JPH0540442Y2 - - Google Patents

Info

Publication number
JPH0540442Y2
JPH0540442Y2 JP11149788U JP11149788U JPH0540442Y2 JP H0540442 Y2 JPH0540442 Y2 JP H0540442Y2 JP 11149788 U JP11149788 U JP 11149788U JP 11149788 U JP11149788 U JP 11149788U JP H0540442 Y2 JPH0540442 Y2 JP H0540442Y2
Authority
JP
Japan
Prior art keywords
gas
differential pressure
pressure sensor
sensitive diaphragm
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11149788U
Other languages
Japanese (ja)
Other versions
JPH0232044U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11149788U priority Critical patent/JPH0540442Y2/ja
Publication of JPH0232044U publication Critical patent/JPH0232044U/ja
Application granted granted Critical
Publication of JPH0540442Y2 publication Critical patent/JPH0540442Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は半透膜透過ガス等の漏出ガス量を測定
するガス漏出量測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas leakage amount measuring device that measures the amount of leaked gas such as gas that permeates through a semipermeable membrane.

[従来の技術] 第2図は本考案者が先に提案したガス漏出量測
定装置の概略構成を示す(実願昭63−78463、実
開平02−656号) ガス透過セル10の1内壁面側には濾紙12を
介して半透膜14が配置され、半透膜14の周部
がリング状ガスケツトにより濾紙12側に押圧さ
れている。この半透膜14によりガス透過セル1
0内は1次室16と2次室18(濾紙12が2次
室を形成)とに分割される。この1次室16には
入口管20が接続され、2次室18には出口管2
2が接続され、また、1次室16と2次室18と
は電磁弁24を介した連通管26により連通/遮
断可能とされている。出口管22の一端はガス漏
出量測定装置28のシリンダ30に接続され、こ
のシリンダ30にはさらにダイヤフラム式差圧セ
ンサ32を介して電磁弁34が接続され、差圧セ
ンサ32に配管を介して電磁弁36が並列接続さ
れている。
[Prior Art] FIG. 2 shows a schematic configuration of a gas leakage measurement device previously proposed by the present inventor (Utility Application No. 1984-78463, Utility Model Application No. 02-656) One inner wall surface of the gas permeation cell 10 A semipermeable membrane 14 is placed on the side with a filter paper 12 interposed therebetween, and the peripheral portion of the semipermeable membrane 14 is pressed toward the filter paper 12 side by a ring-shaped gasket. This semi-permeable membrane 14 allows the gas permeable cell 1
0 is divided into a primary chamber 16 and a secondary chamber 18 (the filter paper 12 forms the secondary chamber). An inlet pipe 20 is connected to the primary chamber 16, and an outlet pipe 20 is connected to the secondary chamber 18.
2 are connected to each other, and the primary chamber 16 and the secondary chamber 18 can be communicated with each other through a communication pipe 26 via a solenoid valve 24. One end of the outlet pipe 22 is connected to a cylinder 30 of a gas leakage measuring device 28, and a solenoid valve 34 is further connected to this cylinder 30 via a diaphragm type differential pressure sensor 32, and a solenoid valve 34 is connected to the differential pressure sensor 32 via piping. Solenoid valves 36 are connected in parallel.

ガス透過量測定前には、電磁弁24,34及び
36が開にされ、サンプルガスが入口管20を通
つて1次室16内に導かれ、次いで連通管26を
通つて2次室18内に導かれ、次いで出口管22
を通つてシリンダ30内に導かれ、次いで電磁弁
36,34を通つて外部に放出される。これによ
り、全流路系が同一サンプルガスにより洗浄さ
れ、ガス透過量の高精度測定が可能となる。
Before gas permeation measurement, the solenoid valves 24, 34, and 36 are opened, and the sample gas is introduced into the primary chamber 16 through the inlet pipe 20, and then into the secondary chamber 18 through the communication pipe 26. and then the outlet pipe 22
The liquid is introduced into the cylinder 30 through the electromagnetic valves 36 and 34 and then discharged to the outside. As a result, the entire flow path system is cleaned with the same sample gas, making it possible to measure the amount of gas permeation with high accuracy.

