JPH0541485A - Manufacture of mos semiconductor element - Google Patents

Manufacture of mos semiconductor element

Info

Publication number
JPH0541485A
JPH0541485A JP19559091A JP19559091A JPH0541485A JP H0541485 A JPH0541485 A JP H0541485A JP 19559091 A JP19559091 A JP 19559091A JP 19559091 A JP19559091 A JP 19559091A JP H0541485 A JPH0541485 A JP H0541485A
Authority
JP
Japan
Prior art keywords
region
electrode
gate electrode
substrate
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19559091A
Other languages
Japanese (ja)
Inventor
Osamu Yamada
修 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19559091A priority Critical patent/JPH0541485A/en
Publication of JPH0541485A publication Critical patent/JPH0541485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To eliminate the possibility of wrong ignition at the time of operation or a short circuit caused when an electrode pair is press-contacted with a substrate so as to improve the reliability of an MOS semiconductor element by removing not only the source electrode of a faulty unit element, but also all of the gate electrode, source area, and wafer area below the faulty source electrode. CONSTITUTION:After the surface of a substrate is covered with a protective film 9 except a faulty unit IGBT 15, the substrate is etched with an etching liquid of phosphoric acid or nitric acid. Then, after exposing a silicon substrate by etching a PSG film 51 on a gate electrode 6 with an HF buffer liquid, the substrate is etched together with the gate electrode 6 with an etching liquid prepared by mixing nitric acid, hydrofluoric acid, and acetic acid. As a result, a recessed section 10 is produced. Since a source electrode 7, n<+> source area 4, and gate electrode 6, etc., are removed, the faulty unit IGBT 15 does not give any adverse influence to the entire body of this MOS semiconductor element. Therefore, even when the voltage applied across the entire body of the element abruptly changes, the occurrence of an abnormal phenomenon, such as wrong ignition, can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1枚の半導体基板に一
面上にMOS構造および主電極を有する単位素子の複数
個を集積し、それらの主電極に電極板を加圧接触させる
ことにより各単位素子を並列接続するMOS型半導体素
子の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention integrates a plurality of unit elements each having a MOS structure and a main electrode on one surface of a semiconductor substrate, and press-contacting an electrode plate to the main electrodes. The present invention relates to a method for manufacturing a MOS semiconductor device in which each unit device is connected in parallel.

【0002】[0002]

【従来の技術】例えばMOS型電界効果トランジスタ
(以下MOSFETと記す) あるいは絶縁ゲート型バイ
ポーラトランジスタ (以下IGBTと記す) のようにゲ
ート電極への入力信号により主電流を制御する半導体素
子においては、大面積の主電極を流れる電流を制御する
ことが困難であるため、大容量化する場合には、例えば
特開昭63−278264号公報に記載されているように、容器
内に数mm角の寸法の素子を並べ、それらのソース電極を
Al線のボンディングなどで相互に接続することによりモ
ジュール化して並列接続する方法がとられている。
2. Description of the Related Art For example, a MOS field effect transistor
In a semiconductor element such as an insulated gate bipolar transistor (hereinafter referred to as an IGBT) that controls a main current by an input signal to a gate electrode, a current flowing through a large-area main electrode must be controlled. Therefore, when increasing the capacity, for example, as described in JP-A-63-278264, elements having a size of several mm square are arranged in a container, and source electrodes thereof are arranged.
A method is used in which modules are connected in parallel by connecting them by Al wire bonding or the like.

【0003】しかし、このような方法では、容量を大き
くするには素子の数を多くしなければならないが、素子
の数が多くなるにつれてボンディングされる導線の配線
が複雑になり、容器内での断線などが起こりやすくな
る。さらに細かい導線では、大電流を流した時に熱によ
る断線等もおこりやすい。
However, in such a method, the number of elements must be increased in order to increase the capacitance. However, as the number of elements increases, the wiring of the conductive wire to be bonded becomes complicated, and the number of elements increases. Breakages are likely to occur. Even finer conductors are prone to breakage due to heat when a large current is applied.

