネルMOSトランジスタ
27の各々のゲート電極を入力端子8,9に接続する事
により構成されている。
In the conventional CMOS logic gate circuit, for example, in the case of the 2-input NAND gate shown in FIG. 4, P-channel MOS transistors 24 and 25 are connected in parallel between the output terminal 2 and the power supply terminal 3, and the output terminal is 2 and the ground terminal 4, N-channel MOS transistors 26 and 27 are connected in series, and further P-channel MOS transistor 2
4 and N channel MOS transistor 26, P channel M
The gate electrodes of the OS transistor 25 and the N-channel MOS transistor 27 are connected to the input terminals 8 and 9, respectively.

【0004】すなわち出力端子2と電源端子3との間に
PチャネルMOSトランジスタ24,25を、出力端子
2と接地端子4との間にNチャネルMOSトランジスタ
26,27を、しかもPチャネルMOSトランジスタ2
4,25が並列接続ならばNチャネルMOSトランジス
タ26,27は直列接続に、また図示してないが、逆に
PチャネルMOSトランジスタ24,25が直列接続な
らばNチャネルMOSトランジスタ26,27は並列接
続に接続する事により構成されている。そして、Pチャ
ネルMOSトランジスタ24,25とNチャネルMOS
トランジスタ26,27のゲート電極は互いに対となっ
て入力端子8,9に接続されている。
That is, P-channel MOS transistors 24 and 25 are provided between the output terminal 2 and the power supply terminal 3, N-channel MOS transistors 26 and 27 are provided between the output terminal 2 and the ground terminal 4, and the P-channel MOS transistor 2 is also provided.
If the P-channel MOS transistors 26 and 27 are connected in parallel, the N-channel MOS transistors 26 and 27 are connected in series. On the contrary, if the P-channel MOS transistors 24 and 25 are connected in series, the N-channel MOS transistors 26 and 27 are connected in parallel. It is configured by connecting to a connection. The P channel MOS transistors 24 and 25 and the N channel MOS
The gate electrodes of the transistors 26 and 27 form a pair and are connected to the input terminals 8 and 9.

【0005】この様な構成であるから、入力端子8,9
が“H”レベルまたは“L”レベルの定常状態では、対
となるPチャネルMOSトランジスタ24,25とNチ
ャネルMOSトランジスタ26,27の両方とも同時に
導通状態となることはなく、定常的な電流は流れない。
入力端子8,9が“H”レベルから“L”レベル、ある
いはその逆に変化している過度状態においてのみPチャ
ネルMOSトランジスタ24,25とNチャネルMOS
トランジスタ26,27の両方が導通している状態が存
在し、電源端子3と接地端子4間に過渡的な貫通電流が
流れる。また、入力端子8,9の信号S8,S9の変化
に応じて出力端子2の負荷容量Cを充放電する電流iC
が流れる。
With such a configuration, the input terminals 8 and 9
In the steady state of "H" level or "L" level, neither the paired P-channel MOS transistors 24 and 25 and the N-channel MOS transistors 26 and 27 become conductive at the same time, and the steady current is Not flowing.
Only when the input terminals 8 and 9 change from "H" level to "L" level or vice versa, the P-channel MOS transistors 24 and 25 and the N-channel MOS transistors are formed.
There is a state where both the transistors 26 and 27 are conducting, and a transient through current flows between the power supply terminal 3 and the ground terminal 4. In addition, a current iC that charges and discharges the load capacitance C of the output terminal 2 in accordance with changes in the signals S8 and S9 of the input terminals 8 and 9.
Flows.

【0006】従って過渡的な電流は流れるが定常的には
ほとんど電流は流れず、接合部リーク電流やMOSトラ
ンジスタのサブスレッショルドリーク電流等のリーク電
流が流れるのみである。この様な理由により、従来のC
MOS論理ゲート回路では過渡的な変化の回数の少ない
すなわち動作周波数の小さい場合は非常に低消費電力で
あるという優れた点をもっている。
Therefore, although a transient current flows, almost no current flows steadily, and only a leak current such as a junction leak current or a subthreshold leak current of a MOS transistor flows. For this reason, the conventional C
The MOS logic gate circuit has an excellent point that the power consumption is extremely low when the number of transient changes is small, that is, when the operating frequency is small.