この洗浄処理後は、電磁弁24,34,36が
閉にされてガス透過量の測定が開始される。大気
圧以上の設定圧のサンプルガスは入口管20を通
つて1次室16内に導かれ、その一部が半透膜1
4を透過し、出口管22を通つてシリンダ30内
に導かれる。これにより、差圧センサ32、電磁
弁34及び36により閉じられた流路内の参照ガ
ス圧よりもシリンダ30内のガス圧の方が大きく
なり、コントローラ38はパルスモータ40を作
動させてねじ棒42を回転させ、ピストン44を
第2図下方に駆動することにより差圧センサ32
の検出差圧を零にする。パルスモータ40の回転
軸にはパルスジエネレータ46が接続されてお
り、パルスジエネレータ46から供給されるパル
スを計数することによりコントローラ38はガス
透過量を検知することができる。
After this cleaning process, the electromagnetic valves 24, 34, and 36 are closed, and measurement of the amount of gas permeation is started. The sample gas at a set pressure higher than atmospheric pressure is introduced into the primary chamber 16 through the inlet pipe 20, and a portion of it is introduced into the semipermeable membrane 16.
4 and is led into the cylinder 30 through the outlet pipe 22. As a result, the gas pressure in the cylinder 30 becomes greater than the reference gas pressure in the flow path closed by the differential pressure sensor 32 and the solenoid valves 34 and 36, and the controller 38 operates the pulse motor 40 to 42 and drives the piston 44 downward in FIG.
Set the detected differential pressure to zero. A pulse generator 46 is connected to the rotating shaft of the pulse motor 40, and by counting the pulses supplied from the pulse generator 46, the controller 38 can detect the amount of gas permeation.

このような構成により、参照ガス圧は必ず測定
開始時の大気圧に等しくなる。また、測定開始後
に温度が変化すると、参照ガス圧も変化するが、
差圧センサ32の検出差圧が零になるようにピス
トン44を駆動するので、シリンダ30内のガス
量がピストン44の移動量に比例し、自動的に温
度補正されたガス透過量を求めることができる。
With this configuration, the reference gas pressure is always equal to the atmospheric pressure at the start of the measurement. Also, if the temperature changes after measurement starts, the reference gas pressure will also change.
Since the piston 44 is driven so that the differential pressure detected by the differential pressure sensor 32 becomes zero, the amount of gas in the cylinder 30 is proportional to the amount of movement of the piston 44, and the amount of gas permeation is automatically determined with temperature correction. Can be done.

この差圧センサ32は、感圧ダイヤフラムの両
側の差圧を、例えばストレインゲージを用いて検
知する周知の構成である。
This differential pressure sensor 32 has a well-known configuration that detects the differential pressure on both sides of a pressure-sensitive diaphragm using, for example, a strain gauge.

[考案が解決しようとする課題] しかし、差圧センサ32の感圧ダイヤフラムの
一方側には、シリコン樹脂などのシール材が用い
られており、このシール材がガスを吸着又は放出
するために、差圧センサ32の検出差圧が正確に
零になるようにピストン44を駆動してもガス透
過量の高精度測定が妨げられる。電磁弁34,3
6に用いられているシール材についても同様であ
る。本考案は本考案者によるこのような事実の知
見に基づきなされたものである。
[Problem to be solved by the invention] However, a sealing material such as silicone resin is used on one side of the pressure-sensitive diaphragm of the differential pressure sensor 32, and since this sealing material adsorbs or releases gas, Even if the piston 44 is driven so that the differential pressure detected by the differential pressure sensor 32 becomes exactly zero, highly accurate measurement of the amount of gas permeation is hindered. Solenoid valve 34, 3
The same applies to the sealing material used in No. 6. The present invention was made based on the inventor's knowledge of these facts.

一般に、半透膜14のガス透過率は極めて小さ
いため(例えばシリコンゴムでは4.70×10-8cm3
cm/cm2sec cmHg)、シリンダ30の内径を小さ
く例えば内径4〜16mmにして、短時間で高精度測
定を行おうとした場合にはこの問題が著しくな
る。
Generally, the gas permeability of the semipermeable membrane 14 is extremely low (for example, silicone rubber has a gas permeability of 4.70×10 -8 cm 3
cm/cm 2 sec cmHg), this problem becomes more serious when the inner diameter of the cylinder 30 is made small, for example, from 4 to 16 mm, and high precision measurement is attempted in a short time.

本考案の目的は、上記問題点に鑑み、差圧セン
サの感圧ダイヤフラム等の両側の物質のガス吸着
量又はガス離脱量が異なる場合であつても高精度
でガス透過量を測定することができるガス漏出量
測定装置を提供することにある。
In view of the above-mentioned problems, the purpose of the present invention is to measure the amount of gas permeation with high accuracy even when the amount of gas adsorption or the amount of gas released from the materials on both sides of the pressure-sensitive diaphragm of a differential pressure sensor is different. The purpose of the present invention is to provide a gas leakage measuring device that can measure gas leakage.

