WO2013124999A1 - Heat transport apparatus, and heat transport method - Google Patents

Heat transport apparatus, and heat transport method Download PDF

Info

Publication number
WO2013124999A1
WO2013124999A1 PCT/JP2012/054353 JP2012054353W WO2013124999A1 WO 2013124999 A1 WO2013124999 A1 WO 2013124999A1 JP 2012054353 W JP2012054353 W JP 2012054353W WO 2013124999 A1 WO2013124999 A1 WO 2013124999A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrous oxide
decomposition
gas
catalyst
heat
Prior art date
Application number
PCT/JP2012/054353
Other languages
French (fr)
Japanese (ja)
Inventor
茂広 茶圓
川口 淳一郎
宏人 羽生
理嗣 曽根
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to PCT/JP2012/054353 priority Critical patent/WO2013124999A1/en
Priority to JP2014500809A priority patent/JP5891293B2/en
Publication of WO2013124999A1 publication Critical patent/WO2013124999A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/405Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention relates to a heat transport apparatus and a heat transport method using energy generated by decomposition of nitrous oxide (also referred to as N 2 O, dinitrogen monoxide).
  • nitrous oxide also referred to as N 2 O, dinitrogen monoxide
  • Japanese Patent Laid-Open No. 5-4027 Japanese Patent Laying-Open No. 2005-230795 JP 2006-181570 A Japanese Patent No. 4232820
  • heating including heating, hot water supply, hot water, drying, etc.
  • cooling including cooling, refrigeration, freezing, cold water, ice making, etc.
  • dehumidification and humidification
  • nitrous oxide as energy friendly to the global environment by using energy generated by decomposition of nitrous oxide.
  • Nitrous oxide is chemically stable and easy to handle, and is approved as a food additive (Ministry of Health, Labor and Welfare No. 34, March 22, 2005). It is also used as a combustion aid.
  • nitrous oxide is considered to be one of the causes of global warming as a greenhouse gas having a warming effect about 310 times that of carbon dioxide (CO 2 ).
  • CO 2 carbon dioxide
  • many technologies have been developed to decompose and remove nitrous oxide in exhaust gas discharged from, for example, factories, incineration facilities, and automobiles using catalysts. (For example, see Patent Documents 1 to 3.)
  • Patent Documents 1 and 2 disclose a technique in which heat generated during decomposition of nitrous oxide in the production process of adipic acid is used for preheating nitrous oxide.
  • Patent Document 3 described above in an apparatus for decomposing nitrous oxide contained in excess anesthetic gas, heat exchange is performed between a gas introduced into the decomposition apparatus and a gas discharged from the decomposition apparatus. Discloses a technique for increasing energy efficiency by reducing heating energy and cooling energy.
  • Patent Document 4 a thruster device that generates thrust by using a cracked gas obtained by catalytically decomposing nitrous oxide.
  • nitrous oxide when nitrous oxide is decomposed using a catalyst for decomposing nitrous oxide, additional nitrous oxide may be self-decomposed (thermal decomposition) by the heat of decomposition. Is possible.
  • an object of the present invention is to enable the use of nitrous oxide as energy friendly to the global environment, and a heat transport device and heat that enable heat transport using energy generated by decomposition of the nitrous oxide. It is to provide a transportation method.
  • the present invention provides the following means. (1) a cracked gas boiler that generates steam by recovering heat from cracked gas generated by the decomposition of nitrous oxide; A steam turbine that is rotationally driven by steam generated in the cracked gas boiler; A heat transport device comprising: a heat pump that transports heat by driving the steam turbine. (2) a cracked gas turbine that is rotationally driven by cracked gas generated by the decomposition of nitrous oxide; A heat transport device comprising: a heat pump that transports heat by driving the cracked gas turbine. (3) The cracking gas boiler or cracking gas turbine supplies a cracking reaction section in which a nitrous oxide decomposition catalyst for cracking the nitrous oxide is disposed, and a fuel gas containing nitrous oxide to the cracking reaction section.
  • Fuel gas supply means In the decomposition reaction section, after decomposing nitrous oxide contained in the fuel gas using the nitrous oxide decomposing catalyst, the fuel supplied thereafter by the decomposition heat generated by the decomposition of the nitrous oxide
  • the cracked gas boiler or cracked gas turbine includes a flow rate adjusting means for adjusting a flow rate of the fuel gas supplied to the cracking reaction unit, The heat transport device according to (3), wherein the temperature of the cracked gas is controlled by adjusting the flow rate of the fuel gas supplied to the cracking reaction section.
  • the cracked gas boiler or cracked gas turbine includes a concentration adjusting unit that adjusts the concentration of nitrous oxide contained in the fuel gas,
  • the heat transport device according to (3) or (4) above wherein the temperature of the cracked gas is controlled by adjusting the concentration of nitrous oxide contained in the fuel gas.
  • the cracked gas boiler or cracked gas turbine includes temperature measuring means for measuring the temperature of the nitrous oxide cracking catalyst or cracked gas, The flow rate adjustment by the flow rate adjustment unit or the concentration adjustment by the concentration adjustment unit is performed based on the measurement result by the temperature measurement unit, or any one of the items (4) to (6), Heat transport equipment.
  • the cracked gas boiler or cracked gas turbine includes a preheating means for preheating the nitrous oxide decomposition catalyst, The heat transport device according to any one of (3) to (7), wherein the nitrous oxide decomposition catalyst is preheated before the decomposition of the nitrous oxide is started.
  • the cracked gas boiler or cracked gas turbine includes a nitrogen gas supply means for supplying nitrogen gas to the cracking reaction section, 9.
  • the heat transport device according to any one of the above items (3) to (8), wherein nitrogen gas is supplied to the decomposition reaction unit after supply of fuel gas to the decomposition reaction unit is stopped.
  • the heat pump heats the refrigerant while condensing a refrigerant circulating system in which the refrigerant circulates, a compression unit that compresses and sends out the refrigerant in the refrigerant circulation system, and the refrigerant compressed in the compression unit.
  • the heat transport device according to any one of the preceding items (1) to (9), characterized in that is driven by the steam turbine or cracked gas turbine.
  • the heat pump includes switching means for switching a direction in which the refrigerant flows.
  • a heat transport method including a step of performing heat transport with a heat pump by driving the steam turbine. (13) rotationally driving a cracked gas turbine with cracked gas generated by cracking of nitrous oxide; A heat transport method comprising: performing heat transport with a heat pump by driving the cracked gas turbine. (14) A fuel gas containing the nitrous oxide is supplied to a cracking reaction section in which a nitrous oxide decomposition catalyst for decomposing the nitrous oxide is disposed, and is contained in the fuel gas in the cracking reaction section.
  • nitrous oxide As described above, according to the present invention, it is possible to use nitrous oxide as energy friendly to the global environment, and it is possible to transport heat using the energy generated by the decomposition of nitrous oxide.