【0004】この問題を解決するために、1枚の半導体
基板に多数の単位素子を集積することが考えられる。そ
して各素子の主電極に共通の電極体が圧接される加圧接
触構造にすれば、接続の信頼性が向上するばかりでな
く、接続導体のインダクタンス, 抵抗が小さくなり、ま
た基板を両面から冷却することができるので冷却効率を
上げることができる。結果として半導体装置としての特
性, 信頼性の向上につながる。
In order to solve this problem, it is possible to integrate a large number of unit elements on one semiconductor substrate. If a pressure contact structure in which a common electrode body is pressed against the main electrode of each element is used, not only will the reliability of the connection be improved, but the inductance and resistance of the connection conductor will be reduced, and the board will be cooled from both sides. Therefore, the cooling efficiency can be improved. As a result, the characteristics and reliability of the semiconductor device are improved.

【0005】一方、1枚の基板に多数の単位素子を形成
する場合、すべての単位素子に欠陥がないとは限らず、
不良の単位素子が存在する。このような不良単位素子に
ついては、そのソース電極をエッチング等により取り除
くか、またはゲート電極と不良単位素子のソース電極を
短絡させてゲート電圧がかからないようにした後ソース
電極上に絶縁膜をかぶせる方法が従来はとられている。
On the other hand, when a large number of unit elements are formed on one substrate, not all unit elements are not defective,
There is a defective unit element. For such defective unit device, the source electrode is removed by etching or the like, or the gate electrode and the source electrode of the defective unit device are short-circuited to prevent the gate voltage from being applied, and then an insulating film is covered on the source electrode. Has been taken conventionally.

【0006】[0006]

【発明が解決しようとする課題】しかし、不良単位素子
のソース電極を取り除くか、あるいはゲート電極をソー
ス電極と短絡させても、両主電極間に加わる電圧に急激
な立上りがあった場合、すなわちdv/dtの大きい場合に
は誤点弧がおきることがある。あるいは、ソース電極に
圧接する電極体がソース電極の除去された部分でゲート
電極あるいは半導体基板に接触し、不良単位素子に制御
できない電流が流れることがある。ソース電極を大幅に
厚くすれば、電極体とゲート電極あるいは基板との接触
を避けることができ、問題の一部は解決するが、これは
製造プロセス上受け入れられない。
However, even if the source electrode of the defective unit element is removed or the gate electrode is short-circuited with the source electrode, if the voltage applied between both main electrodes has a sharp rise, that is, If dv / dt is large, false ignition may occur. Alternatively, the electrode body that is in pressure contact with the source electrode may contact the gate electrode or the semiconductor substrate at the portion where the source electrode is removed, and an uncontrollable current may flow to the defective unit element. If the source electrode is made significantly thicker, contact between the electrode body and the gate electrode or the substrate can be avoided, and some problems will be solved, but this is unacceptable in the manufacturing process.

【0007】本発明の目的は、上述の問題を解決して単
位素子のうちに不良素子が存在した場合にも信頼性の高
いMOS型半導体素子を製造する方法を提供することに
ある。
It is an object of the present invention to provide a method of manufacturing a MOS type semiconductor device having a high reliability even when there is a defective device among the unit devices by solving the above problems.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は第一導電型の第一領域の表面層内に第二
導電型の第二領域が選択的に形成され、その第二領域の
それぞれの表面層内に選択的に第一導電型の第三領域が
形成され、第二領域の第一領域および第三領域にはさま
れた部分をチャネル形成領域としてその上にゲート絶縁
膜を介してゲート電極が設けられ、第二領域および第三
領域に共通にソース電極が接触する単位素子の複数個が
1枚の半導体基板に形成され、各単位素子のソース電極
に共通に電極体が圧接するMOS型半導体素子の製造方
法において、各単位素子の電気的特性を測定後、特性規
定値を満足しない不良単位素子のソース電極, ゲート電
極, 第三領域および第二領域を除去するものとする。そ
して、不良単位素子以外の単位素子を保護膜で被覆した
のち、ソース電極, ゲート電極, 第三領域および第二領
域をそれぞれに適応したエッチング液でエッチングして
除去することが有効である。また、半導体基板の除去さ
れた部分に絶縁物を充填することも有効である。
In order to achieve the above-mentioned object, the present invention provides that a second region of the second conductivity type is selectively formed in the surface layer of the first region of the first conductivity type. A third region of the first conductivity type is selectively formed in each surface layer of the second region, and a portion sandwiched between the first region and the third region of the second region is formed on it as a channel forming region. A gate electrode is provided via a gate insulating film, and a plurality of unit elements in common with the source electrode in contact with the second region and the third region are formed on one semiconductor substrate, and are common to the source electrodes of the unit elements. In the method for manufacturing a MOS type semiconductor device in which the electrode body is pressed into contact with each other, after measuring the electrical characteristics of each unit element, the source electrode, gate electrode, third area and second area Shall be removed. Then, it is effective to cover the unit elements other than the defective unit element with a protective film, and then remove the source electrode, the gate electrode, the third region and the second region by etching with an etching solution suitable for each. It is also effective to fill the removed portion of the semiconductor substrate with an insulator.

