JPH054027A - Treatment of exhaust gaseous dinitrogen monoxide - Google Patents

Treatment of exhaust gaseous dinitrogen monoxide

Info

Publication number
JPH054027A
JPH054027A JP3158119A JP15811991A JPH054027A JP H054027 A JPH054027 A JP H054027A JP 3158119 A JP3158119 A JP 3158119A JP 15811991 A JP15811991 A JP 15811991A JP H054027 A JPH054027 A JP H054027A
Authority
JP
Japan
Prior art keywords
decomposition
heat
gases
dinitrogen monoxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3158119A
Other languages
Japanese (ja)
Inventor
Shigeki Sawai
茂樹 澤井
Hideaki Suga
英明 菅
Yukito Nagamori
幸人 永守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3158119A priority Critical patent/JPH054027A/en
Publication of JPH054027A publication Critical patent/JPH054027A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/30Improvements relating to adipic acid or caprolactam production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To allow the efficient and economical recovery of decomposition heat by continuously decomposing the exhaust gases contg. the dinitrogen monoxide byproduced in the process for producing adipic acid by nitric acid oxidation of cyclohexanol or cyclohexanone or a mixture composed thereof to nitrogen and oxygen in the presence of a cuprous oxide catalyst. CONSTITUTION:The exhaust gases 4 contg. the dinitrogen monoxide byproduced in the process for producing the adipic acid by the nitric acid oxidation of the cyclohexanol or cyclohexanone or the mixture composed thereof are supplied to an exchanger 14 for preheating the supplied gases. The oxidized exhaust gases 5 preheated up to a prescribed temp. are introduced into a reactor 15 packed with the cuprous oxide catalyst where the gases are continuously decomposed to the nitrogen and the oxygen. The greater part of the decomposition heat is absorbed to hot water 10 and 11 circulating between the outside of the reactor and a steam drum 17. The hot water is evaporated by the steam drum and the heat thereof is reutilized as steam 12. The treated gases 6 after the decomposing reaction preheat the oxidized exhaust gases 4 in the previous heat exchanger 14, by which these gases themselves are subjected to heat removal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シクロヘキサノール又
はシクロヘキサノン又はそれらの混合物を硝酸により酸
化してアジピン酸を製造するのに際し、副生する一酸化
二窒素(以下N2Oと表記する)を含む排ガス(以下該
酸化排ガスと表記する)を触媒層に通し、主成分である
2Oを連続的に窒素と酸素に分解し、分解の最に発生
する熱を有効に回収する事を目的とする、排N2Oガス
の処理方法に関する。
The present invention relates to the production of adipic acid by oxidizing cyclohexanol or cyclohexanone or a mixture thereof with nitric acid to produce dinitrogen monoxide (hereinafter referred to as N 2 O) which is a by-product. The purpose is to pass exhaust gas containing gas (hereinafter referred to as the oxidation exhaust gas) through a catalyst layer to continuously decompose the main component N 2 O into nitrogen and oxygen, and effectively recover the heat generated at the time of decomposition. And a method for treating exhausted N 2 O gas.

【0002】[0002]

【従来の技術】アジピン酸を硝酸によって酸化するのに
際し、副生するガスは一般に、一酸化二窒素(N
2O)、一酸化窒素(NO)、二酸化窒素(NO2)、二
酸化炭素、窒素からなる。このうち、一酸化窒素は酸化
されて二酸化窒素となり、二酸化窒素は水に溶けて酸性
を示す大気汚染物質であり、両者と化学平衡にある他の
窒素酸化物とともにNOxと呼ばれている。アジピン酸
製造工程に於ては、大気汚染を防止するため、一酸化窒
素は空気酸化により二酸化窒素とし、副生する二酸化窒
素と共に水による吸収反応によって硝酸として回収する
方法が一般に知られている。
BACKGROUND OF THE INVENTION When adipic acid is oxidized by nitric acid, the by-product gas is generally dinitrogen monoxide (N).
2 O), nitric oxide (NO), nitrogen dioxide (NO 2 ), carbon dioxide, and nitrogen. Of these, nitric oxide is oxidized to nitrogen dioxide, which is an atmospheric pollutant that dissolves in water and exhibits acidity, and is called NOx along with other nitrogen oxides that are in chemical equilibrium with both. In the adipic acid production process, in order to prevent air pollution, it is generally known that nitric oxide is converted into nitrogen dioxide by air oxidation and is recovered as nitric acid by absorption reaction with water together with byproduct nitrogen dioxide.