  • a heat transport apparatus and a heat transport method to which the present invention is applied use substituting energy generated by the decomposition of nitrous oxide (N 2 O, also referred to as dinitrogen monoxide) as sub-environment-friendly energy.
  • Nitrogen oxide can be used.
  • Nitrous oxide is a stable gas at normal temperature and atmospheric pressure.
  • the temperature is about 500 ° C. or higher, self-decomposition (thermal decomposition) occurs while generating heat.
  • decomposition of nitrous oxide is accompanied by exotherm (exothermic reaction).
  • the decomposition gas of the nitrous oxide heated up by the temperature rise (heat of decomposition) accompanying this decomposition becomes about 1600 degreeC, it can be said that nitrous oxide is a substance with built-in high energy.
  • the decomposition start temperature can be lowered to, for example, about 350 to 400 ° C.
  • disassembly of nitrous oxide it is possible to carry out decomposition
  • the nitrous oxide decomposed using the catalyst becomes a mixed gas (decomposed gas) of nitrogen (N 2 ) and oxygen (O 2 ) while generating heat.
  • FIG. 1 is a schematic system diagram showing a configuration of a heat transport device including a cracked gas boiler 1 to which the present invention is applied. This heat transport device performs heat transport using the heat of decomposition generated by the decomposition of nitrous oxide (N 2 O).
  • N 2 O nitrous oxide
  • the heat transport device shown in FIG. 1 includes a cracked gas boiler 1 that generates steam by heat recovery from cracked gas (N 2 , O 2 ) generated by the decomposition of nitrous oxide, and a cracked gas boiler 1.
  • the steam turbine 2 that is rotationally driven by the steam generated in step 1, the compression heat pump 80 that transports heat by driving the steam turbine 2, the condenser 4 that cools and condenses the steam from the steam turbine 2,
  • a water supply pump 5 for supplying the condensate from the condenser 4 to the cracked gas boiler 1 is schematically provided.
  • the cracked gas boiler 1 to which the present invention is applied includes a steam generating section 7 that generates steam by heat exchange between a cracking reaction section 6 that decomposes nitrous oxide and a cracked gas obtained by cracking nitrous oxide. And.
  • FIG. 2 is a schematic system diagram showing a configuration of a heat transport device including the cracked gas turbine 11 to which the present invention is applied.
  • This heat transport device performs heat transport using a decomposition gas (N 2 , O 2 ) generated by decomposition of nitrous oxide (N 2 O).
  • the heat transport apparatus shown in FIG. 2 includes a cracked gas turbine 11 that is rotationally driven by cracked gas generated by the decomposition of nitrous oxide, and a compression heat pump that transports heat by driving the cracked gas turbine 11. 80.
  • the cracked gas turbine 11 to which the present invention is applied includes a cracking reaction section 13 for cracking nitrous oxide and a cracked gas obtained by cracking nitrous oxide from a nozzle (static blade) to a turbine blade (moving blade). And a turbine section 14 for obtaining power by rotating the turbine shaft.
  • the cracked gas boiler 1 and the cracked gas turbine 11 shown in FIGS. 1 and 2 include the cracking reaction sections 6 and 13 for cracking nitrous oxide described above as a characteristic part of the present invention. That is, these decomposition reaction units 6 and 13 are combustion gas boilers that generate steam using combustion heat generated when conventional fossil fuels or the like are burned, and combustion when conventional fossil fuels or the like are burned. It replaces a combustor (combustion reaction unit) provided in a combustion gas turbine that is rotationally driven using gas.
  • combustor combustion reaction unit
  • the characteristic part of the present invention is a decomposition reactor (the above-mentioned decomposition) in which a nitrous oxide decomposition catalyst (hereinafter simply referred to as a catalyst) 21 for decomposing nitrous oxide is disposed.
  • a nitrous oxide decomposition catalyst hereinafter simply referred to as a catalyst
  • a temperature measuring device (temperature measuring means) 26 that measures the temperature of 21 and a control unit (control means) 27 that controls each part are provided.
  • the decomposition reactor 22 includes a main body (decomposition reaction chamber) 22a containing the catalyst 21 inside, a gas inlet 22b through which fuel gas is introduced into one end side of the main body 22a, and the main body 22a. It has a structure in which a gas discharge port 22c through which cracked gas is discharged is provided on the other end side.
  • the decomposition reactor 22 it is preferable to use a material having excellent heat resistance and oxidation resistance as the material of the decomposition reactor 22, and in particular, a member on the side of the gas discharge port 22 c exposed to high temperature and high pressure by the decomposition gas has a high temperature. It is preferable to use a material that can sufficiently withstand thermal fatigue or oxidation under high pressure. Examples of such materials include stainless steel, Ni-base alloy, and Co-base alloy. Moreover, ceramics, silicon carbide (SiC), or the like can be used as a heat shielding material. Further, these composite materials may be used. Moreover, the decomposition reactor 22 may be provided with a mechanism for forcibly cooling by water cooling or air cooling.
  • the catalyst 21 it is preferable to use a catalyst that can efficiently decompose nitrous oxide in a wide temperature range (particularly in a low temperature range) and can sufficiently withstand thermal fatigue, oxidation, and the like at high temperatures.
  • a catalyst having high decomposition efficiency of nitrous oxide and excellent heat resistance and oxidation resistance are disclosed in, for example, “JP 2002-153734 A” and “JP 2002-253967 A” described later. Things can be used.
  • any of the catalysts shown in the following [1] to [6] can be used.
  • [1] A catalyst in which aluminum (Al), magnesium (Mg), and rhodium (Rh) are supported on a carrier.
  • [2] A catalyst in which magnesium (Mg) and rhodium (Rh) are supported on an alumina (Al 2 O 3 ) support.
  • [3] A catalyst in which rhodium (Rh) is supported on a carrier in which a spinel crystalline composite oxide is formed of at least a part of aluminum (Al) and magnesium (Mg).
  • At least one metal selected from the group consisting of zinc (Zn), iron (Fe), manganese (Mn) and nickel (Ni), aluminum (Al) and rhodium (Rh) is supported on the carrier.
  • At least one metal selected from the group consisting of zinc (Zn), iron (Fe), manganese (Mn) and nickel (Ni) and rhodium (Rh) are supported on an alumina (Al 2 O 3 ) support. Catalyst.
  • a spinel crystalline composite comprising at least a part of aluminum (Al) and at least one metal selected from the group consisting of zinc (Zn), iron (Fe), manganese (Mn), and nickel (Ni)
  • the support selected from silica (SiO 2 ) and silica alumina (SiO 2 —Al 2 O 3 ) is at least selected from the group consisting of rhodium (Rh), ruthenium (Ru), and palladium (Pd).
  • Rh rhodium
  • Ru ruthenium
  • Pd palladium
  • a catalyst or the like carrying one noble metal can be suitably used. By using such a catalyst 21, it is possible to decompose nitrous oxide into nitrogen and oxygen with a decomposition efficiency close to 100%.