【0009】[0009]

【作用】不良単位素子のソース電極, ゲート電極, 第三
領域(ソース領域),第二領域が除去されることにより、
この単位素子が装置全体に悪影響をおよぼすことはなく
なる。従って素子全体に印加される電圧の急激な変化、
すなわち大きなdv/dtが発生する場合も、誤点弧のよう
な異常現象が避けられる。また、電極体がゲート電極あ
るいは半導体基板に接触することもなくなるので、不良
単位素子を通じて制御不能の電流が流れることもない。
[Operation] By removing the source electrode, gate electrode, third region (source region), and second region of the defective unit element,
This unit element does not adversely affect the entire device. Therefore, the sudden change in the voltage applied to the entire element,
That is, even when a large dv / dt occurs, an abnormal phenomenon such as false firing can be avoided. Further, since the electrode body does not come into contact with the gate electrode or the semiconductor substrate, an uncontrollable current does not flow through the defective unit element.

【0010】[0010]

【実施例】図2はIGBT半導体基板全体を示す。直径
4インチのシリコン基板11約100個の単位IGBT12が
集積されている。各単位IGBT12のゲート電極はゲー
トリード13を介してゲート取り出し部14に接続される。
このシリコン基板11を平型容器に収容し、各単位IGB
T12のゲート電極と絶縁されたソース電極に1枚の金属
電極板を加圧接触させ、並列に電流を取出し、ゲート取
り出し部14にはゲート端子を接続して制御信号を入力す
る。この基板11の各単位IGBT12ごとに電気的特性評
価をすると、数%の不良単位素子が見出される。図では
不良単位素子15を×印を付して示している。
EXAMPLE FIG. 2 shows an entire IGBT semiconductor substrate. A unit IGBT 12 of about 100 silicon substrates 11 having a diameter of 4 inches is integrated. The gate electrode of each unit IGBT 12 is connected to a gate lead-out portion 14 via a gate lead 13.
This silicon substrate 11 is housed in a flat container and each unit IGB is
One metal electrode plate is pressure-contacted with the source electrode insulated from the gate electrode of T12, current is taken out in parallel, and a gate terminal is connected to the gate take-out portion 14 to input a control signal. When the electrical characteristics of each unit IGBT 12 of the substrate 11 are evaluated, several% of defective unit elements are found. In the figure, the defective unit element 15 is shown with a cross.