【0003】一方、N2Oは、他のNOxと異なり化学
的に安定で、酸性を示さず、大気汚染物質ではない。こ
の為、酸化に要した余剰空気などと共に、大気に放出す
るのが一般的である。しかしながら、N2Oは、二酸化
炭素などと共に、地球温暖化につながる温室効果ガスと
考えられている。N2Oの主な放出源は土壌および海洋
から自然の生物代謝によるものである(ATOMOSP
HERIC OZONE,1985)と考えられる。従
って、世界中のアジピン酸工場から排出されるN2Oは
地球上の全放出量の5%以下であると考えられる。しか
しながら、オゾン層を破壊する可能性もあり、放出箇所
が特定できる点を考慮すると、環境に影響を与えないガ
スに分解することが望ましい。
On the other hand, N 2 O, unlike other NOx, is chemically stable, does not show acidity, and is not an air pollutant. For this reason, it is generally released to the atmosphere together with excess air required for oxidation. However, N 2 O is considered to be a greenhouse gas that leads to global warming together with carbon dioxide and the like. The main sources of N 2 O are from soil and ocean natural biometabolism (ATOMOSP).
HERIC OZONE, 1985). Therefore, N 2 O emitted from adipic acid plants around the world is considered to be 5% or less of the total amount of emission on the earth. However, considering that the ozone layer may be destroyed and the release location can be specified, it is desirable to decompose into a gas that does not affect the environment.

【0004】N2Oを酸化物触媒で酸素と窒素に分解す
ることは、重要な触媒研究の分野であり、古くから知ら
れている(斎藤泰和,触媒,Vol.1,No.2,1
29(1959))。最近においては、麻酔用の笑気ガ
ス中のN2Oを分解すること(特公61−50650そ
の他)も知られている。この場合の取扱ガスは、N2
と酸素のみの混合気体であり、比較的少量の処理を対象
としており、アジピン酸製造工程から副生するN2Oの
分解についての言及はない。
Decomposition of N 2 O into oxygen and nitrogen by an oxide catalyst is an important field of catalytic research and has been known for a long time (Yasukazu Saito, Catalyst, Vol. 1, No. 2, 1).
29 (1959)). Recently, it is also known to decompose N 2 O in laughing gas for anesthesia (Japanese Patent Publication 61-50650 and others). The handling gas in this case is N 2 O
It is a mixed gas of oxygen and oxygen, and is intended for a relatively small amount of treatment, and there is no mention of decomposition of N 2 O by-produced from the adipic acid production process.

【0005】[0005]

【本発明が解決しようとする課題】従って、本発明の第
一の目的は、アジピン酸製造工程から副生するN2Oを
含む排ガスに対して、長期的に使用できるような寿命を
持つ触媒を提供するものである。本発明の第二の目的
は、該酸化排ガス中のN2Oを完全に分解し、得られる
分解熱を効率的かつ経済的に回収することができる技術
を提供することにある。
SUMMARY OF THE INVENTION Therefore, the first object of the present invention is to provide a catalyst having a long life so that it can be used for a long time with respect to exhaust gas containing N 2 O by-produced from the adipic acid production process. Is provided. A second object of the present invention is to provide a technique capable of completely decomposing N 2 O in the oxidizing exhaust gas and recovering the obtained decomposition heat efficiently and economically.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、従来よ
り活性が高いと考えられていた触媒、さらにその他の触
媒について、流通式の分解反応器を用いて、該酸化排ガ
ス中のN2Oの分解反応を試みた。何れの触媒も反応温
度を高くするに従い、高いN2Oの分解率を示し、触媒
活性が向上することが判り、N2Oに対しての初期活性
が認められた。
SUMMARY OF THE INVENTION The inventors of the present invention have proposed a catalyst, which has been considered to have higher activity than before, and other catalysts by using a flow-type decomposition reactor to remove N An attempt was made to decompose the 2 O. It was found that each of the catalysts showed a higher decomposition rate of N 2 O as the reaction temperature was raised, and the catalytic activity was improved, and the initial activity to N 2 O was recognized.