【0007】[0007]

【発明が解決しようとする課題】この従来のCMOS論
理ゲート回路では、消費電流を減らすために、電源電圧
を低くする方法は電子装置で使用される電源電圧との関
係もあるので容易に変える事はできない。またに他の集
積回路と同一の電源電圧を変えることは難しい。
In this conventional CMOS logic gate circuit, the method of lowering the power supply voltage in order to reduce the current consumption has a relationship with the power supply voltage used in the electronic device, and therefore can be easily changed. I can't. Moreover, it is difficult to change the same power supply voltage as other integrated circuits.

【0008】次に出力負荷容量を減らす方法であるが、
論理回路での出力負荷容量としては配線容量が支配的で
あり、むしろ製造プロセスの微細加工技術に依存する所
が大きく回路的な工夫は難しい。
Next, there is a method of reducing the output load capacity.
The wiring capacitance is dominant as the output load capacitance in the logic circuit, and rather, it depends on the fine processing technology of the manufacturing process, and it is difficult to devise the circuit.

【0009】さらにトランジスタのサイズを小さくする
方法は信号の伝達遅延時間を大きくしてしまい、また前
述の様に論理回路の負荷容量としては配線容量が支配的
である為、トランジスタサイズを小さくした効果はあま
り期待できないので、高周波動作による消費電流が減少
できないという問題があった。
Further, the method of reducing the size of the transistor increases the signal transmission delay time, and the wiring capacitance is dominant as the load capacitance of the logic circuit as described above. However, there is a problem in that the current consumption due to high-frequency operation cannot be reduced because it cannot be expected.

【0010】[0010]

【課題を解決するための手段】本発明CMOS論理ゲー
ト回路は、ゲート電極が入力端子に接続された第1のP
チャネルMOSトランジスタと第1のNチャネルMOS
トランジスタを有し、前記第1のPチャネルMOSトラ
ンジスタのソース電極と電源端子との間にゲート電極と
ドレイン電極が同電位でかつ基板電極が接地端子と同電
位の1個以上の直列接続された第2のNチャネルMOS
トランジスタと、前記第1のNチャネルMOSトランジ
スタのソース電極と接地端子との間にゲート電極とドレ
インが同電位でかつ基板電極が電源端子と同電位の1個
以上の直列接続された第2のPチャネルMOSトランジ
スタとの少くとも一方を有して構成されている。
In the CMOS logic gate circuit of the present invention, a first P-channel gate electrode is connected to an input terminal.
Channel MOS transistor and first N-channel MOS
One or more series-connected transistors having a transistor, in which the gate electrode and the drain electrode have the same potential and the substrate electrode has the same potential as the ground terminal, between the source electrode and the power supply terminal of the first P-channel MOS transistor. Second N channel MOS
One or more second series-connected transistors in which the gate electrode and the drain have the same potential and the substrate electrode has the same potential between the source electrode and the ground terminal of the first N-channel MOS transistor and the substrate electrode has the same potential. It is configured to have at least one of a P-channel MOS transistor.

【0011】[0011]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の第1の実施例の回路図である。この
インバータはゲート電極とドレイン電極が同電位でかつ
基板電極が接地端子4と同電位のNチャネルMOSトラ
ンジスタ7が、ゲート電極Gが入力端子1に接続されド
レイン電極N2が出力端子2に接続されたPチャネルM
OSトランジスタ5のソース電極N3と電源端子3間に
直列接続されている。
The present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of the first embodiment of the present invention. This inverter has an N-channel MOS transistor 7 in which the gate electrode and the drain electrode have the same potential and the substrate electrode has the same potential as the ground terminal 4, the gate electrode G is connected to the input terminal 1 and the drain electrode N2 is connected to the output terminal 2. P channel M
It is connected in series between the source electrode N3 of the OS transistor 5 and the power supply terminal 3.

【0012】また出力端子2と接地端子4間にはNチャ
ネルMOSトランジスタ6が接続されている。そしてト
ランジスタ5,6はゲート電極Gが共通のCMOSトラ
ンジスタとなっている。
An N-channel MOS transistor 6 is connected between the output terminal 2 and the ground terminal 4. The transistors 5 and 6 are CMOS transistors having a common gate electrode G.