【0011】図1(a) 〜(d) は本発明の一実施例の不良
単位IGBT切り離し工程を示す。(a) では基板の厚さ
全体に示しているが、(b) 〜(d) では裏面側の部分は省
略してある。図(a) において、n- 層 (第一領域) 1の
一側にp+ ドレイン層2が設けられ、他側の表面層内に
選択的にp+ウエル (第二領域) 3が、そのp+ ウエル
3の表面層内に選択的にn+ ソース領域 (第三領域) 4
がそれぞれ形成されている。p+ ウエル3のn- 層1と
+ 領域4にはさまれた部分がチャネル領域で、二つの
チャネル領域にまたがってゲート酸化膜5を介して多結
晶シリコンからなるゲート電極6が設けられ、ゲート電
極6とPSG膜51で絶縁されたソース電極7がp+ ウエ
ル3およびn+ ソース領域4に共通に接触している。ま
た、p+ドレイン層2にはドレイン電極8が接触してい
る。この構造は公知のIGBTの構造である。図の内、
矢印で示した部分が不良単位IGBT15であるとする
と、その単位IGBT15以外の箇所の表面を保護膜9で
覆う。この保護膜9は、ポジ型のフォトレジストをスピ
ンコータで塗布してのち、ステッパ露光機を用いて電気
的特性評価時のデータを基に不良単位IGBT15部を露
光し、さらに現像することにより形成したものである。
FIGS. 1 (a) to 1 (d) show a defective unit IGBT separating step of an embodiment of the present invention. In (a), the entire thickness of the substrate is shown, but in (b) to (d), the backside portion is omitted. In FIG. 1A, the p + drain layer 2 is provided on one side of the n layer (first region) 1, and the p + well (second region) 3 is selectively formed in the surface layer on the other side. n + source region (third region) 4 selectively in the surface layer of p + well 3
Are formed respectively. A portion of the p + well 3 sandwiched between the n layer 1 and the n + region 4 is a channel region, and a gate electrode 6 made of polycrystalline silicon is provided across the two channel regions via a gate oxide film 5. The source electrode 7 insulated from the gate electrode 6 by the PSG film 51 is in common contact with the p + well 3 and the n + source region 4. The drain electrode 8 is in contact with the p + drain layer 2. This structure is a known IGBT structure. In the figure,
If the portion indicated by the arrow is the defective unit IGBT15, the surface of the portion other than the defective unit IGBT15 is covered with the protective film 9. The protective film 9 was formed by applying a positive photoresist with a spin coater, exposing 15 defective unit IGBTs based on the data at the time of electrical characteristic evaluation using a stepper exposure machine, and further developing. It is a thing.

【0012】図(a) の状態で、基板表面をりん酸と硝酸
の比が10:1のりん酸・硝酸系エッチング液でエッチン
グする。約60℃の温度で数分で露出している10μm程度
の厚さのソース電極7は図(b) のようになくなる。その
基板をよく水洗し、次にHFとNH3 Fの混合液である
HFバッファ液でゲート電極6の上のPSG膜51をエッ
チングする。この状態を図(c) に示す。このようにシリ
コン基板が露出したところで硝酸, ふっ酸, 酢酸を3:
2:1の比で混合したエッチング液を用い、多結晶シリ
コンからなるゲート電極6と共に基板を約30μmの深さ
までエッチングする。その結果、図(d) に示すような凹
部10が生ずる。ゲート電極6の下には、酸化膜5が約0.
6μmの厚さで存在するため、エッチングが他の領域に
くらべて遅れるが、それは問題となるものではない。こ
のようにしてソース電極7, ターンオン時に電子を供給
するn+ ソース領域4, チャネルを形成するゲート電極
6等がなくなるため、この不良単位IGBT15は絶対に
素子全体に悪影響を及ぼさなくなる。従って、素子全体
に急激なdv/dtがかかったような場合にも誤点弧が避け
られる。また、電極体が不良単位素子部の基板に圧接す
るおそれもない。しかし、絶縁を完全にするため、レジ
スト9を剥離後、ポリイミド樹脂などを塗布して基板の
凹部10あるいはその一部を埋めておくことも有効であ
る。
In the state shown in FIG. 1A, the substrate surface is etched with a phosphoric acid / nitric acid type etching solution having a phosphoric acid / nitric acid ratio of 10: 1. The source electrode 7 having a thickness of about 10 μm exposed at a temperature of about 60 ° C. in a few minutes disappears as shown in FIG. The substrate is thoroughly washed with water, and then the PSG film 51 on the gate electrode 6 is etched with an HF buffer solution which is a mixed solution of HF and NH 3 F. This state is shown in Figure (c). When the silicon substrate was exposed in this way, nitric acid, hydrofluoric acid, and acetic acid were added in a 3:
The substrate is etched to a depth of about 30 μm together with the gate electrode 6 made of polycrystalline silicon using an etching solution mixed at a ratio of 2: 1. As a result, the recess 10 as shown in FIG. Below the gate electrode 6, the oxide film 5 is about 0.
Since it exists in a thickness of 6 μm, etching is delayed as compared with other regions, but this is not a problem. In this way, since the source electrode 7, the n + source region 4 for supplying electrons at the time of turn-on, the gate electrode 6 for forming a channel, and the like are eliminated, the defective unit IGBT 15 never affects the entire device. Therefore, erroneous ignition can be avoided even when a sudden dv / dt is applied to the entire device. Further, there is no possibility that the electrode body is pressed against the substrate of the defective unit element portion. However, in order to complete insulation, it is also effective to remove the resist 9 and then apply polyimide resin or the like to fill the recess 10 or a part thereof of the substrate.