【0007】しかし、長期間の連続使用においては該酸
化排ガスの組成による影響が発現し、一定の分解条件で
あるにも関わらず、使用中に活性の低下するものがあっ
た。更に研究を進めた結果、酸化第二銅を用いると長期
間にわたって高い分解率を示し、連続的に窒素と酸素に
分解できることが判明した。すなわち、本発明はシクロ
ヘキサノール又はシクロヘキサノン又はそれらの混合物
を硝酸酸化してアジピン酸を製造する工程で、副生する
一酸化二窒素を含む排ガスを酸化第二銅触媒の存在下で
連続的に窒素と酸素に分解することを特徴とする排一酸
化二窒素ガスの処理方法である。
However, in the continuous use for a long period of time, the effect of the composition of the oxidizing exhaust gas is exerted, and there are some cases where the activity is lowered during use despite the constant decomposition conditions. As a result of further research, it was found that cupric oxide showed a high decomposition rate for a long period of time and could be continuously decomposed into nitrogen and oxygen. That is, the present invention is a step of producing adipic acid by nitric acid oxidation of cyclohexanol or cyclohexanone or a mixture thereof, in which exhaust gas containing dinitrogen monoxide produced as a by-product is continuously converted into nitrogen gas in the presence of a cupric oxide catalyst. It is a method of treating exhausted nitrous oxide gas, characterized by decomposing it into oxygen.

【0008】本発明の実施態様を以下に示す。まず、ア
ジピン酸製造工程からの排ガスは前述の酸性ガスである
NOxを含んでいるので、これによるよる腐食を考慮
し、出来るだけ低濃度にしてから分解装置に供給するこ
とが望ましい。該酸化排ガス中の一酸化窒素、二酸化窒
素を水吸収などにより合わせて1%以下にした後、触媒
を充填した反応器で分解することが好ましい。
Embodiments of the present invention will be described below. First, since the exhaust gas from the adipic acid production process contains NOx, which is the above-mentioned acidic gas, it is desirable to reduce the concentration as much as possible in consideration of corrosion due to this and supply it to the decomposition device. It is preferable that the total amount of nitric oxide and nitrogen dioxide in the oxidizing exhaust gas is adjusted to 1% or less by absorption of water and then the decomposition is carried out in a reactor filled with a catalyst.

【0009】酸化第二銅触媒は単独、またはこれを担体
に担持させたもののどちらでもよいが、耐熱温度の向上
から担持させることが望ましい。担体は、使用温度に耐
え得るものであればアルミナ、シリカ、チタニア、ゼオ
ライトその他種類を問わながアルミナが好ましい。担持
量はN2Oの分解性能を発現する量以上であれば良く、
1から10%の担持量を持つことが好ましい。
The cupric oxide catalyst may be either alone or supported on a carrier, but it is desirable to support it in order to improve the heat resistant temperature. The carrier may be alumina, silica, titania, zeolite or any other type as long as it can withstand the use temperature, but alumina is preferable. The supported amount may be at least the amount capable of exhibiting the decomposition performance of N 2 O,
It is preferred to have a loading of 1 to 10%.

【0010】本発明においては粒状のアルミナ担体に酸
化第二銅を含侵・担持させた触媒を、配管状の反応管内
に長さ50mm以上となるよう充填したものを用いた。
触媒層の空塔体積に対する標準状態におけるガス流量
(以下SVと表記する)は小さすぎると分解に必要な触
媒量が大きくなり、大きすぎるとN2Oの分解率が下が
って反応温度を高くしないといけない。このためSVは
100hrー1から10000hrー1の間にあることが好
ましい。
In the present invention, a catalyst prepared by impregnating and supporting cupric oxide on a granular alumina carrier is filled in a tubular reaction tube so as to have a length of 50 mm or more.
If the gas flow rate (hereinafter referred to as SV) in the standard state relative to the superficial volume of the catalyst layer is too small, the amount of catalyst required for decomposition increases, and if it is too large, the decomposition rate of N 2 O decreases and the reaction temperature does not rise. I can't. Therefore SV is preferably in between the 100hr-1 of 10000hr -1.

【0011】一方、反応温度は400℃以上が必要であ
る。N2Oの分解は、(1)式
On the other hand, the reaction temperature must be 400 ° C. or higher. The decomposition of N 2 O can be performed by the formula (1)

【0012】[0012]

【化1】 [Chemical 1]

【0013】の発熱反応である。しかし、触媒活性のみ
を求めて反応温度を高くし過ぎると、反応熱によって触
媒酸化物または/かつ担体化合物が高温となり、構造の
変化をきたすなど触媒の劣化を招いてしまい好ましくな
い。従って、反応温度は400から600℃以内にある
ことが好ましい。また、上記分解において放出される反
応熱は比較的大きなものであり、その熱量を回収して蒸
気を発生し、熱源として利用することが出来る。
This is an exothermic reaction. However, if the reaction temperature is raised too high only for the purpose of catalytic activity, the heat of reaction raises the temperature of the catalyst oxide and / or the carrier compound, which leads to deterioration of the catalyst such as a structural change, which is not preferable. Therefore, the reaction temperature is preferably within 400 to 600 ° C. Also, the reaction heat released in the above decomposition is relatively large, and the amount of heat can be recovered to generate steam, which can be used as a heat source.