【0013】この様な構成であるから入力端子1が
“H”レベルの時にはPチャネルMOSトランジスタ5
はオフ状態であり、NチャネルMOSトランジスタ6は
オン状態となり出力端子2は反転して“L”レベルにな
る。この場合出力端子2の電位V2は接地電位VGとな
り従来のCMOSインバータと同一の動作をする。一方
入力端子1が“L”レベルの時にはNチャネルMOSト
ランジスタ6はオフ状態となり、PチャネルMOSトラ
ンジスタ5はオン状態となる。この時出力端子2は
“H”レベルとなる。この場合は、従来の図4に示した
CMOSインバータとは違い出力端子2の電位V2は電
源端子3よりもNチャネルMOSトランジスタ7のスレ
ッショルド電圧VT7分降下した電位までしか上昇しな
い。従って本実施例における出力端子2の電圧振幅は従
来のCMOSインバータよりもNチャネルMOSトラン
ジスタ7のスレッショルド電圧VT7分小さくなり、そ
の分従来よりも充放電電流が低減でき結果的に低消費電
力化が可能となる。
With this structure, when the input terminal 1 is at "H" level, the P channel MOS transistor 5
Is in the off state, the N-channel MOS transistor 6 is in the on state, and the output terminal 2 is inverted and becomes the "L" level. In this case, the potential V2 of the output terminal 2 becomes the ground potential VG and operates in the same manner as the conventional CMOS inverter. On the other hand, when the input terminal 1 is at "L" level, the N-channel MOS transistor 6 is off and the P-channel MOS transistor 5 is on. At this time, the output terminal 2 becomes "H" level. In this case, unlike the conventional CMOS inverter shown in FIG. 4, the potential V2 of the output terminal 2 rises only to a potential lower than that of the power supply terminal 3 by the threshold voltage VT7 of the N-channel MOS transistor 7. Therefore, the voltage amplitude of the output terminal 2 in this embodiment is smaller than that of the conventional CMOS inverter by the threshold voltage VT7 of the N-channel MOS transistor 7, and the charging / discharging current can be reduced by that much, resulting in lower power consumption. It will be possible.

【0014】図2は第1の実施例と従来のCMOSイン
バータの消費電力を比較して説明するためのグラフであ
る。ここでは、電源電圧を5V,PチャネルMOSトラ
ンジスタ5のチャネル長を1.0μm、NチャネルMO
Sトランジスタ6,7のチャネル長を0.8μm、チャ
ネル幅はPチャネル,Nチャネル共に15μmさらにP
チャネル,Nチャネル共にスレッショルド電圧の絶対値
を0.7Vとした。図2で明らかな様に本実施例による
消費電力12が従来のもの11から約70%に低減でき
た。
FIG. 2 is a graph for comparing and explaining the power consumption of the first embodiment and the conventional CMOS inverter. Here, the power supply voltage is 5 V, the channel length of the P-channel MOS transistor 5 is 1.0 μm, and the N-channel MO transistor is
The channel length of the S transistors 6 and 7 is 0.8 μm, and the channel width is 15 μm for both P and N channels.
The absolute value of the threshold voltage of both the channel and the N channel was set to 0.7V. As is apparent from FIG. 2, the power consumption 12 according to the present embodiment can be reduced to about 70% from the conventional power consumption 11.

【0015】なお、この様に出力端子2の電圧振幅が小
さくなる場合に次段ゲートの誤動作が心配されるが、次
段ゲートも本実施例と同様の回路構成をとれば何ら問題
はない。また従来のCMOS論理ゲート回路にMOSト
ランジスタを1個追加接続するのみで構成できるので非
常に容易に実現できる。
When the voltage amplitude of the output terminal 2 becomes small as described above, the next-stage gate may malfunction, but there is no problem if the next-stage gate has the same circuit configuration as that of this embodiment. Further, since it can be configured only by additionally connecting one MOS transistor to the conventional CMOS logic gate circuit, it can be realized very easily.

