JPH0541549A - Piezoelectric porcelain materials - Google Patents

Piezoelectric porcelain materials

Info

Publication number
JPH0541549A
JPH0541549A JP3196850A JP19685091A JPH0541549A JP H0541549 A JPH0541549 A JP H0541549A JP 3196850 A JP3196850 A JP 3196850A JP 19685091 A JP19685091 A JP 19685091A JP H0541549 A JPH0541549 A JP H0541549A
Authority
JP
Japan
Prior art keywords
piezoelectric
deterioration
thermal shock
basic composition
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3196850A
Other languages
Japanese (ja)
Inventor
Shuji Hayano
修二 早野
Yutaka Ariake
裕 有明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3196850A priority Critical patent/JPH0541549A/en
Publication of JPH0541549A publication Critical patent/JPH0541549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To minimize the deterioration of piezoelectric properties and enhance an electric machine coupling factor even when thermal impact is applied by allowing a 100g of basic composition which satisfies a specific expression to contain Mn as a sub-component at a rate of 0.8 to 1.5g. CONSTITUTION:The piezoelectric magnetic materials which are used as a piezoelectric vibrator or films are generally given by the following expression where XPb (Sn0.5Sb0.5) O3-YPbTiO3-(I-X-Y)PbZrO3. The materials are given by (X +Y)<1 in the expression and satisfy 0.01<=X<=0.20 and 0.30<=Y$0.70. 100g of this basic composition is arranged to contain Mn as a sub-component at the rate of 0.8 to 10.5g. This construction makes it possible to minimize the deterioration of piezoelectric properties even when thermal impact is added, say, provide a piezoelectric resonator which has large piezoelectric properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧電磁器材料、より詳細
には圧電振動子あるいはフィルタ用等として使用される
圧電磁器材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic material, and more particularly to a piezoelectric ceramic material used for piezoelectric vibrators or filters.

【0002】[0002]

【従来の技術】ジルコン酸チタン酸鉛(Pb(Ti,Zr)O3
は従来より圧電磁器材料として広く知られている磁器組
成物である。圧電共振子に利用される材料としては電気
機械結合係数(kt)、機械的品質係数(Qmt)等の圧電特
性が大きいことが要求され、さらに共振子の使用温度範
囲の拡大(−40℃〜80℃)に伴い、温度変化に対し
てこれらの圧電特性の劣化が小さいことが必要とされて
いる。一般に圧電磁器材料として、PbTiO3-PbZrO3 (P
ZT)系磁器が優れた圧電特性を示すことが知られてお
り、圧電ブザー、周波数フィルタ、着火素子等の材料に
利用されてきた。
2. Description of the Related Art Lead zirconate titanate (Pb (Ti, Zr) O 3 )
Is a porcelain composition which has been widely known as a piezoelectric ceramic material. The material used for the piezoelectric resonator is required to have large piezoelectric characteristics such as electromechanical coupling coefficient (kt) and mechanical quality coefficient (Q mt ), and the operating temperature range of the resonator is expanded (-40 ° C). ˜80 ° C.), it is required that the deterioration of these piezoelectric characteristics is small with respect to the temperature change. Generally, as a piezoelectric ceramic material, PbTiO 3 -PbZrO 3 (P
It is known that ZT) -based porcelain exhibits excellent piezoelectric characteristics, and has been used as a material for piezoelectric buzzers, frequency filters, ignition elements and the like.

【0003】従来より、PZT系磁器に第3成分として
Pb(Sn0.5Sb0.5)O3を加えた材料は150℃で強制的に熱
エージングをしても電気機械結合係数(kt)の変化率が5
%以内とかなり小さく、温度安定性に優れた材料として
知られている(特公昭55−18059号公報)。
Conventionally, as a third component in a PZT system porcelain
The material containing Pb (Sn 0.5 Sb 0.5 ) O 3 has a rate of change of electromechanical coupling coefficient (kt) of 5 even when forced to heat aging at 150 ° C.
%, Which is considerably small, and is known as a material having excellent temperature stability (Japanese Patent Publication No. 55-18059).

【0004】[0004]

【発明が解決しようとする課題】ところで圧電共振子用
としては発振周波数のずれの小さい信頼性の高い圧電磁
器材料が要求される。その信頼性試験の中でももっとも
条件が厳しいのが、−40℃から80℃の熱衝撃を与え
る熱衝撃試験であり、熱衝撃により圧電特性が劣化して
発振周波数が大きくずれ、信頼性が問題となることが多
い。
By the way, a piezoelectric ceramic material having a small deviation in oscillation frequency and high reliability is required for a piezoelectric resonator. The most severe condition of the reliability test is a thermal shock test in which a thermal shock of −40 ° C. to 80 ° C. is given, and the piezoelectric characteristics are deteriorated by the thermal shock, and the oscillation frequency is largely deviated. Often becomes.