【0014】酸化第二銅アルミナ担持触媒を、アジピン
酸製造工程からの該酸化排ガスの処理に利用する例を図
1に従って以下に示す。まず、空気によって一酸化窒素
を酸化して二酸化窒素としてから、アジピン酸製造工程
からの排ガス1はNOx吸収塔13に供給される。ガス
中の二酸化窒素は、吸収水2に吸収され、硝酸水溶液3
として塔底より抜き出される。塔頂からはN2Oを主成
分とする該酸化排ガス4が、ほぼ常温・常圧状態で供給
ガス予熱用熱交換器14に供給される。
An example in which a cupric oxide-alumina-supported catalyst is used for treating the oxidized exhaust gas from the adipic acid production step is shown below with reference to FIG. First, the nitrogen monoxide is oxidized by air to form nitrogen dioxide, and then the exhaust gas 1 from the adipic acid production process is supplied to the NOx absorption tower 13. Nitrogen dioxide in the gas is absorbed by the absorbed water 2 and the nitric acid solution 3
Is extracted from the bottom of the tower. From the top of the column, the oxidizing exhaust gas 4 containing N 2 O as a main component is supplied to the heat exchanger 14 for preheating the supply gas at almost normal temperature and normal pressure.

【0015】所定の温度まで予熱された該酸化排ガス5
は、触媒充填反応器15に導かれる。反応器の形式は、
固定床、流動床いずれを用いても良い。本例では固定床
による等温反応器の例を示す。分解熱の大部分は、反応
管の外部と蒸気ドラム17間を循環する熱水10および
11に吸収される。熱水は蒸気ドラムで蒸発し、蒸気1
2としてその熱を再利用できる。蒸発した水分は常時給
水予備タンク18よりボイラ用供給水9として供給され
る。
The oxidation exhaust gas 5 preheated to a predetermined temperature
Are guided to the catalyst-filled reactor 15. The type of reactor is
Either a fixed bed or a fluidized bed may be used. In this example, an example of a fixed bed isothermal reactor is shown. Most of the decomposition heat is absorbed by the hot water 10 and 11 circulating between the outside of the reaction tube and the steam drum 17. Hot water evaporates in the steam drum and steam 1
The heat can be reused as 2. The evaporated water is always supplied from the water supply reserve tank 18 as boiler supply water 9.

【0016】なお、固定床による断熱反応の場合には、
反応器出口温度が上がるため、空気等で該酸化排ガスを
希釈して反応器に供給する方法が望ましい。分解反応後
の窒素と酸素を主成分とする処理済みガス6は、先の熱
交換器14にて該酸化排ガス4を予熱することによって
自身は熱除去される。熱除去された処理済みガス7は、
更に冷却用熱交換器または大気希釈装置16に於て冷却
および/または希釈してから、外気温に近い処理済みガ
ス8として大気に放出されることが望ましい。
In the case of adiabatic reaction with a fixed bed,
Since the reactor outlet temperature rises, it is desirable to dilute the oxidizing exhaust gas with air or the like and supply it to the reactor. The treated gas 6 containing nitrogen and oxygen as main components after the decomposition reaction is itself heat-removed by preheating the oxidizing exhaust gas 4 in the heat exchanger 14. The heat-treated processed gas 7 is
Further, it is preferable that the gas is cooled and / or diluted in a cooling heat exchanger or an atmosphere diluting device 16 and then discharged as a treated gas 8 close to the outside temperature to the atmosphere.