【0013】上記の実施例はIGBTの場合であるが、
縦型MOSFETでも、また導電型を入れ換えたpチャ
ネルMOS型半導体素子でも同様に実施できることは明
らかである。
Although the above embodiment is the case of the IGBT,
It is obvious that the vertical MOSFET or the p-channel MOS type semiconductor device in which the conductivity types are switched can be similarly implemented.

【0014】[0014]

【発明の効果】本発明によれば、1枚の半導体基板に多
数の単位素子を集積し、各単位素子の電極に共通に電極
体が圧接するMOS型半導体素子において、不良な単位
素子のソース電極ばかりでなく、その下のゲート電極,
ソース領域およびウエル領域をすべて除去することによ
り、動作時の誤点弧や電極体の基板との圧接による短絡
などの可能性がなくなり、非常に信頼性の高いMOS型
半導体素子が得られた。
According to the present invention, in a MOS type semiconductor device in which a large number of unit devices are integrated on one semiconductor substrate and the electrode body is commonly pressed against the electrodes of each unit device, the source of a defective unit device is Not only the electrode, but the gate electrode below it,
By removing all of the source region and the well region, the possibility of erroneous firing during operation or short circuit due to pressure contact of the electrode body with the substrate was eliminated, and a very reliable MOS type semiconductor device was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のIGBT製造工程を(a) な
いし(d) の順に示す断面図
FIG. 1 is a sectional view showing an IGBT manufacturing process of an embodiment of the present invention in the order of (a) to (d).

【図2】IGBTの半導体基板の一例の平面図FIG. 2 is a plan view of an example of an IGBT semiconductor substrate.

【符号の説明】[Explanation of symbols]

1 n- 層 2 p+ ドレイン層 3 p+ ウエル 4 n+ ソース領域 5 ゲート酸化膜 51 PSG膜 6 ゲート電極 7 ソース電極 8 ドレイン電極 9 保護膜 10 凹部 11 シリコン基板 12 単位IGBT 15 不良単位素子1 n - layer 2 p + drain layer 3 p + well 4 n + source region 5 gate oxide film 51 PSG film 6 gate electrode 7 source electrode 8 drain electrode 9 protective film 10 recess 11 silicon substrate 12 unit IGBT 15 defective unit device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第一導電型の第一領域の表面層内に第二導
電型の第二領域が選択的に形成され、その第二領域のそ
れぞれの表面層内に選択的に第一導電型の第三領域が形
成され、第二領域の第一領域および第三領域にはさまれ
た部分をチャネル形成領域としてその上にゲート絶縁膜
を介してゲート電極が設けられ、第二領域および第三領
域に共通にソース電極が接触する単位素子の複数個が1
枚の半導体基板に形成され、各単位素子のソース電極に
共通に電極体が圧接するMOS型半導体素子の製造方法
において、各単位素子の電気的特性を測定後、特性規定
値を満足しない不良単位素子のソース電極, ゲート電
極, 第三領域および第二領域を除去することを特徴とす
るMOS型半導体素子の製造方法。
1. A second region of the second conductivity type is selectively formed in the surface layer of the first region of the first conductivity type, and the first conductivity type is selectively formed in each surface layer of the second region. A third region of the mold is formed, a portion sandwiched between the first region and the third region of the second region is used as a channel forming region, and a gate electrode is provided thereon via a gate insulating film. A plurality of unit devices whose source electrodes are commonly in contact with the third region are
In a method for manufacturing a MOS type semiconductor device formed on a single semiconductor substrate and having an electrode body commonly pressed against the source electrode of each unit device, a defective unit that does not satisfy the specified characteristic value after measuring the electrical characteristics of each unit device. A method of manufacturing a MOS type semiconductor device, characterized in that the source electrode, the gate electrode, the third region and the second region of the device are removed.
【請求項2】不良単位素子以外の単位素子を保護膜で被
覆したのち、ソース電極, ゲート電極, 第三領域および
第二領域をそれぞれに適応したエッチング液でエッチン
グして除去する請求項1記載のMOS型半導体素子の製
造方法。
2. The unit element other than the defective unit element is covered with a protective film, and then the source electrode, the gate electrode, the third region and the second region are removed by etching with an etching solution suitable for each of them. Manufacturing method of MOS type semiconductor device.
【請求項3】半導体基板の除去された部分に絶縁物を充
填する請求項1あるいは2記載のMOS型半導体素子の
製造方法。
3. The method for manufacturing a MOS semiconductor device according to claim 1, wherein the removed portion of the semiconductor substrate is filled with an insulator.
JP19559091A 1991-08-06 1991-08-06 Manufacture of mos semiconductor element Pending JPH0541485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19559091A JPH0541485A (en) 1991-08-06 1991-08-06 Manufacture of mos semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19559091A JPH0541485A (en) 1991-08-06 1991-08-06 Manufacture of mos semiconductor element