【0005】従来の材料のうち、例えば特公昭55−1
8059号公報に示されたPb(SnaSb1-a)O3-PbTiO3-PbZr
O3系にあっても熱衝撃により圧電特性が劣化し、発振周
波数のずれが起るという課題があった。
Among conventional materials, for example, Japanese Patent Publication No. 55-1
Pb (Sn a Sb 1-a ) O 3 -PbTiO 3 -PbZr disclosed in Japanese Patent No. 8059
Even in the O 3 system, there is a problem that the piezoelectric characteristics are deteriorated by thermal shock and the oscillation frequency shifts.

【0006】本発明はこのような課題に鑑み発明された
ものであって、熱衝撃を加えても圧電特性の劣化が小さ
く、しかも電気機械結合係数の高い、すなわち圧電特性
の大きい圧電磁器材料を提供することを目的としてい
る。
The present invention has been invented in view of the above problems, and a piezoelectric ceramic material having a small deterioration of piezoelectric characteristics even when a thermal shock is applied and a high electromechanical coupling coefficient, that is, a large piezoelectric characteristic is provided. It is intended to be provided.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る圧電磁器材料は、一般式がXPb(Sn0.5Sb
0.5)O3−YPbTiO3−(1−X−Y)PbZrO3(ただしX+
Y<1)で示され、0.01≦X≦O.20、0.30
≦Y≦0.70を満足する基本組成物100gに対し、
副成分としてMnを0.8〜1.5gの割合で含有して
いることを特徴としている。
In order to achieve the above object, the piezoelectric ceramic material according to the present invention has a general formula of XPb (Sn 0.5 Sb
0.5) O 3 -YPbTiO 3 - ( 1-X-Y) PbZrO 3 ( proviso X +
Y <1), and 0.01 ≦ X ≦ O. 20, 0.30
With respect to 100 g of the basic composition satisfying ≦ Y ≦ 0.70,
It is characterized by containing Mn as an accessory component in a ratio of 0.8 to 1.5 g.

【0008】[0008]

【作用】熱衝撃試験は−40℃から80℃に温度を上げ
る昇温過程と、80℃から−40℃に温度を下げる降温
過程に分けることができる。図1に示したように、特に
降温過程においては、圧電体の自発分極の増大にともな
い、圧電体の表面付近に電荷が溜り、この電荷が分極方
向と逆に電圧を印加するために減極を引き起こす。この
ため圧電特性が劣化して発振周波数にずれが生じる。そ
こで劣化防止のため、溜った電荷をいち早く緩和させる
ためには圧電体の抵抗を下げる必要がある。
The thermal shock test can be divided into a temperature raising process of raising the temperature from -40 ° C to 80 ° C and a temperature lowering process of lowering the temperature from 80 ° C to -40 ° C. As shown in FIG. 1, particularly in the temperature-decreasing process, as the spontaneous polarization of the piezoelectric body increases, charges accumulate near the surface of the piezoelectric body, and this charge is depolarized because a voltage is applied in the opposite direction to the polarization direction. cause. As a result, the piezoelectric characteristics deteriorate and the oscillation frequency shifts. In order to prevent deterioration, it is necessary to reduce the resistance of the piezoelectric body in order to quickly alleviate the accumulated charge.

【0009】図2に示した如く、本発明に係る材料であ
るPb(Sn0.5Sb0.5)O3、PbTiO3、PbZrO3系において、抵抗
率を調べたところ、PT/PZ比よりもPb(Sn0.5Sb0.5)
O3の量の低減により抵抗率は下がることを知見した。
As shown in FIG. 2, when the resistivity of Pb (Sn 0.5 Sb 0.5 ) O 3 , PbTiO 3 , and PbZrO 3 systems, which are materials according to the present invention, was examined, it was found that Pb (Pb Sn 0.5 Sb 0.5 )
It was found that the resistivity decreases as the amount of O 3 decreases.

【0010】さらには、図3に示したように、抵抗率の
低減により熱衝撃後の発振周波数のずれは小さくなっ
た。
Further, as shown in FIG. 3, due to the reduction of the resistivity, the deviation of the oscillation frequency after the thermal shock was reduced.