【0016】図3は本発明の第2の実施例を示す2入力
NANDゲートの回路図である。本実施例では、ゲート
電極とドレイン電極が同電位でかつ基板電極が接地端子
4と同電位のNチャネルMOSトランジスタ18が、ゲ
ート電極が入力端子8,9に接続されたPチャネルMO
Sトランジスタ13,14のソース電極N3と電源端子
11間に直列接続されている。
FIG. 3 is a circuit diagram of a 2-input NAND gate showing a second embodiment of the present invention. In this embodiment, an N-channel MOS transistor 18 in which the gate electrode and the drain electrode have the same potential and the substrate electrode has the same potential as the ground terminal 4, and the P-channel MO transistor whose gate electrode is connected to the input terminals 8 and 9 is used.
The source electrodes N3 of the S transistors 13 and 14 and the power supply terminal 11 are connected in series.

【0017】またゲート電極とドレイン電極が同電位で
かつ基板電極が電源端子3と同電位のPチャネルMOS
トランジスタ17が、ゲート電極が入力端子8,9に接
続されたNチャネルMOSトランジスタ16と接地端子
4間に直列接続されている。この場合、出力端子2の電
位は“L”レベルの時は接地端子4よりもPチャネルM
OSトランジスタ17のスレッショルド電圧の絶対値分
高い電位となり、“H”レベルの時は電源端子3よりも
NチャネルMOSトランジスタ18のスレッショルド電
圧分低い電位となる。
A P-channel MOS transistor in which the gate electrode and the drain electrode have the same potential and the substrate electrode has the same potential as the power supply terminal 3
The transistor 17 is connected in series between the N-channel MOS transistor 16 whose gate electrode is connected to the input terminals 8 and 9 and the ground terminal 4. In this case, when the potential of the output terminal 2 is at "L" level, the P channel M
The potential becomes higher by the absolute value of the threshold voltage of the OS transistor 17 and becomes lower than the power supply terminal 3 by the threshold voltage of the N-channel MOS transistor 18 at the “H” level.

【0018】従って出力端子2の電圧振幅は従来のCM
OS論理ゲート回路よりもPチャネルMOSトランジス
タ17とNチャネルMOSトランジスタ18のスレッシ
ョルド電圧の全体値の和分だけ小さくなり、結果的に充
放電電流iCが低減でき低消費電力化が可能となる。
Therefore, the voltage amplitude of the output terminal 2 is the same as that of the conventional CM.
It becomes smaller than the OS logic gate circuit by the sum of the threshold voltages of the P-channel MOS transistor 17 and the N-channel MOS transistor 18, and as a result, the charge / discharge current iC can be reduced and the power consumption can be reduced.

【0019】電源電圧を5V,PチャネルMOSトラン
ジスタのチャネル長を1.0μm,NチャネルMOSト
ランジスタのチャネル長を0.8μm,チャネル幅は共
に15μm,スレッショルド電圧VTの絶対値を0.7
Vとした場合に本実施例では従来のCMOS論理ゲート
回路と比較して約60%に消費電力が低減できた。
The power supply voltage is 5 V, the channel length of the P-channel MOS transistor is 1.0 μm, the channel length of the N-channel MOS transistor is 0.8 μm, both channel widths are 15 μm, and the absolute value of the threshold voltage VT is 0.7.
When V is set, the power consumption can be reduced to about 60% in this embodiment as compared with the conventional CMOS logic gate circuit.

【0020】[0020]

【発明の効果】以上説明した様に本発明は、論理ゲート
回路を構成するCMOSインバータにダイオード負荷を
直列に挿入して従来のCMOS論理ゲート回路に比較
し、容易に低消費電力化が可能となる。
As described above, according to the present invention, it is possible to easily reduce the power consumption as compared with the conventional CMOS logic gate circuit by inserting a diode load in series to the CMOS inverter which constitutes the logic gate circuit. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すインバータ回路図
である。
FIG. 1 is an inverter circuit diagram showing a first embodiment of the present invention.

【図2】図1の実施例の回路の効果を説明するための消
費電力特性図である。
FIG. 2 is a power consumption characteristic diagram for explaining the effect of the circuit of the embodiment of FIG.

【図3】本発明の第2の実施例を示す2入力NANDゲ
ートの回路図である。
FIG. 3 is a circuit diagram of a 2-input NAND gate showing a second embodiment of the present invention.

【図4】従来のCMOS論理ゲート回路の一例の回路図
である。
FIG. 4 is a circuit diagram of an example of a conventional CMOS logic gate circuit.