Publications (1)

Publication Number Publication Date
JPH0541485A true JPH0541485A (en) 1993-02-19

Family

ID=16343681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19559091A Pending JPH0541485A (en) 1991-08-06 1991-08-06 Manufacture of mos semiconductor element

Country Status (1)

Country Link
JP (1) JPH0541485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470631B1 (en) * 1998-03-05 2008-12-30 Micron Technology, Inc. Methods for fabricating residue-free contact openings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470631B1 (en) * 1998-03-05 2008-12-30 Micron Technology, Inc. Methods for fabricating residue-free contact openings
US7700497B2 (en) 1998-03-05 2010-04-20 Micron Technology, Inc. Methods for fabricating residue-free contact openings

Similar Documents

Publication Publication Date Title
US4628590A (en) Method of manufacture of a semiconductor device
JPH04361571A (en) Mos type semiconductor device
US5376815A (en) Semiconductor device having bipolar-mos composite element pellet suitable for pressure contacted structure
US4161740A (en) High frequency power transistor having reduced interconnection inductance and thermal resistance
KR20000017348A (en) Circuitry and method of forming the same
US5874774A (en) Flat package semiconductor device
US5828081A (en) Integrated semiconductor device
EP0433650B1 (en) Semiconductor device having bipolar-MOS composite element pellet suitable for pressure contacted structure
US7253475B2 (en) Power transistor cell and power transistor component with fusible link
JPH0541485A (en) Manufacture of mos semiconductor element
JP2003229527A (en) Power element device with mounting electrode board, igbt therewith, power element module, power element wafer, method for manufacturing power element device with mounting electrode board, and method for manufacturing power element module
US3539880A (en) Mis-fet permanent repair physical device
JP2000183282A (en) Device and module of semiconductor
US6285068B1 (en) Antifuses and method of fabricating the same
JP2006100481A (en) Semiconductor apparatus
US3774079A (en) Monolithically fabricated tranistor circuit with multilayer conductive patterns
JPH04290272A (en) Semiconductor device and manufacture thereof
JPH08191145A (en) Insulated gate semiconductor device and manufacture thereof
JP7508948B2 (en) Testing apparatus, testing method and manufacturing method
JP7080392B2 (en) Pressure welding type semiconductor device
CN115547963A (en) Insulated gate bipolar transistor
JPH05326844A (en) Semiconductor integrated circuit
KR19980064251A (en) Connection of active circuits via wire bonding process
WO2019123931A1 (en) Power semiconductor device, module, and manufacturing method
TW574724B (en) Method and apparatus of using guard ring connection technique for circuit integration of power semiconductor device