【0011】以上上記した構成によれば、一般式がXPb
(Sn0.5Sb0.5)O3−YPbTiO3−(1−X−Y)PbZrO3(た
だしX+Y<1)で示され、0.01≦X≦O.20、
0.30≦Y≦0.70を満足する基本組成物100g
に対し、副成分としてMnを0.8〜1.5gの割合で
含有していることにより、熱衝撃を加えても圧電特性の
劣化が小さく、しかも電気結合係数(kt)の高い、換言す
れば圧電特性の大きい圧電共振子が得られる。
According to the above configuration, the general formula is XPb
(Sn 0.5 Sb 0.5 ) O 3 —YPbTiO 3 — (1-X—Y) PbZrO 3 (where X + Y <1), and 0.01 ≦ X ≦ O. 20,
100 g of basic composition satisfying 0.30 ≦ Y ≦ 0.70
On the other hand, by containing Mn as a sub-component in a ratio of 0.8 to 1.5 g, the deterioration of piezoelectric characteristics is small even when a thermal shock is applied, and the electrical coupling coefficient (kt) is high. For example, a piezoelectric resonator having large piezoelectric characteristics can be obtained.

【0012】なお、Pb(Sn0.5Sb0.5)O3の置換量の範囲を
1〜20mol%に限定したのは、20mol%を越え
ると抵抗率が著しく大きくなり、信頼性に劣る。逆に1
mol%未満だとPbO の蒸発が激しく緻密な焼結体が得
られないためである。また、PbTiO3は30mol%未満
あるいは70mol%を超えると電気機械結合数(kt)が
30%以下となり圧電特性が著しく低下する。同様にM
n量を0.8〜1.5gに限定したのは、0.7g以
下、1.6g以上においても圧電特性の低下が見られた
ためである。
The reason why the substitution amount range of Pb (Sn 0.5 Sb 0.5 ) O 3 is limited to 1 to 20 mol% is that if it exceeds 20 mol%, the resistivity becomes remarkably large and the reliability is poor. Conversely 1
If it is less than mol%, the evaporation of PbO 2 will be so intense that a dense sintered body cannot be obtained. If PbTiO 3 is less than 30 mol% or more than 70 mol%, the electromechanical coupling number (kt) is 30% or less, and the piezoelectric characteristics are significantly deteriorated. Similarly M
The reason why the amount of n is limited to 0.8 to 1.5 g is that the piezoelectric characteristics are deteriorated even at 0.7 g or less and 1.6 g or more.

【0013】[0013]

【実施例及び比較例】以下本発明に係る圧電磁器材料の
実施例及び比較例を説明する。原料としてPb3O4 、Sn
O2、Sb2O3、 Nb2O5、ZrO2、TiO2、MnCO3 、の各種酸化物
を用いた。なお原料はこれらに限られず最終的に上記の
酸化物になるものであれば他の化合物を使用することが
できる。これら原料を表1に示した組成となるように秤
量配合し、ボールミルで24時間湿式混合した。混合し
た原料を乾燥した後700〜950℃の温度範囲で仮焼
した。次に適量の有機バインダを加えて乾式混合し、メ
ッシュの容器に通して整粒した。このようにして得られ
た粉体を1000〜1500kg/cm2の圧力で20×30
×1mmの板状に成形し、これを1200〜1300℃の
温度範囲で本焼して圧電磁器を得た。この圧電磁器焼結
体を3.5×6×0.2mmに加工し、表裏面に直径1
mmの電極を銀蒸着により作製した後分極処理を施し、
厚み縦振動モードの共振子を作製した。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of piezoelectric ceramic materials according to the present invention will be described below. Pb 3 O 4 , Sn as raw materials
Various oxides of O 2 , Sb 2 O 3 , Nb 2 O 5 , ZrO 2 , TiO 2 , and MnCO 3 were used. The raw materials are not limited to these, and other compounds can be used as long as they finally become the above oxides. These raw materials were weighed and blended so as to have the composition shown in Table 1, and wet mixed in a ball mill for 24 hours. The mixed raw materials were dried and then calcined in the temperature range of 700 to 950 ° C. Next, an appropriate amount of organic binder was added and dry-mixed, and the mixture was passed through a mesh container for sizing. The powder obtained in this way is 20 × 30 at a pressure of 1000-1500 kg / cm 2.
It was molded into a plate shape of × 1 mm and was fired in the temperature range of 1200 to 1300 ° C to obtain a piezoelectric ceramic. This piezoelectric ceramic sintered body was processed into 3.5 x 6 x 0.2 mm, and the diameter of 1
After making the electrode of mm by vapor deposition of silver, it is polarized.
A thickness longitudinal vibration mode resonator was produced.