[課題を解決するための手段] この目的を達成するために、本考案に係るガス
漏出量測定装置では、内室に連通するガス導入路
が設けられ、内容積が可変の内容積可変手段と、
感圧ダイヤフラムの一方側が配管により該内容積
可変手段の該内室に連通され、該感圧ダイヤフラ
ムの両側の差圧を検出する差圧センサと、該差圧
センサの該感圧ダイヤフラムの他方側に配管を介
して接続され、該他方側を外部と連通/遮断する
第1弁と、該差圧センサの該感圧ダイヤフラムの
両側を連通する配管に介装され、該両側を連通/
遮断する第2弁と、該差圧センサの検出差圧が所
定値になるように該内容積可変手段の内容積を調
整する内容積制御手段と、を有するガス漏出量測
定装置において、該第1弁と該第2弁と該差圧セ
ンサの該隔壁とにより閉じられる管路に介装され
た容器と、該容器内に封入され、ガスを吸着又は
離脱する圧力補正物質と、を付設している。
[Means for Solving the Problems] In order to achieve this object, the gas leakage measuring device according to the present invention is provided with a gas introduction path communicating with the inner chamber, and includes an inner volume variable means whose inner volume is variable. ,
a differential pressure sensor whose one side of the pressure-sensitive diaphragm is communicated with the inner chamber of the internal volume variable means through piping, and which detects the differential pressure on both sides of the pressure-sensitive diaphragm; and the other side of the pressure-sensitive diaphragm of the differential pressure sensor. a first valve that is connected to via piping and communicates/cuts off the other side with the outside; and a first valve that is interposed in piping that communicates both sides of the pressure-sensitive diaphragm of the differential pressure sensor, and that communicates/cuts off the other side with the outside.
A gas leakage amount measuring device comprising: a second valve that shuts off; and an internal volume control means that adjusts the internal volume of the internal volume variable means so that the differential pressure detected by the differential pressure sensor becomes a predetermined value. a container interposed in a pipe line closed by the first valve, the second valve, and the partition wall of the differential pressure sensor; and a pressure compensation substance sealed in the container and adsorbing or desorbing gas. ing.

[実施例] 第1図に基づいて本考案の一実施例を説明す
る。
[Example] An example of the present invention will be described based on FIG.

なお、第2図と同一構成要素には同一符号を付
してその説明を省略する。
Note that the same components as in FIG. 2 are given the same reference numerals, and their explanations will be omitted.

差圧センサ32はシリコン半導体で感圧ダイヤ
フラム及びストレンゲージが形成された周知の高
精度差圧センサである。この感圧ダイヤフラムの
両側には異なる部材が用いられており、シリンダ
30側に用いられたシール部材が温度や圧力の変
化、その時点でのガス吸着密度等によりガスを全
体として吸着又は離脱するものとする。そこで、
差圧センサ32と電磁弁34との間の接続間に容
器48を介装し、この容器48内にシール部材と
同一の材質及び同一の表面積を有する圧力補正物
質50を封入している。
The differential pressure sensor 32 is a well-known high-precision differential pressure sensor in which a pressure-sensitive diaphragm and a strain gauge are formed of silicon semiconductor. Different members are used on both sides of this pressure-sensitive diaphragm, and the seal member used on the cylinder 30 side adsorbs or desorbs gas as a whole depending on changes in temperature and pressure, gas adsorption density at that time, etc. shall be. Therefore,
A container 48 is interposed between the connection between the differential pressure sensor 32 and the electromagnetic valve 34, and a pressure compensating substance 50 having the same material and the same surface area as the sealing member is enclosed within the container 48.

したがつて、電磁弁34及び36を閉にした状
態で圧力補正物質50が容器48内の参照ガスを
全体として例えば吸着したとすると、差圧センサ
32、電磁弁34及び36により閉じられた流路
内に存在する参照ガス圧が低下するが、差圧セン
サ32の感圧ダイヤフラムのシリンダ30側に存
在するシール部材によつても同様にシリンダ30
内のガスが全体として吸着されるので、ピストン
44の移動量を検出することによりガス透過量を
正確に測定することができる。
Therefore, if the pressure compensating substance 50 adsorbs the reference gas in the container 48 as a whole with the solenoid valves 34 and 36 closed, the flow closed by the differential pressure sensor 32 and the solenoid valves 34 and 36 Although the reference gas pressure present in the passage decreases, the sealing member present on the cylinder 30 side of the pressure-sensitive diaphragm of the differential pressure sensor 32 also causes
Since the gas inside is adsorbed as a whole, the amount of gas permeation can be accurately measured by detecting the amount of movement of the piston 44.