【0017】一方、分解反応が起こって十分な発熱が得
られる温度は400℃以上である。反応器の温度が低い
立ち上げ時には導入用配管19に該酸化排ガス4を導
き、立ち上げ用予熱器20にて所定の温度まで暖める必
要がある。これは炭化水素その他の可燃性ガスまたは液
体を燃焼させるものが考えられるが、必要な熱量を供給
できるものであればその種類を問わず利用しうる。
On the other hand, the temperature at which the decomposition reaction occurs and sufficient heat is obtained is 400 ° C. or higher. It is necessary to guide the oxidizing exhaust gas 4 to the introduction pipe 19 and warm it up to a predetermined temperature by the start-up preheater 20 at the time of start-up when the temperature of the reactor is low. This may be one that combusts a hydrocarbon or other combustible gas or liquid, but any type can be used as long as it can supply the necessary amount of heat.

【0018】[0018]

【実施例】次に、実施例および比較例によって本発明を
さらに詳しく説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0019】[0019]

【実施例1】所定濃度の硝酸第二銅水溶液を市販の担体
用アルミナに1.5時間以上攪拌状態で含侵させてか
ら、液溜り、担持むらが起こらないように液切りを行っ
た。次に120℃の熱風を用い、6時間乾燥させた。さ
らに電気炉の温度を徐々に上げ500℃で3時間焼成し
た。焼成品の銅の担持量は酸化第二銅換算で3重量%で
あった。
Example 1 A commercially available carrier alumina was impregnated with an aqueous solution of cupric nitrate having a predetermined concentration under stirring for 1.5 hours or more, and then draining was performed so as to prevent pooling and uneven loading. Next, it was dried for 6 hours using hot air at 120 ° C. Further, the temperature of the electric furnace was gradually increased and firing was performed at 500 ° C. for 3 hours. The amount of copper carried in the baked product was 3% by weight in terms of cupric oxide.

【0020】内径22mmの石英管に触媒約28cm3
を詰め、石英管の外側を電熱器にて加熱し、反応温度を
495℃、SV900hrー1で、N2Oの分解を行っ
た。図3のごとく殆ど分解率の低下は見られなかった。
Approximately 28 cm 3 of catalyst in a quartz tube with an inner diameter of 22 mm
The stuffed, the outer quartz tube heated at electric heater, the reaction temperature 495 ° C., in SV900hr-1, was carried out the decomposition of N 2 O. As shown in FIG. 3, almost no decrease in the decomposition rate was observed.

【0021】[0021]

【比較例】アジピン酸製造工程から副生する表1の組成
を持つ排ガスを用いて各種触媒の初期活性を比較した。
各種触媒を内径32mmの石英管に長さ100mmとな
るよう充填し反応管とした。この反応管のまわりを電気
炉でかこみ、反応管に該酸化排ガスをSV900hrー1
で流しながら所定の温度に加熱した。反応管の入口及び
出口のガスを採取し、ガスクロマトグラフィーによって
2O、窒素、酸素、二酸化炭素の濃度を測定し、N2
の分解率を得た。結果は表2に50%および90%のN
2O分解率を示した温度を示す。表中に於て日揮は日揮
化学株式会社製、日興は日興リカ株式会社製、日産は日
産ガードラー触媒株式会社製を示す。また、未達は分解
が起こっているものの、所定の分解率に達しなかったこ
とを示す。
[Comparative Example] The initial activities of various catalysts were compared by using the exhaust gas having the composition shown in Table 1 produced as a by-product from the adipic acid production process.
A quartz tube having an inner diameter of 32 mm was filled with various catalysts so as to have a length of 100 mm to obtain a reaction tube. Enclose the area around this reaction tube in an electric furnace and fill the reaction tube with the oxidized exhaust gas by SV900hr -1.
It was heated to a predetermined temperature while flowing in. The gas at the inlet and outlet of the reaction tube was sampled, and the concentrations of N 2 O, nitrogen, oxygen, and carbon dioxide were measured by gas chromatography, and N 2 O
The decomposition rate was obtained. The results are shown in Table 2 with 50% and 90% N
2 shows the temperature at which the decomposition rate of O was shown. In the table, JGC is manufactured by JGC Chemical Co., Ltd., Nikko is manufactured by Nikko Rica Co., Ltd., and Nissan is manufactured by Nissan Gardler Catalyst Co., Ltd. In addition, “not achieved” indicates that decomposition has occurred, but the predetermined decomposition rate has not been reached.