  • the catalyst 21 is a cordierite and metal honeycomb or porous ceramic carrier coated with alumina and impregnated with rhodium effective for decomposing nitrogen oxides by 2 to 3% by mass
  • examples thereof include those in which a support layer made of alumina is formed on a honeycomb structure made of alumina, cordierite, or silicon carbide, and rhodium that is effective in decomposing nitrogen oxides is supported on the support layer.
  • rhodium that is effective in decomposing nitrogen oxides is supported on the support layer.
  • it is not necessarily limited to these.
  • a catalyst used for decomposing and removing nitrous oxide in exhaust gas discharged in a manufacturing process of adipic acid, a manufacturing process of nitric acid, or the like can be used.
  • Such a catalyst is represented by, for example, MAl 2 O 3 (M is any one of Pd, Cu, Cu / Mg, Cu / Zn, Cu / Zn / Mg), and M is 10 to 30.
  • M is any one of Pd, Cu, Cu / Mg, Cu / Zn, Cu / Zn / Mg
  • M is 10 to 30.
  • Examples thereof include a support in which a precious metal is supported at a rate of 0.1 to 2% by mass on an alumina support containing at a rate of mass%.
  • the shape of the catalyst 21 is not particularly limited.
  • any shape such as powder, granule, pellet, honeycomb, porous, pulverized, mesh, plate, or sheet can be used. What is necessary is just to select and use the optimal shape and size suitably from shapes.
  • the filling method of the main body 22a of the catalyst 21 and the shape of the main body 22a according to the catalyst 21 are also matched to the design of the cracking reaction sections 6 and 13 included in the cracking gas boiler 1 and the cracking gas turbine 11. And can be implemented arbitrarily.
  • the decomposition reactor 22 may be configured to be able to replace the catalyst 21 (in some cases, the main body 22a) in accordance with the deterioration of the catalyst 21 over time. In addition, it is possible to extract and purify a noble metal component from the catalyst 21 whose performance has been reduced and recover it, and then use the recovered noble metal on a new carrier as a regenerated catalyst.
  • the decomposition reactor 22 is provided with a heater (preheating means) 28 for heating the catalyst 21.
  • the heater 28 preheats (preheats) the catalyst 21 to a temperature at which nitrous oxide can be decomposed (decomposition start temperature) before starting decomposition of nitrous oxide, that is, before supplying fuel gas to the decomposition reactor 22. ).
  • the heater 28 shown in FIG. 3 is disposed inside the main body portion 22a so as to be in contact with the periphery of the catalyst 21.
  • the heater 28 is connected to a power source (not shown) via a power supply line 29, and can generate heat by supplying power from the power source.
  • a resistance heating method, an induction heating method, or the like can be used as the heater 28, a resistance heating method, an induction heating method, or the like.
  • the heating method of the catalyst 21 is not limited to the method of heating the catalyst 21 with the heater 28 arranged inside the main body 22a, and the catalyst 21 is heated with the heater 28 arranged outside the main body 22a. It is also possible to use a method of heating. In this case, the main body 22a is heated by the heater 28, and the catalyst 21 can be heated by radiation or heat conduction from the main body 22a.
  • a method for heating the catalyst 21 it is also possible to use a method for heating the catalyst 21 by directly supplying electric power to the catalyst 21.
  • the method for heating the catalyst 21 is not particularly limited, and can be appropriately selected from the methods for heating the catalyst 21.
  • the fuel gas supply line 23 is a pipe (flow path) whose one end is connected to the inlet side (gas inlet 22 b) of the cracking reactor 22 via the flow rate adjusting unit 25, and the other end side is a fuel gas A fuel gas supply source 31 is connected via the on-off valve 30.
  • the fuel gas on-off valve 30 is for opening / closing the fuel gas supply line 23 and for supplying / cutting off the fuel gas from the fuel gas supply source 31 (open / close means).
  • the fuel gas on / off valve 30 can be used not only for opening and closing the fuel gas supply line 23 but also for adjusting the opening degree (including pressure and the like).
  • the fuel gas on-off valve 30 can be a control valve with a flow rate control (flow rate control valve) that can control the flow rate.
  • the fuel gas on / off valve 30 is electrically connected to the control unit 27, and the control of the fuel gas on / off valve 30 can be controlled by the control unit 27.
  • the fuel gas on / off valve 30 is not limited to the configuration using the above-described control valve with flow rate adjustment (flow rate adjustment valve), but separately from the valve (open / close valve) for opening and closing the fuel gas supply line 23.
  • a configuration in which a regulator (flow rate regulator) for adjusting the flow rate of the fuel gas flowing in the gas supply line 23 is also possible.
  • the fuel gas supply source 31 has a fuel gas storage part in which the fuel gas is temporarily stored in order to supply fuel gas containing nitrous oxide, and the fuel gas storage part is filled with nitrous oxide.
  • a gas container for example, a cylinder, a tank, a cardle, etc.
  • the fuel gas supply source 31 can supply the fuel gas containing nitrous oxide from the high-pressure gas container 31a to the fuel gas supply line 23 by opening the fuel gas on-off valve 30. .
  • the nitrogen gas supply line 24 is a pipe (flow path) whose one end side is connected to the upstream side of the flow rate adjustment unit 25 of the fuel gas supply line 23, and the nitrogen gas opening / closing valve 32 is connected to the other end side.
  • a nitrogen gas supply source 33 is connected.
  • the nitrogen gas supply line 24 has a function as a concentration adjusting means for adjusting the concentration of nitrous oxide contained in the fuel gas by introducing the nitrogen gas into the fuel gas supply line 23.
  • the nitrogen gas opening / closing valve 32 is for opening / closing the nitrogen gas supply line 24 and for supplying / blocking the nitrogen gas from the nitrogen gas supply source 33 (opening / closing means).
  • the nitrogen gas on / off valve 32 can be used not only for opening and closing the nitrogen gas supply line 24 but also for adjusting the opening degree (including pressure and the like).
  • a control valve with a flow rate adjustment (flow rate adjustment valve) capable of controlling the flow rate is used for the nitrogen gas on-off valve 32.
  • the nitrogen gas on / off valve 32 is electrically connected to the control unit 27, and the control unit 27 can drive and control the nitrogen gas on / off valve 32.
  • the nitrogen gas on / off valve 32 is not limited to the configuration using the above-described control valve with a flow rate adjustment (flow rate adjustment valve), but separately from the valve (open / close valve) for opening and closing the nitrogen gas supply line 24.
  • a configuration in which a regulator (flow rate regulator) for adjusting the flow rate of the nitrogen gas flowing in the gas supply line 24 is also possible.
  • the nitrogen gas supply source 33 has a nitrogen gas storage part in which nitrogen gas is temporarily stored, and the nitrogen gas storage part has a high-pressure gas container (for example, a cylinder, a tank, a curdle, etc.) 33a filled with nitrogen. Is arranged.
  • the nitrogen gas supply source 33 can supply the nitrogen gas from the high-pressure gas container 33 a to the nitrogen gas supply line 24 by opening the nitrogen gas on-off valve 32.