圧力補正物質50の量は例えば次のようにして
定める。すなわち、半透膜14の代わりにガスを
透過させない薄板、例えば金属板を配置し、電磁
弁24,34及び36を開にして入口管20から
1次室16内へサンプルガスを供給することによ
り全流路系を洗浄した後、電磁弁24,34及び
36を閉にし、差圧センサ32の検出差圧が零に
なるようにパルスモータ40を作動させる。この
ときのピストン44の単位時間あたりの移動量を
圧力補正物質50の量を変えて測定し、その測定
値から圧力補正物質50の適量を決定する。
The amount of pressure correction substance 50 is determined, for example, as follows. That is, by arranging a thin plate, such as a metal plate, which does not allow gas to pass through, in place of the semipermeable membrane 14, and opening the electromagnetic valves 24, 34, and 36, the sample gas is supplied from the inlet pipe 20 into the primary chamber 16. After cleaning the entire flow path system, the solenoid valves 24, 34, and 36 are closed, and the pulse motor 40 is operated so that the differential pressure detected by the differential pressure sensor 32 becomes zero. The amount of movement of the piston 44 per unit time at this time is measured while changing the amount of the pressure correction substance 50, and the appropriate amount of the pressure correction substance 50 is determined from the measured value.

(2) 拡張 なお、上記実施例では、シール部材及び圧力補
正物質50がガスを吸着する場合について説明し
たが、これらがガスを離脱する場合であつても上
記同様の効果が得られる。
(2) Expansion In the above embodiment, a case has been described in which the sealing member and the pressure correction substance 50 adsorb gas, but the same effect as described above can be obtained even when these remove gas.

また、シール部材と圧力補正物質50の材質は
同一である必要はなく、測定中において、差圧セ
ンサ32の両側のガス吸着量又はガス離脱量が同
一になるように補正するものであればよい。
Furthermore, the materials of the sealing member and the pressure correction substance 50 do not need to be the same, and it is sufficient as long as they correct the amount of gas adsorption or the amount of gas desorption on both sides of the differential pressure sensor 32 to be the same during measurement. .

さらに、本装置はコンタクトレンズの酸素ガス
透過量や各種シール部からのガス漏れ量等の高精
度測定にも適用することができる。
Furthermore, this device can be applied to high-precision measurements such as the amount of oxygen gas permeated through contact lenses and the amount of gas leaking from various seals.

[考案の効果] 以上説明した如く、本考案に係るガス漏出量測
定装置によれば、差圧センサの感圧ダイヤフラム
等の両側の物質のガス吸着量又はガス離脱量が異
なる場合であつても高精度でガス透過量を測定す
ることができるという優れた効果を奏する。
[Effects of the invention] As explained above, according to the gas leakage measurement device according to the invention, even when the amount of gas adsorbed or the amount of gas released from the substances on both sides of the pressure-sensitive diaphragm of a differential pressure sensor is different, This has the excellent effect of being able to measure the amount of gas permeation with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例に係るガス漏出量測
定装置の概略構成図、第2図は従来例のガス漏出
量測定装置の概略構成図である。 図中、10はガス透過セル、12は濾紙、14
は半透膜、16は1次室、18は2次室、20は
入口管、22は出口管、24,34,36は電磁
弁、28はガス漏出量測定装置、30はシリン
ダ、32は差圧センサ、38はコントローラ、4
0はパルスモータ、44はピストン、46はパル
スジエネレータ、48は容器、50は圧力補正物
質。
FIG. 1 is a schematic diagram of a gas leakage measuring device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional gas leakage measuring device. In the figure, 10 is a gas permeation cell, 12 is a filter paper, and 14
1 is a semipermeable membrane, 16 is a primary chamber, 18 is a secondary chamber, 20 is an inlet pipe, 22 is an outlet pipe, 24, 34, 36 are electromagnetic valves, 28 is a gas leakage measuring device, 30 is a cylinder, 32 is a Differential pressure sensor, 38 is controller, 4
0 is a pulse motor, 44 is a piston, 46 is a pulse generator, 48 is a container, and 50 is a pressure compensation substance.