【0022】この中から、低温でも活性の高いパラジウ
ムのアルミナ担持触媒(日揮/K240)、酸化第二銅
と酸化亜鉛混合物触媒(日揮/N211)を長期テスト
に供した。内径22mmの石英管に触媒約28cm3
詰め、石英管の外側を電熱器にて加熱した。反応温度
は、パラジウムのアルミナ担持触媒の場合430℃、酸
化第二銅と酸化亜鉛触媒の場合440℃とした。表1の
組成を持つ該酸化排ガスをSV900hrー1で流し、N
2Oの分解率の経時変化を見た。図2のごとく触媒の活
性が下がり、分解率が低下した。
Among these, a palladium-supported alumina catalyst (JGC / K240) and a cupric oxide / zinc oxide mixture catalyst (JGC / N211), which are highly active even at low temperatures, were subjected to a long-term test. About 28 cm 3 of the catalyst was packed in a quartz tube having an inner diameter of 22 mm, and the outside of the quartz tube was heated by an electric heater. The reaction temperature was 430 ° C. in the case of palladium-supported alumina catalyst and 440 ° C. in the case of cupric oxide and zinc oxide catalysts. The oxidizing exhaust gas having the composition shown in Table 1 was flowed at SV900hr -1 for N
The change with time of the decomposition rate of 2 O was observed. As shown in FIG. 2, the activity of the catalyst decreased and the decomposition rate decreased.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明により、シクロヘキサノール又は
シクロヘキサノン又はそれらの混合物を硝酸により酸化
してアジピン酸を製造するのに際し、副生する排ガスの
主成分であるN2Oを連続的に窒素と酸素に分解し、分
解の際に発生する熱を有効に回収することが出来る。
INDUSTRIAL APPLICABILITY According to the present invention, when cyclohexanol, cyclohexanone or a mixture thereof is oxidized with nitric acid to produce adipic acid, N 2 O which is a main component of exhaust gas produced as a by-product is continuously mixed with nitrogen and oxygen. The heat generated during the decomposition can be effectively recovered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による該酸化排ガスを処理し、反応熱を
上記として回収するプロセスの概念図である。
FIG. 1 is a conceptual diagram of a process for treating the oxidation exhaust gas and recovering the heat of reaction as described above according to the present invention.

【図2】比較例の触媒による該酸化排ガス中のN2Oの
分解率の長期変化を示す図である。
FIG. 2 is a diagram showing a long-term change in the decomposition rate of N 2 O in the oxidizing exhaust gas by the catalyst of Comparative Example.

【図3】実施例の触媒による該酸化排ガス中のN2Oの
分解率の長期変化を示す図である。
FIG. 3 is a diagram showing a long-term change in the decomposition rate of N 2 O in the oxidizing exhaust gas by the catalyst of Example.

【符号の説明】[Explanation of symbols]

1 アジピン酸製造工程からの排ガス 2 吸収水 3 硝酸水溶液 4 該酸化排ガス 5 該酸化排ガス(予熱済み) 6 処理済みガス 7 処理済みガス(熱除去済み) 8 処理済みガス(冷却済み) 9 ボイラ用供給水 10 熱水(反応器入) 11 熱水(反応器出) 12 蒸気 13 NOx吸収塔 14 供給ガス予熱用熱交換器 15 触媒充填反応器 16 冷却用熱交換器または大気希釈装置 17 蒸気ドラム 18 給水予備タンク 19 立ち上げ時導入用配管 20 立ち上げ用触媒予熱器 1 Exhaust gas from adipic acid manufacturing process 2 absorbed water 3 Nitric acid aqueous solution 4 The oxidative exhaust gas 5 Oxidized exhaust gas (preheated) 6 treated gas 7 Processed gas (heat removed) 8 Processed gas (cooled) 9 Boiler supply water 10 hot water (with reactor) 11 Hot water (reactor out) 12 steam 13 NOx absorption tower 14 Heat exchanger for preheating supply gas 15 Catalyst filling reactor 16 Cooling heat exchanger or air dilution device 17 Steam drum 18 Spare tank for water supply 19 Piping for introduction at startup 20 Start-up catalyst preheater