  • the flow rate adjusting unit 25 may be anything that can adjust the flow rate (introduction amount) of the fuel gas introduced from the fuel gas supply line 23 into the decomposition reactor 22.
  • a control valve (flow rate adjusting valve) or the like can be used.
  • the flow rate adjusting unit 25 is electrically connected to the control unit 27, and the control unit 27 can drive and control the flow rate adjusting unit 25.
  • a flow meter (flow rate measuring means) for measuring the flow rate of the fuel gas flowing in the flow rate adjusting unit 25 is provided, or a regulator or a control valve with such a flow meter is used.
  • a flow rate of the fuel gas introduced into the decomposition reactor 22 can be adjusted with high accuracy.
  • the temperature measuring device 26 measures the temperature of the catalyst 21 directly or indirectly, is electrically connected to the control unit 27, and outputs a measurement result (measurement data) to the control unit 27.
  • the temperature measuring device 26 shown in FIG. 3 is attached to the main body portion 22 a of the decomposition reactor 22, and can measure the temperature on the downstream side of the catalyst 21 while contacting the catalyst 21.
  • the temperature on the upstream side (gas inlet 22b) side of the catalyst 21 is generally used.
  • the temperature on the downstream (gas discharge port 22c) side becomes higher than that. Therefore, the catalyst 21 exposed to the high temperature and high pressure by the cracked gas, the deterioration of the members on the gas outlet 22c side (for example, thermal fatigue, oxidation, etc.), especially nitrous oxide contains oxygen in the cracked gas. It is preferable to measure the temperature on the downstream side (gas exhaust port 22c) side of the catalyst 21 described above in order to prevent the reaction (oxidation).
  • the temperature measuring device 26 is not limited to the configuration shown in FIG. 3 described above, and may be configured to measure the temperature on the upstream side (gas inlet 22b) side of the catalyst 21. This is preferable in detecting whether or not the catalyst 21 heated by the heater 28 has been heated to the decomposition start temperature before starting the decomposition of nitrous oxide. Then, based on the measurement result by the temperature measuring device 26, when the catalyst 21 is heated to the decomposition start temperature, the heating by the heater 28 may be stopped. Thereby, the heating by the heater 28 can be performed efficiently.
  • the location which measures the temperature of the catalyst 21 it is not necessarily limited to said location, For example, in order to measure the average temperature of the catalyst 21, the temperature of the center part of the catalyst 21 is measured. It is also possible to measure the temperatures at these multiple locations separately.
  • the temperature measuring device 26 is not limited to the configuration that directly measures the temperature of the catalyst 21, and may indirectly measure the temperature of the catalyst 21 by measuring the temperature of the main body 22 a that houses the catalyst 21, for example. Is possible.
  • the temperature measuring device 26 is not limited to the configuration for directly or indirectly measuring the temperature of the catalyst 21 described above, but directly or indirectly determines the temperature of the cracked gas discharged from the gas discharge port 22c of the cracking reactor 22. It is good also as a structure to measure to. Furthermore, it is good also as a structure which measures the temperature of both these catalysts 21 and cracked gas.
  • thermometer using a thermocouple for example, a thermometer using a thermocouple, a non-contact type thermometer such as a radiation thermometer, a data logger, or the like can be used, but it is not necessarily limited to these. Instead, the catalyst 21 and the cracked gas can be appropriately selected from those that can be measured and used.
  • the control unit 27 is composed of a computer (CPU) or the like, and based on the measurement result (measurement data) from the temperature measuring device 26, according to the control program recorded therein, the flow rate adjusting unit 25 and the fuel gas on-off valve 30 described above. Control of the nitrogen gas on-off valve 32 is performed.
  • the catalyst 21 exposed to the high temperature and high pressure by the cracked gas, the members on the gas discharge port 22c side, etc. may be deteriorated (for example, thermal fatigue or oxidation). There is.
  • the temperature of the cracked gas becomes too low it may be difficult to continue the self-decomposition of nitrous oxide.
  • control unit 27 can control the temperature of the cracked gas within a range in which the decomposition of the nitrous oxide using the catalyst 21 is continued in the cracking reactor 22 so that such a problem does not occur. preferable.
  • control unit 27 controls the flow rate adjusting unit 25 based on the measurement result from the temperature measuring device 26, and the fuel gas supply line 23 supplies the decomposition reactor 22. The flow rate of the supplied fuel gas is adjusted.
  • control is performed to relatively increase the flow rate of the fuel gas supplied from the fuel gas supply line 23 to the cracking reactor 22.
  • the amount of fuel gas introduced into the cracking reactor 22 is increased, and the temperature of the cracked gas is relatively increased by increasing the amount of decomposition (heat of decomposition) of nitrous oxide decomposed in the cracking reactor 22. It is possible.
  • the decomposition of nitrous oxide using the catalyst 21 is continued in the decomposition reactor 22 while the temperature of the decomposition gas is controlled by the control unit 27. Can be performed automatically.
  • control unit 27 controls the nitrogen gas on-off valve 32 based on the measurement result from the temperature measuring device 26 and the nitrogen gas supply line 24 to the fuel gas supply line. The flow rate of the nitrogen gas supplied to 23 is adjusted.
  • control is performed to relatively increase the concentration of nitrous oxide contained in the fuel gas. That is, a control for relatively reducing the flow rate of nitrogen gas supplied from the nitrogen gas supply line 24 to the fuel gas supply line 23 or stopping supply of nitrogen gas from the nitrogen gas supply line 24 to the fuel gas supply line 23. I do. Thereby, the addition of nitrogen gas to the fuel gas flowing in the fuel gas supply line 23 is stopped or the amount added is reduced, and the concentration of nitrous oxide contained in the fuel gas can be relatively increased. it can. As the amount of decomposition (heat of decomposition) of nitrous oxide decomposed in the decomposition reactor 22 increases accordingly, the temperature of the decomposition gas can be relatively increased.
  • control is performed to relatively lower the concentration of nitrous oxide contained in the fuel gas. That is, a control for relatively increasing the flow rate of nitrogen gas supplied from the nitrogen gas supply line 24 to the fuel gas supply line 23 or starting supply of nitrogen gas from the nitrogen gas supply line 24 to the fuel gas supply line 23. I do. Accordingly, the concentration of nitrous oxide is increased while adding or increasing the amount of nitrogen gas to the fuel gas flowing in the fuel gas supply line 23 and diluting the nitrous oxide contained in the fuel gas with the nitrogen gas. Can be made relatively low. As a result, the decomposition amount (heat of decomposition) of nitrous oxide decomposed in the decomposition reactor 22 decreases, so that the temperature of the decomposition gas can be relatively lowered.
  • an inert gas such as helium (He), neon (Ne), argon (Ar), xenon (Xe), krypton (Kr), etc.
  • the concentration of nitrous oxide contained in the fuel gas can be adjusted by adding air (including dry air) or the like to the fuel gas.