【0014】共振子の特性はインピ−ダンスアナライザ
により測定し、比誘電率(ε33 T /ε0 )、機械的品質
係数(Qmt)、電気機械結合係数(kt)を以下の式により
算出した。
The characteristics of the resonator are measured by an impedance analyzer, and the relative permittivity (ε 33 T / ε 0 ), mechanical quality factor (Q mt ), and electromechanical coupling factor (kt) are calculated by the following equations. did.

【0015】[0015]

【数1】 [Equation 1]

【0016】[0016]

【数2】 [Equation 2]

【0017】[0017]

【数3】 [Equation 3]

【0018】また、耐熱衝撃性を評価するために熱衝撃
(−40℃で30分→室温で5分→85℃で30分→室
温で5分)を100サイクル繰り返した後の発振周波数
の変化率(Δfosc )を求めた。このようにして得られ
た圧電特性を表1に示す。
Further, in order to evaluate the thermal shock resistance, the change of the oscillation frequency after repeating 100 cycles of thermal shock (-40 minutes at -40 ° C. → 5 minutes at room temperature → 30 minutes at 85 ° C. → 5 minutes at room temperature). The rate (Δf osc ) was determined. Table 1 shows the piezoelectric characteristics thus obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表1の2】 [Table 1-2]

【0021】[0021]

【表1の3】 [3 in Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表2の2】 [Table 2-2]

【0024】[0024]

【表2の3】 [3 in Table 2]

【0025】なお、表1中*印のものは本発明の範囲外
のものを示し、それ以外はすべて本発明の範囲内のもの
を示している。表1及び表2より明らかなように、本発
明の範囲内のものは高い電気機械結合係数(kt)が得られ
ると共に熱衝撃を100サイクル繰り返した後の発振周
波数の変化率(Δfosc)は小さく温度安定性に優れて
いることが分る。
In Table 1, those marked with * are outside the scope of the present invention, and the others are within the scope of the present invention. As is clear from Table 1 and Table 2, those within the range of the present invention can obtain a high electromechanical coupling coefficient (kt) and have a change rate (Δf osc ) of the oscillation frequency after 100 cycles of thermal shock. It can be seen that it is small and has excellent temperature stability.

【0026】一方比較例において、試料番号29及び3
0のものは不発振となり、また試料番号47及び48の
ものは分極が困難となり、また試料番号1のものは焼結
が困難となった。
On the other hand, in the comparative example, sample numbers 29 and 3
No. 0 did not oscillate, Sample Nos. 47 and 48 had difficulty in polarization, and Sample No. 1 had difficulty in sintering.

【0027】また他の比較例においては、電気機械結合
係数(kt)の値が30%以下であり、圧電特性が小さいこ
とが分かる。
In another comparative example, the electromechanical coupling coefficient (kt) is 30% or less, which means that the piezoelectric characteristics are small.

【0028】このように、上記実施例に係る圧電磁器材
料においては、圧電特性である電気機械結合係数(kt)が
大きく、しかも熱衝撃を加えても圧電特性の劣化が小さ
い共振子を作製することができ、−40℃から80℃と
いう広範囲で、安定した特性を有する発振素子として使
用することができる。
As described above, in the piezoelectric ceramic material according to the above embodiment, a resonator having a large electromechanical coupling coefficient (kt), which is a piezoelectric characteristic, and having a small deterioration of the piezoelectric characteristic even when a thermal shock is applied, is manufactured. It can be used as an oscillating device having stable characteristics in a wide range of −40 ° C. to 80 ° C.

【0029】[0029]

【発明の効果】以上詳述したように本発明に係る圧電磁
器材料にあっては、一般式がXPb(Sn0.5Sb0.5)O3−YPb
TiO3−(1−X−Y)PbZrO3(ただしX+Y<1)で示
され、0.01≦X≦O.20、0.30≦Y≦0.7
0を満足する基本組成物100gに対し、副成分として
Mnを0.8〜1.5gの割合で含有していることによ
り、熱衝撃を加えても圧電特性の劣化が小さく、しかも
電気結合係数(kt)の高い、すなわち圧電特性の大きい圧
電共振子を製作することができる。
As described in detail above, in the piezoelectric ceramic material according to the present invention, the general formula is XPb (Sn 0.5 Sb 0.5 ) O 3 -YPb
TiO 3 − (1-XY) PbZrO 3 (where X + Y <1), and 0.01 ≦ X ≦ O. 20, 0.30 ≦ Y ≦ 0.7
By containing 0.8 to 1.5 g of Mn as an accessory component with respect to 100 g of the basic composition satisfying 0, deterioration of piezoelectric characteristics is small even when a thermal shock is applied, and the electric coupling coefficient is small. It is possible to manufacture a piezoelectric resonator having a high (kt), that is, a large piezoelectric characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱衝撃時の圧電性変動メカニズムを示した図で
ある。
FIG. 1 is a diagram showing a piezoelectricity variation mechanism during thermal shock.