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 55/14 6742−4H Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display area C07C 55/14 6742-4H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シクロヘキサノール又はシクロヘキサノン
又はそれらの混合物を硝酸酸化してアジピン酸を製造す
る工程で、副生する一酸化二窒素を含む排ガスを酸化第
二銅触媒の存在下で連続的に窒素と酸素に分解すること
を特徴とする排一酸化二窒素ガスの処理方法。
1. A process for producing adipic acid by nitric acid oxidation of cyclohexanol, cyclohexanone or a mixture thereof, wherein exhaust gas containing dinitrogen monoxide, which is a by-product, is continuously converted into nitrogen in the presence of a cupric oxide catalyst. A method for treating exhausted dinitrogen monoxide gas, which comprises decomposing it into oxygen and oxygen.
【請求項2】該排一酸化二窒素ガスを予熱器にて加熱し
て、該触媒層を有する分解装置に供給し、分解の際に発
生する熱で水蒸気を発生させ、分解後のガスで該予熱器
を加熱する特許請求範囲第1項の排一酸化二窒素ガスの
処理方法。
2. The exhausted dinitrogen monoxide gas is heated by a preheater and supplied to a decomposition device having the catalyst layer, and the heat generated during decomposition generates steam, and the gas after decomposition is used. The method for treating exhausted dinitrogen monoxide gas according to claim 1, wherein the preheater is heated.
JP3158119A 1991-06-28 1991-06-28 Treatment of exhaust gaseous dinitrogen monoxide Pending JPH054027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3158119A JPH054027A (en) 1991-06-28 1991-06-28 Treatment of exhaust gaseous dinitrogen monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3158119A JPH054027A (en) 1991-06-28 1991-06-28 Treatment of exhaust gaseous dinitrogen monoxide

Publications (1)

Publication Number Publication Date
JPH054027A true JPH054027A (en) 1993-01-14

Family

ID=15664718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3158119A Pending JPH054027A (en) 1991-06-28 1991-06-28 Treatment of exhaust gaseous dinitrogen monoxide

Country Status (1)

Country Link
JP (1) JPH054027A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768131A (en) * 1993-05-10 1995-03-14 Grande Paroisse Sa Method for decreasing content of nitrogen suboxide in exhaust gas, especially exhaust gas of synthesis process containing nitric acid oxidation
WO1999025461A1 (en) * 1997-11-18 1999-05-27 Asahi Kasei Kogyo Kabushiki Kaisha Method and device for global warming prevention
JP2000325743A (en) * 1999-01-20 2000-11-28 Basf Ag Thermal decomposition of n2o
WO2007122678A1 (en) * 2006-04-13 2007-11-01 Sumitomo Metal Mining Engineering Co., Ltd. Method and apparatus for treating gas containing nitrous oxide
WO2013124997A1 (en) 2012-02-23 2013-08-29 昭和電工株式会社 Power generating apparatus, power generating method, decomposition-gas boiler, and decomposition-gas turbine
WO2013125000A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Heat transport apparatus, and heat transport method
WO2013125003A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Energy extraction apparatus, and energy extraction method
WO2013124998A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Heat transport apparatus, and heat transport method
WO2013124999A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Heat transport apparatus, and heat transport method
JP2013192437A (en) * 2012-02-16 2013-09-26 Showa Denko Kk Energy extraction apparatus and energy extraction method
WO2014112640A1 (en) * 2013-01-21 2014-07-24 昭和電工株式会社 System for treating nitrogen-containing water, and method for treating nitrogen-containing water
CN106110848A (en) * 2016-07-13 2016-11-16 成都普瑞得科技有限公司 The method that nitrogen oxides emission-reducing system reduces discharging with nitrogen oxides
CN113144890A (en) * 2021-05-12 2021-07-23 北京工业大学 Waste gas purification system and method containing high-concentration laughing gas
CN113477049A (en) * 2021-07-05 2021-10-08 北京华普蓝天环境科技有限公司 Low-temperature N2O-grade mixed decomposition and purification system and method
WO2022152608A1 (en) * 2021-01-13 2022-07-21 Basf Se A process for decomposing nitrous oxide from a gas stream
WO2022152605A1 (en) * 2021-01-13 2022-07-21 Basf Se Process for working-up a nitrous oxide comprising off-gas stream
CN114984750A (en) * 2022-06-08 2022-09-02 江苏航天惠利特环保科技有限公司 Heat exchange reaction emission reduction method of nitrous gas fixed bed