  • nitrous oxide is continuously decomposed using the catalyst 21 in the decomposition reactor 22 while controlling the temperature of the decomposition gas. Is possible.
  • the above-described temperature control of the cracked gas can be performed by combining the methods using (1) and (2).
  • the above-described temperature control of the cracked gas can be stably performed with a simple configuration.
  • you may perform temperature control of cracked gas using the method of other than that.
  • NO x measurement means for measuring the concentration of NO x in the decomposition gas.
  • concentration of NO x gas such as undecomposed nitrous oxide (N 2 O), nitric oxide (NO), nitrogen dioxide (NO 2 ), etc. contained in the cracked gas, It is possible to accurately control the temperature of the cracked gas.
  • NO x removing means means for removing NO x contained in the cracked gas.
  • the NO x removal unit for example, by adding ammonia (NH 3) decomposition gas containing NO x, and selective reaction (reduction) is not ammonia and NO x by denitration catalyst, water (H 2 A denitration apparatus that decomposes into O) and nitrogen (N 2 ) can be used.
  • NH 3 ammonia
  • H 2 A denitration apparatus that decomposes into O
  • N 2 nitrogen
  • an optimum one may be selected from conventionally known ones.
  • the NO x removal means a NO x decomposition catalyst capable of directly decomposing NO x contained in the cracked gas may be used.
  • the supply of fuel gas to the cracking reactor 22 is stopped, and then nitrogen gas is supplied to the cracking reactor 22. Is preferably supplied.
  • control unit 27 performs control to close the fuel gas on-off valve 30, thereby stopping the supply of the fuel gas to the decomposition reactor 22, and the nitrogen gas supplied from the nitrogen gas supply line 24. Is introduced into the decomposition reactor 22.
  • the control unit 27 introduces nitrogen gas into the cracking reactor 22 for a certain period of time, that is, a sufficient time to remove the cracked gas remaining in the catalyst 21, and then closes the nitrogen gas on-off valve 32. And the supply of nitrogen gas to the decomposition reactor 22 is stopped.
  • inert gases such as He, Ne, Xe, Ar, Kr, air (including dry air), and the like are decomposed. It is also possible to introduce into the reactor 22.
  • step S101 the heater 28 is driven and the catalyst 21 is heated (preheated) before starting the decomposition of nitrous oxide.
  • step S102 based on the temperature of the catalyst 21 measured by the temperature measuring device 26, the control unit 27 determines whether or not the catalyst 21 has been heated to the decomposition start temperature. If it is determined that the catalyst 21 has been heated to the decomposition start temperature, the process proceeds to step S103, and the driving of the heater 28 is stopped in step S103. On the other hand, when it is determined that the catalyst 21 has not been heated to the decomposition start temperature, the heating of the catalyst 21 by the heater 28 is continued until the catalyst 21 reaches the decomposition start temperature.
  • step S104 fuel gas is supplied to the decomposition reactor 22, and the decomposition reactor 22 decomposes nitrous oxide using the catalyst 21.
  • the flow rate of the fuel gas supplied to the decomposition reactor 22, the concentration of nitrous oxide contained in the fuel gas, and the like are set in advance.
  • step S105 based on the temperature of the catalyst 21 (or cracked gas) measured by the temperature measuring device 26, the control unit 27 sets a value (range) in which the temperature of the catalyst 21 (or cracked gas) is set in advance. It is determined whether or not the number is exceeded. If it is determined that the temperature of the catalyst 21 (or cracked gas) has exceeded the set value (range), the process proceeds to step S106. On the other hand, if it is determined that the temperature of the catalyst 21 (or cracked gas) is within the set value (range), the process proceeds to step S110.
  • step S106 the control unit 27 determines (comparison) whether the temperature of the catalyst 21 (or cracked gas) is higher or lower than a set value (range).
  • step S107 When it is determined that the temperature of the catalyst 21 (or cracked gas) is higher than the set value (range), the process proceeds to step S107, and the controller 27 is supplied to the cracking reactor 22 in step S107.
  • the fuel gas flow rate or the concentration of nitrous oxide contained in the fuel gas is adjusted to decrease. Then, after the adjustment, the process proceeds to step S109.
  • step S108 when it is determined that the temperature of the catalyst 21 (or cracked gas) is lower than the set value (range), the process proceeds to step S108, and the controller 27 is supplied to the cracking reactor 22 in step S108.
  • the adjustment is made to increase the flow rate of the fuel gas or the concentration of nitrous oxide contained in the fuel gas. Then, after the adjustment, the process proceeds to step S109.
  • step S107 or step S108 for example, a range in which the set value of the flow rate of the fuel gas supplied to the cracking reactor 22 or the set value of the concentration of nitrous oxide contained in the fuel gas can be adjusted. Then, it is divided into a predetermined number of steps, and the set value is lowered or increased by one step from the current step.
  • step S109 based on the temperature of the catalyst 21 (or cracked gas) measured by the temperature measuring device 26, the control unit 27 determines whether the temperature of the catalyst 21 (or cracked gas) has returned to the set value (range). Determine whether or not.
  • the process proceeds to step S110.
  • step S106 determines whether or not the temperature of the catalyst 21 (or cracked gas) has returned to the set value (range).
  • the control unit 27 determines that it is abnormal and forcibly proceeds to step S110 (not shown in FIG. 4).
  • step S110 the control unit 27 determines whether or not to stop the fuel gas supply.
  • Examples of the case of stopping the supply of the fuel gas include a case where a stop command is received from the outside and a case where it is determined that there is an abnormality in step S109. And when stopping supply of fuel gas, it progresses to Step S111. On the other hand, when the supply of the fuel gas is not stopped, the process returns to step S105, and the temperature measurement of the catalyst 21 (or cracked gas) by the temperature measuring device 26 is continued.
  • step S111 after the supply of fuel gas is stopped, the process proceeds to step S112, and in this step S112, nitrogen gas is supplied to the decomposition reactor 22. Thereby, the cracked gas which nitrogen gas stayed in the catalyst 21 is pushed out, and the cracked gas stayed in the catalyst 21 can be removed.
  • nitrous oxide is continuously decomposed using the catalyst 21 in the decomposition reactor 22 while controlling the temperature of the decomposition gas. Is possible.
  • the measurement data measured by the temperature measuring device 26 and the determination result of the control unit 27 based on the measurement data may be displayed on a monitor (not shown) or output to a printer, for example.
  • a monitor not shown
  • a printer for example.
  • step S109 when it is determined that there is an abnormality in step S109, it may be notified as necessary.
  • the notification method is not particularly limited, and for example, an alarm can be issued or a display can be performed.
  • the cracked gas boiler 1 shown in FIG. 1 and the cracked gas turbine 11 shown in FIG. 2 have the same configuration as the characteristic part of the present invention as described above, thereby controlling the temperature of the cracked gas described above, It is possible to continuously decompose nitrous oxide.