【図2】Pb(Sn0.5Sb0.5)O3量の低減による低抵抗化を示
したグラフである。
FIG. 2 is a graph showing a reduction in resistance by reducing the amount of Pb (Sn 0.5 Sb 0.5 ) O 3 .

【図3】低抵抗化による耐熱衝撃性の改善を示したグラ
フである。
FIG. 3 is a graph showing improvement in thermal shock resistance due to lower resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式がXPb(Sn0.5Sb0.5)O3−YPbTiO3
−(1−X−Y)PbZrO3(ただしX+Y<1)で示さ
れ、0.01≦X≦O.20、0.30≦Y≦0.70
を満足する基本組成物100gに対し、副成分としてM
nを0.8〜1.5gの割合で含有していることを特徴
とする圧電磁器材料。
1. The general formula is XPb (Sn 0.5 Sb 0.5 ) O 3 —YPbTiO 3
- represented by (1-X-Y) PbZrO 3 ( provided that X + Y <1), 0.01 ≦ X ≦ O. 20, 0.30 ≦ Y ≦ 0.70
To 100 g of the basic composition satisfying
A piezoelectric ceramic material containing n in a proportion of 0.8 to 1.5 g.
JP3196850A 1991-08-06 1991-08-06 Piezoelectric porcelain materials Pending JPH0541549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3196850A JPH0541549A (en) 1991-08-06 1991-08-06 Piezoelectric porcelain materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196850A JPH0541549A (en) 1991-08-06 1991-08-06 Piezoelectric porcelain materials

Publications (1)

Publication Number Publication Date
JPH0541549A true JPH0541549A (en) 1993-02-19

Family

ID=16364700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196850A Pending JPH0541549A (en) 1991-08-06 1991-08-06 Piezoelectric porcelain materials

Country Status (1)

Country Link
JP (1) JPH0541549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545439B2 (en) 2009-03-10 2013-10-01 Dongguan Kidsme Industrial Limited Feeding apparatus
US8597235B2 (en) 2009-03-10 2013-12-03 Dongguan Kidsme Trading Company Limited Feeding apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545439B2 (en) 2009-03-10 2013-10-01 Dongguan Kidsme Industrial Limited Feeding apparatus
US8597235B2 (en) 2009-03-10 2013-12-03 Dongguan Kidsme Trading Company Limited Feeding apparatus
US9717656B2 (en) 2009-03-10 2017-08-01 Dongguan Kidsme Industrial Limited Feeding apparatus
US9730861B2 (en) 2009-03-10 2017-08-15 Dongguan Kidsme Industrial Limited Feeding apparatus

Similar Documents

Publication Publication Date Title
JP3783534B2 (en) Piezoelectric ceramic sintered body and piezoelectric ceramic element
JPH0541549A (en) Piezoelectric porcelain materials
JP2007261863A (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP3613140B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH06263535A (en) Piezoelectric ceramic
JPH0551222A (en) Piezoelectric porcelain material
JP2737451B2 (en) Piezoelectric material
JP2924531B2 (en) Piezoelectric material
US6391223B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP2910338B2 (en) Piezoelectric porcelain composition
JP3097217B2 (en) Piezoelectric ceramic composition
JP3215013B2 (en) Piezoelectric ceramic composition
JPH06206767A (en) Piezoelectric ceramic material
JPH08310862A (en) Piezoelectric porcelain composition
JPH11209176A (en) Piezoelectric porcelain composition and its production
JP3097216B2 (en) Piezoelectric porcelain composition
JP3106507B2 (en) Piezoelectric porcelain composition
JP2910339B2 (en) Piezoelectric ceramic composition
JPH06252468A (en) Piezoelectric porcelain
JPH10120463A (en) Piezoelectric porcelaneous composition
JPH11100264A (en) Piezoelectric ceramic composition and its production
JPH08310861A (en) Piezoelectric porcelain composition
JPH0517220A (en) Piezoelectric porcelain composition
JPH0570141A (en) Piezoelectric porcelain material
JPH05221717A (en) Piezoelectric porcelain composition