【符号の説明】[Explanation of symbols]

1,8,9,19,20 入力端子 2,10,21 出力端子 3,11,22 電源端子 4,12,23 接地端子 5,13,14,17,24,25 PチャネルMO
Sトランジスタ 6,7,15,16,18,26,27 Nチャネル
MOSトランジスタ
1,8,9,19,20 Input terminal 2,10,21 Output terminal 3,11,22 Power supply terminal 4,12,23 Ground terminal 5,13,14,17,24,25 P channel MO
S transistor 6,7,15,16,18,26,27 N channel MOS transistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲート電極が入力端子に接続された第1
のPチャネルMOSトランジスタと第1のNチャネルM
OSトランジスタを有し、前記第1のPチャネルMOS
トランジスタのソース電極と電源端子との間にゲート電
極とドレイン電極が同電位でかつ基板電極が接地端子と
同電位の1個以上の直列接続された第2のNチャネルM
OSトランジスタと、前記第1のNチャネルMOSトラ
ンジスタのソース電極と接地端子との間にゲート電極と
ドレインが同電位でかつ基板電極が電源端子と同電位の
1個以上の直列接続された第2のPチャネルMOSトラ
ンジスタとの少くとも一方を有することを特徴とするC
MOS論理ゲート回路。
1. A first gate electrode connected to an input terminal
P-channel MOS transistor and first N-channel M
The first P-channel MOS having an OS transistor
One or more second N-channel M connected in series between the source electrode and the power supply terminal of the transistor, the gate electrode and the drain electrode of which have the same potential, and the substrate electrode of which has the same potential as the ground terminal.
One or more serially connected gate electrodes and drains having the same potential and substrate electrodes having the same potential as the power supply terminal are connected in series between the OS transistor and the source electrode and the ground terminal of the first N-channel MOS transistor. C at least one of the P-channel MOS transistors of
MOS logic gate circuit.
JP3197554A 1991-08-07 1991-08-07 Cmos logical gate circuit Pending JPH0541658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197554A JPH0541658A (en) 1991-08-07 1991-08-07 Cmos logical gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197554A JPH0541658A (en) 1991-08-07 1991-08-07 Cmos logical gate circuit

Publications (1)

Publication Number Publication Date
JPH0541658A true JPH0541658A (en) 1993-02-19

Family

ID=16376427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197554A Pending JPH0541658A (en) 1991-08-07 1991-08-07 Cmos logical gate circuit

Country Status (1)

Country Link
JP (1) JPH0541658A (en)

Similar Documents

Publication Publication Date Title
US4779013A (en) Slew-rate limited output driver having reduced switching noise
US5811992A (en) Dynamic clocked inverter latch with reduced charged leakage and reduced body effect
US4779014A (en) BiCMOS logic circuit with additional drive to the pull-down bipolar output transistor
US4365172A (en) High current static MOS driver circuit with low DC power dissipation
US20010052623A1 (en) Semiconductor integrated circuit
US5537059A (en) Output circuit of semiconductor integrated circuit device
US6670841B2 (en) Level shifting circuit
JPS63112893A (en) Semiconductor integrated circuit
US4628218A (en) Driving circuit suppressing peak value of charging current from power supply to capacitive load
US4346310A (en) Voltage booster circuit
JPS60192418A (en) High speed input buffer
US5095230A (en) Data output circuit of semiconductor device
JP2003273724A (en) Semiconductor integrated circuit device
US4609836A (en) CMOS transmission circuit
KR100432941B1 (en) Methods and apparatus for bipolar elimination in silicon-on-insulator(soi) domino circuits
US4587446A (en) Field effect transistor output circuit operable by a reduced amount of current
US4352996A (en) IGFET Clock generator circuit employing MOS boatstrap capacitive drive
JP3179059B2 (en) Bus control buffer amplifier
US5159214A (en) Bicmos logic circuit
US6269042B1 (en) I/O circuit of semiconductor integrated device
JPH0541658A (en) Cmos logical gate circuit
US4353104A (en) Output interface circuits
US6175252B1 (en) Driver circuit
JPS59231916A (en) Semiconductor circuit
JPH06120439A (en) Semiconductor device