  • a fuel gas containing nitrous oxide is supplied to the cracking reaction units 6 and 13, and in the cracking reaction units 6 and 13, fuel is supplied.
  • the nitrous oxide contained in the gas is decomposed using the catalyst 21, the decomposition heat generated by the decomposition of the nitrous oxide continuously decomposes the nitrous oxide in the fuel gas supplied thereafter. It can be done.
  • the compression heat pump 80 includes a refrigerant circulation system 81 in which the refrigerant R circulates, a compression section 82 that compresses and sends out the refrigerant R in the refrigerant circulation system 81, and condenses the refrigerant R compressed by the compression section 82.
  • the condensing part 83 for releasing heat from the refrigerant R
  • the expansion part 84 for expanding the refrigerant R radiated by the condensing part 83
  • the refrigerant R expanded by the expansion part 84 while evaporating the heat
  • an evaporating unit 85 that absorbs water.
  • the refrigerant circulation system 81 includes a pipe (flow path) in which the compression unit 82, the condensing unit 83, the expansion unit 84, and the evaporation unit 85 are connected in order.
  • the refrigerant R circulates in the refrigerant circulation system 81 while repeating heat absorption and heat release due to state change (vaporization / liquefaction) accompanying pressure change (compression / expansion) as a heat medium for transporting heat. .
  • refrigerant R examples include fluorocarbons (fluorocarbons) (hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), etc.), carbon dioxide, ammonia, hydrocarbons (propane, butane, isobutane, etc.), water, and the like. Etc. can be used.
  • the compression unit 82 includes a compressor (compressor), and is driven by being connected to the steam turbine 2 or the cracked gas turbine 11 (turbine unit 14).
  • the refrigerant R is sent out to the condensing unit 83 as a high-temperature and high-pressure gas while being heated by being compressed by the compression unit 82.
  • the condensing unit 83 includes a heat exchanger (heat radiator) called a condenser (condenser), and condenses the refrigerant R by heat exchange with the outside while the refrigerant R compressed by the compression unit 82 passes through the inside. However, heat is released from the refrigerant R. As a result, the refrigerant R is sent to the expansion section 84 as a normal temperature / high pressure liquid. Further, in the heat pump 80, by providing a fan (air blowing means) 86 to the condenser section 83 side, it is possible to efficiently release the hot air T H to the outside. Further, the condensing section 83, it is also possible to perform the heating using the hot air T H, it is possible to use a heat exchanger of the radiator (hot) side as a heater (heating means).
  • a heat exchanger of the radiator (hot) side as a heater (heating means).
  • the expansion part 84 is composed of an expansion valve (expansion valve) or a capillary tube.
  • the refrigerant R is expanded by the expansion unit 84 and is cooled to a low-temperature / low-pressure liquid, and is sent to the evaporation unit 85.
  • the evaporation unit 85 includes a heat exchanger (heat absorber) called an evaporator (evaporator), and evaporates the refrigerant R by heat exchange with the outside while the refrigerant R expanded by the expansion unit 84 passes through the inside. However, the refrigerant R absorbs heat. Thus, the refrigerant R is sent to the compression unit 82 as a low-temperature and low-pressure gas. Further, in the heat pump 80, it is possible to efficiently discharge the cold air TL to the outside by providing the fan (blower unit) 87 on the evaporation unit 85 side. Further, the evaporator 85 can perform cooling using the cold air TL , and the heat exchanger (low temperature) side heat exchanger can be used as a cooler (cooling means).
  • a heat exchanger heat absorber
  • the compression heat pump 80 can perform heat transport while circulating the refrigerant R in the refrigerant circulation system 81 using the steam turbine 2 or the cracked gas turbine 11 as a power source. .
  • the heat transport method to which the present invention is applied includes step S1-1 in which steam is generated in the cracked gas boiler 1 by heat recovery from cracked gas generated by decomposition of nitrous oxide, and a cracked gas boiler. 1, the steam turbine 2 is rotationally driven by the steam generated in 1, and the heat transport is performed by the compression heat pump 80 by driving the steam turbine 2.
  • a high-temperature and high-pressure cracked gas obtained by cracking nitrous oxide is supplied from the cracking reaction section 6 to the steam generating section 7.
  • the said steam generation part 7 it is possible to generate a vapor
  • the steam turbine 2 is rotationally driven by the steam generated by the cracked gas boiler 1 (steam generating unit 7). Then, heat transport can be performed by the compression heat pump 80 by driving the steam turbine 2.
  • the steam discharged from the steam turbine 2 is cooled by the condenser 4 and condensed, and then supplied to the cracked gas boiler 1 by the feed water pump 5, and again heated by the cracked gas boiler 1 with the cracked gas. It will circulate as steam by exchange.
  • the above-described characteristic portions of the present invention are not necessarily limited to the configuration shown in FIG. That is, when the characteristic part of the present invention shown in FIG. 3 is applied to the cracked gas boiler 1, it can be appropriately changed according to the type and size of the boiler.
  • the shape, number, arrangement, etc. of the decomposition reactor 22 can be appropriately changed according to the design of the decomposition gas boiler 1.
  • the fuel gas supply source 31, the nitrogen gas on / off valve 32, the nitrogen gas supply source 33, etc. can be appropriately changed according to the design of the cracked gas boiler 1.
  • the cracked gas boiler 1 can have the same structure as that of an existing combustion gas boiler, etc., except for the above-described features of the present invention.
  • the structure of the cracked gas boiler 1 to which the present invention is applied other than the characteristic portions of the present invention may be of the same type as a conventional round boiler or water tube boiler.
  • a round boiler a furnace tube boiler, a smoke tube boiler, a furnace tube fire tube boiler, a standing boiler etc.
  • examples of the water pipe boiler include a natural circulation type, a forced circulation type, and a once-through type.
  • the cracked gas boiler 1 is configured to supply cracked gas from the cracking reaction section 6 to the steam generating section 7 and generate steam by heat exchange with the cracked gas in the steam generating section 7.
  • the decomposition reaction unit 6 and the steam generation unit 7 are configured integrally, and steam is generated by exchanging heat between the decomposition reaction unit 6 and the steam generation unit 7. It is also possible.
  • the steam generation unit 7 is provided outside the decomposition reaction unit 6 (decomposition reactor 22), and steam is generated by heat exchange with heat (decomposition heat) generated in the decomposition reaction unit 6. It can be configured. In this case, it is possible to obtain steam by the heat generated in the decomposition reaction unit 6 at the same time that the decomposition reaction unit 6 (decomposition reactor 22) is cooled.
  • the cracked gas boiler 1 includes, for example, a superheater that further heats the steam obtained in the steam generation unit 7 to form superheated steam, and the cracking reaction unit 6. It is possible to have a configuration equipped with auxiliary equipment (equipment / parts) such as a preheater that preheats fuel gas, feed water, etc. with the obtained high-temperature cracked gas, and other necessary safety equipment (equipment / parts). is there.