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768131A (en) * 1993-05-10 1995-03-14 Grande Paroisse Sa Method for decreasing content of nitrogen suboxide in exhaust gas, especially exhaust gas of synthesis process containing nitric acid oxidation
WO1999025461A1 (en) * 1997-11-18 1999-05-27 Asahi Kasei Kogyo Kabushiki Kaisha Method and device for global warming prevention
US6500398B1 (en) 1997-11-18 2002-12-31 Asahi Kasei Kabushiki Kaisha Method and apparatus for decomposing N2O
KR100397650B1 (en) * 1997-11-18 2003-09-13 아사히 가세이 가부시키가이샤 Method and device of catalytically decomposing nitrous oxide
CN100368058C (en) * 1997-11-18 2008-02-13 旭化成株式会社 Method and device for global warming prevention
JP2000325743A (en) * 1999-01-20 2000-11-28 Basf Ag Thermal decomposition of n2o
WO2007122678A1 (en) * 2006-04-13 2007-11-01 Sumitomo Metal Mining Engineering Co., Ltd. Method and apparatus for treating gas containing nitrous oxide
JP2013192437A (en) * 2012-02-16 2013-09-26 Showa Denko Kk Energy extraction apparatus and energy extraction method
WO2013124998A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Heat transport apparatus, and heat transport method
US9567875B2 (en) 2012-02-23 2017-02-14 Showa Denko K.K. Power generation apparatus, power generation method, decomposition-gas turbine and decomposition-gas boiler
WO2013125000A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Heat transport apparatus, and heat transport method
WO2013124999A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Heat transport apparatus, and heat transport method
WO2013124997A1 (en) 2012-02-23 2013-08-29 昭和電工株式会社 Power generating apparatus, power generating method, decomposition-gas boiler, and decomposition-gas turbine
JPWO2013124999A1 (en) * 2012-02-23 2015-05-21 昭和電工株式会社 Heat transport device and heat transport method
WO2013125003A1 (en) * 2012-02-23 2013-08-29 昭和電工株式会社 Energy extraction apparatus, and energy extraction method
WO2014112640A1 (en) * 2013-01-21 2014-07-24 昭和電工株式会社 System for treating nitrogen-containing water, and method for treating nitrogen-containing water
CN106110848A (en) * 2016-07-13 2016-11-16 成都普瑞得科技有限公司 The method that nitrogen oxides emission-reducing system reduces discharging with nitrogen oxides
WO2022152608A1 (en) * 2021-01-13 2022-07-21 Basf Se A process for decomposing nitrous oxide from a gas stream
WO2022152605A1 (en) * 2021-01-13 2022-07-21 Basf Se Process for working-up a nitrous oxide comprising off-gas stream
CN113144890A (en) * 2021-05-12 2021-07-23 北京工业大学 Waste gas purification system and method containing high-concentration laughing gas
CN113477049A (en) * 2021-07-05 2021-10-08 北京华普蓝天环境科技有限公司 Low-temperature N2O-grade mixed decomposition and purification system and method
CN114984750A (en) * 2022-06-08 2022-09-02 江苏航天惠利特环保科技有限公司 Heat exchange reaction emission reduction method of nitrous gas fixed bed

Similar Documents

Publication Publication Date Title
JPH054027A (en) Treatment of exhaust gaseous dinitrogen monoxide
JP4249258B2 (en) Method for removing this from a gaseous stream containing nitric oxide
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
FI88149C (en) FOERFARANDE FOER MINSKNING AV KVAEVEOXIDEMISSIONER
JP4080336B2 (en) Decomposition of fluorine-containing compounds
KR102032387B1 (en) A catalyst for regenerating a carbon dioxide absorbent containing a modified activated carbon, a method for producing the same, and a method for capturing carbon dioxide using the catalyst
BR112020005604A2 (en) process for the production of nitric acid with tertiary reduction of n2o and nox
JPH0579657B2 (en)
JPH067685A (en) Regeneration of deteriorated catalyst
CN108126743A (en) SAPO-18 adulterates the preparation method and application of Cu and Tb composite catalysts
JPH09313940A (en) Ammonia oxidation decomposition catalyst
JP3863610B2 (en) Ammonia detoxification method and apparatus
JP4867265B2 (en) N2O decomposition method
JPH10286439A (en) Decomposing method of fluorine-containing compound
JP2013056295A (en) Method for regeneration of nitrous oxide decomposition catlyst
JP3300428B2 (en) Method for producing nitrous oxide
JPH0142882B2 (en)
JP3029311B2 (en) Method and apparatus for removing nitrogen oxides from mixed gas
JP5388788B2 (en) Method for treating exhaust gas containing halogenated aliphatic hydrocarbon
US4294928A (en) Denitrification of a gas stream
JPH06122506A (en) Method for producing nitrous oxide
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
JP2928983B2 (en) Nitrous oxide containing gas decomposition method
JP3627004B2 (en) Nitric oxide reduction method
JPH0461987A (en) Treatment of waste water containing ammonium nitrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011113