Claims (1)

【実用新案登録請求の範囲】 内室に連通するガス導入路が設けられ、内容積
が可変の内容積可変手段30,44と、 感圧ダイヤフラムの一方側が配管により該内容
積可変手段の該内室に連通され、該感圧ダイヤフ
ラムの両側の差圧を検出する差圧センサ32と、 該差圧センサの該感圧ダイヤフラムの他方側に
配管を介して接続され、該他方側を外部と連通/
遮断する第1弁34と、 該差圧センサの該感圧ダイヤフラムの両側を連
通する配管に介装され、該両側を連通/遮断する
第2弁36と、 該差圧センサの検出差圧が所定値になるように
該内容積可変手段の内容積を調整する内容積制御
手段38,40,42,46と、 を有するガス漏出量測定装置において、 該第1弁と該第2弁と該差圧センサの該隔壁と
により閉じられる管路に介装された容器48と、 該容器内に封入され、ガスを吸着又は離脱する
圧力補正物質50と、 を付設したことを特徴とするガス漏出量測定装
置。
[Claims for Utility Model Registration] Inner volume variable means 30 and 44, each of which is provided with a gas introduction passage communicating with the inner chamber and whose inner volume is variable; a differential pressure sensor 32 communicating with the chamber and detecting the differential pressure on both sides of the pressure-sensitive diaphragm; and a differential pressure sensor 32 connected to the other side of the pressure-sensitive diaphragm of the differential pressure sensor via piping, and communicating the other side with the outside. /
A first valve 34 that shuts off the pressure sensitive diaphragm of the differential pressure sensor, a second valve 36 that is installed in a pipe that communicates with both sides of the pressure-sensitive diaphragm of the differential pressure sensor and that communicates/blocks both sides of the pressure sensitive diaphragm; An internal volume control means 38, 40, 42, 46 that adjusts the internal volume of the internal volume variable means to a predetermined value, in a gas leakage measuring device comprising: the first valve, the second valve, and A gas leak characterized in that a container 48 is installed in a conduit that is closed by the partition wall of the differential pressure sensor, and a pressure compensation substance 50 that is sealed in the container and adsorbs or desorbs gas. Quantity measuring device.
JP11149788U 1988-08-25 1988-08-25 Expired - Lifetime JPH0540442Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11149788U JPH0540442Y2 (en) 1988-08-25 1988-08-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11149788U JPH0540442Y2 (en) 1988-08-25 1988-08-25

Publications (2)

Publication Number Publication Date
JPH0232044U JPH0232044U (en) 1990-02-28
JPH0540442Y2 true JPH0540442Y2 (en) 1993-10-14

Family

ID=31349596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11149788U Expired - Lifetime JPH0540442Y2 (en) 1988-08-25 1988-08-25

Country Status (1)

Country Link
JP (1) JPH0540442Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402103B2 (en) * 2009-03-09 2014-01-29 凸版印刷株式会社 Gas permeability measuring device

Also Published As

Publication number Publication date
JPH0232044U (en) 1990-02-28

Similar Documents

Publication Publication Date Title
US4384474A (en) Method and apparatus for testing and using membrane filters in an on site of use housing
US4614109A (en) Method and device for testing the permeability of membrane filters
CN106092827B (en) A kind of the gas transfer diffusion coefficient measuring device and method of thin-film material
US6513366B1 (en) Method and apparatus for package leak testing
AU3096997A (en) Process and installation for in situ testing of the integrity of filtration membranes
EP3690419B1 (en) System and method for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product
US4815316A (en) Diffusion measurement
JPH0540442Y2 (en)
JP3184885B2 (en) Gas meter calibration device
JP2757322B2 (en) How to measure gas permeability of film
JPS5834337A (en) Inspecting device for leakage of vessel
JP2003294570A (en) Air leak measuring device
SU1288517A1 (en) Method of tightness test of articles
CN117309672B (en) Integrated module for precisely controlling gas adsorption and desorption by pulsation and control method
JP3096609U (en) Thin film transmission measurement cell, thin film transmission measurement device
JPH0540441Y2 (en)
CN218212537U (en) Device for testing air permeability of membrane
SU819625A1 (en) Method and device for determination of gas adsorbtion
JPH07151637A (en) Method and apparatus for detecting leak
SU1250862A1 (en) Method of leakage testing of articles
RU1772638C (en) Fluid-tightness testing device
JPH0733866Y2 (en) Gas leak measuring device
JP3016555U (en) Chamber for gas permeability measurement
WO1981001744A1 (en) Tightness testing of large vessels or the like
SU1249396A1 (en) Device for determiing content of gases which are dissolved in analyzed liquid