  • auxiliary equipment equipment / parts
  • the configuration other than the cracked gas boiler 1, that is, the steam turbine 2, the condenser 4, the feed water pump 5, and the like described above are the same as the existing ones. It is possible to use. Further, the same applies to ancillary equipment (equipment / parts) and security equipment (equipment / parts).
  • step S2-1 for rotationally driving the cracked gas turbine 11 with cracked gas generated by the decomposition of nitrous oxide
  • Step S2-2 in which heat transport is performed by the compression heat pump 80.
  • a high-temperature and high-pressure cracked gas obtained by cracking nitrous oxide is supplied from the cracking reaction section 13 to the turbine section 14.
  • the turbine part 14 it is possible to spray cracked gas from the nozzle (stationary blade) to the turbine blade (moving blade), thereby rotating the turbine shaft to obtain power.
  • the above-described characteristic portions of the present invention are not limited to the configuration shown in FIG. That is, when the characteristic part of the present invention shown in FIG. 3 is applied to the cracked gas turbine 11, it is possible to make appropriate changes in accordance with the type and size of the turbine.
  • the shape, number, arrangement, etc. of the cracking reactor 22 can be appropriately changed according to the design of the cracking gas turbine 11.
  • the fuel gas supply source 31, the nitrogen gas on-off valve 32, the nitrogen gas supply source 33, etc. can be appropriately changed according to the design of the cracked gas turbine 11.
  • the structure other than the above-described features of the present invention has a configuration in which an existing combustion gas turbine includes a compressor that compresses combustion air and sends it to a combustor.
  • an existing combustion gas turbine includes a compressor that compresses combustion air and sends it to a combustor.
  • such a configuration is unnecessary.
  • the decomposition gas turbine 11 can have a simple configuration and can be reduced in weight.
  • the cracked gas turbine 11 may include a compressor (supercharger) connected to a turbine shaft (not shown).
  • a fuel gas containing nitrous oxide compressed (supercharged) by the compressor (supercharger) may be supplied to the decomposition reaction unit 13.
  • the fuel gas is compressed (supercharged) and used, it is preferably compressed (supercharged) within a range where nitrous oxide is not liquefied.
  • the cracked gas turbine 11 includes, for example, auxiliary equipment (equipment / parts) such as a preheater that preheats fuel gas with the high-temperature cracked gas obtained in the cracking reaction section 13. ), And other necessary security equipment (equipment / parts).
  • auxiliary equipment equipment / parts
  • preheater that preheats fuel gas with the high-temperature cracked gas obtained in the cracking reaction section 13.
  • security equipment equipment / parts
  • the heat transport device shown in FIG. 1 and FIG. 2 includes a compression heat pump 80A as shown in FIG. 7 instead of the compression heat pump 80, thereby performing cooling and heating.
  • a compression heat pump 80A as shown in FIG. 7 instead of the compression heat pump 80, thereby performing cooling and heating.
  • FIG. 7A shows the state of the heat pump 80A during cooling
  • FIG. 7B shows the state of the heat pump 80A during heating. Further, in the heat pump 80A shown in FIGS. 7A and 7B, the description of the same parts as the heat pump 80 is omitted and the same reference numerals are given in the drawings.
  • the compression heat pump 80A includes, in addition to the configuration of the heat pump 80, a four-way valve (switching means) 88 that switches a direction in which the refrigerant R in the refrigerant circulation system 81 flows, and a room installed indoors.
  • Machine 89 and an outdoor unit 90 installed outdoors.
  • the functions of the condensing unit 83 and the evaporating unit 85 are changed by switching the flow direction of the refrigerant R by the four-way valve 88.
  • Change. 7A the heat exchanger on the indoor unit 89 side functions as the evaporator 85, and the heat exchanger on the outdoor unit 90 functions as the condenser 83.
  • the heat exchanger on the indoor unit 89 side functions as the condensing unit 83, and the heat exchanger on the outdoor unit 90 side functions as the evaporating unit 85.
  • the compression unit 82 is driven by the steam turbine 2 or the cracked gas turbine 11 (not shown in FIG. 7).
  • the refrigerant R performs heat transport while circulating in the refrigerant circulation system 81. 7A, the indoor unit 89 side fan 87 discharges cool air (cold air) TL into the room, and during the heating shown in FIG. 7B, the indoor unit 89 side fan 87. Accordingly, it is possible to release the indoor warm air (the hot air) T H.
  • the air conditioner to which the present invention is applied can also have a dehumidifying function for dehumidifying the room.
  • a dehumidifying function for dehumidifying the room.
  • dehumidification for example, by a cooling operation in which the air volume is reduced, moisture in the air is dewed with a heat exchanger on the indoor unit side to dehumidify, and then a weak cooling dehumidification (dry) method for returning the dried air to the room,
  • reheat dehumidification (heat recycling) method in which moisture in the air is dewed by dew condensation by a heat exchanger on the indoor unit side, and then dry and cool air is reheated by the reheater and then returned to the room.
  • Heat transport apparatus it is possible to obtain a cold air (cold) T L described above, a hot air (hot) T H, and can be variously applied to refrigeration and air conditioning fields.
  • the heat transport device to which the present invention is applied can be applied to air conditioning equipment and air conditioning equipment such as the above-described cooling and heating air conditioners.
  • the present invention in addition to heating, can be applied to heating equipment, heating equipment, and the like that perform hot water supply, hot water, drying, and the like.
  • the cooling field in addition to cooling, it can be applied to cooling equipment and cooling equipment for performing refrigeration, freezing, cold water, ice making, and the like.
  • the heat transport apparatus to which the present invention is applied can be applied to a variety of sizes from large to small. In addition to its use for factories (industrial) and homes (households), it can be used in various fields, and it can be designed to suit the application, such as installation (stationary), portable, and portable. do it.
  • Nitrous oxide used in the present invention can be produced industrially.
  • examples of the method for industrially producing nitrous oxide include methods using the following (1) to (3).
  • nitrous oxide produced industrially for example, high purity nitrous oxide having a purity of 99.9 (3N) to 99.999 (5N)%, purity of 97.0% or more (Japan Pharmacopoeia)
  • high purity nitrous oxide having a purity of 99.9 (3N) to 99.999 (5N)%, purity of 97.0% or more Japanese Pharmacopoeia
  • examples thereof include medical nitrous oxide and industrial nitrous oxide having a purity of 98% or more.
  • examples of the method for producing nitrous oxide include the following methods (4) to (10).
  • Nitric acid is reduced with zinc or tin, or with sulfurous acid gas.
  • the produced nitrous oxide is filled in the high-pressure gas container 31a by a gas maker, then sent to the fuel gas supply source 31, and temporarily stored in the fuel gas storage section.
  • the high-pressure gas container 31a can be used repeatedly by being returned to the gas manufacturer after use and being refilled.
  • the fuel gas supply method is not limited to the method of supplying using the high-pressure gas container 31a (replacement of the high-pressure gas container 31a).
  • the fuel gas supply is performed using a transportation means such as a tanker or a tank lorry. It is possible to use a method of supplying to a storage tank (high pressure gas container 31a) installed in the source 31. Furthermore, it is also possible to use a method of supplying fuel gas containing nitrous oxide to a storage tank (high pressure gas container 31a) installed in the fuel gas supply source 31 through a pipeline.
  • the nitrogen gas supply method is not limited to the method of supplying using the high-pressure gas container 33a (replacement of the high-pressure gas container 33a), and the method of supplying using the same method as the fuel gas supply method described above. It is possible.
  • the decomposition start temperature of nitrous oxide can be lowered by using the catalyst 21. After the decomposition of nitrous oxide, it is possible to continuously decompose the nitrous oxide supplied thereafter by the heat of decomposition generated by the decomposition of nitrous oxide.
  • the heat of decomposition generated by the decomposition of nitrous oxide keeps the temperature of the catalyst 21 at or above the temperature necessary for decomposing nitrous oxide. Decomposition can be performed continuously.
  • the temperature of the catalyst 21 is preferably in the range of 200 to 600 ° C. from the viewpoint of catalyst activity, and more preferably in the range of 350 to 450 ° C. from the viewpoint of ease of decomposition reaction. That is, in the present invention, it is preferable to perform preheating by the heater 28 and temperature control of the cracked gas by the control unit 27 so that the temperature of the catalyst 21 falls within such a range.
  • nitrous oxide itself undergoes autolysis at about 500 ° C. or higher, nitrous oxide is continuously decomposed without using the catalyst 21 by keeping the decomposition reactor 22 at or above the autolysis temperature. It is also possible to However, it is known that when nitrous oxide is self-decomposed without using the catalyst 21, NO x gas is generated as a decomposition byproduct. Therefore, in the present invention, it is preferable to use the catalyst 21 in order to prevent the generation of the NO x gas. The catalyst 21 can be used even when the temperature is higher than the nitrous oxide autolysis temperature.
  • the temperature of the fuel gas may be any temperature at which nitrous oxide does not liquefy, and can usually be used at room temperature or lower.
  • the fuel gas can be used by preheating to a temperature higher than room temperature. For example, when the concentration of nitrous oxide contained in the fuel gas is low, the decomposition of nitrous oxide can be promoted by preheating the fuel gas.
  • the concentration of nitrous oxide contained in the fuel gas is not particularly limited.
  • the nitrous oxide concentration adjusted in the range of 1 to 100%, or when more energy needs to be obtained Those adjusted in the range of more than 50% to 100% and further adjusted in the range of more than 70% to 100% can be used. Further, by adjusting the concentration of nitrous oxide described above, it is possible to adjust the decomposition reaction rate of nitrous oxide and the like.
  • N 2 nitrogen
  • concentration of nitrous oxide N 2 O contained in the fuel gas
  • N 2 oxygen
  • the oxygen concentration is preferably in the range of about 18 to 24%.
  • the concentration of nitrous oxide contained in the fuel gas is 44. It is preferable to be in the range of about ⁇ 63%.
  • a nitrous oxide having a concentration of less than 44% that is, a fuel gas having a low nitrous oxide concentration.
  • the energy (energy density) generated by the decomposition of the fuel gas is lowered, the decomposition reaction of the nitrous oxide contained in the fuel gas is made gentle so that the above-described decomposition gas increases the temperature and pressure.
  • a nitrous oxide having a concentration exceeding 63% that is, a fuel gas having a high nitrous oxide concentration.
  • the energy (energy density) generated by the decomposition of the fuel gas can be increased, and the output of the decomposition gas boiler 1 and the decomposition gas turbine 11 can be improved.
  • nitrous oxide concentration of 100% it is possible to continuously decompose nitrous oxide using the catalyst 21.
  • high-purity for example, purity 99.9 (3N) to 99.999 (5N)%
  • nitrous oxide is considered in consideration of the production cost of nitrous oxide. It is also possible to use nitrous oxide with a low (for example less than 97% purity).
  • the concentration adjustment of nitrous oxide by nitrogen gas described above is a method of adding nitrogen gas or the like to the fuel gas before decomposition of nitrous oxide, but nitrogen gas or the like is added to the decomposition gas after decomposition of nitrous oxide.
  • the method of adding may be sufficient.
  • a fuel gas in which the concentration of nitrous oxide has been adjusted in advance may be used.
  • nitrous oxide contained in the fuel gas in addition to the nitrogen added for adjusting the concentration of nitrous oxide described above, unmixed components that were mixed during the production of nitrous oxide described later are used. Examples include reactants, by-products, air, and inevitable impurities.
  • an oxygen concentration meter for measuring the oxygen concentration in the cracked gas may be provided.
  • oxygen measuring means oxygen measuring means
  • the space velocity (Space Velocity) of the fuel gas introduced into the decomposition reactor 22 may be set to an optimum value according to the design, for example, in the range of 10 to 140,000 hr ⁇ 1 , preferably It can be set in the range of 100 to 10,000 hr ⁇ 1 .
  • the cracked gas can also be used for fuel combustion.
  • the fuel is combustible using oxygen contained in the cracked gas, for example, in addition to fossil fuels such as petroleum, coal, and natural gas, alternative fuels such as biomass fuel are used. can do.
  • alternative fuels such as biomass fuel are used. can do.
  • the concentration of nitrous oxide contained in exhaust gas discharged from factories and incineration facilities is 10% or less, while the concentration of nitrous oxide contained in excess anesthetic gas discharged from the operating room excludes excess anesthetic gas. Although it is somewhat diluted with compressed air in the apparatus, it is 70% or less, which is a very high concentration.
  • the nitrous oxide decomposition catalyst of the present invention is a catalyst that can cope with the decomposition of nitrous oxide having a low concentration to a high concentration.
  • the nitrous oxide decomposition catalyst of the present invention can be decomposed at a relatively low temperature, is less susceptible to activity degradation due to moisture even in the presence of moisture, and reduces the generation amount of NO x below an allowable concentration.
  • the amount of NO x generated can be reduced to about 1/10 to 1/100 or less of the conventional cracking catalyst.
  • the nitrous oxide decomposition catalyst of the present invention comprises any one of the following catalysts [1] to [3] containing three kinds of metals, aluminum, magnesium and rhodium as essential components: [1] aluminum, magnesium and rhodium [2] a catalyst in which magnesium and rhodium are supported on an alumina carrier, [3] a carrier in which a spinel crystalline composite oxide is formed of at least a part of aluminum and magnesium.
  • the following [4] containing, as essential components, a catalyst on which rhodium is supported, and at least one metal selected from the group consisting of two metals, aluminum and rhodium, and zinc, iron, manganese and nickel.
  • a carrier selected from the group consisting of alumina, silica, zirconia, ceria, titania and tin oxide can be used
  • alumina A carrier selected from zirconia, ceria, titania and tin oxide can be used.
  • Carriers having a surface area of about 30 to 300 m 2 / g can be used, and there is no particular limitation on the shape, but depending on the reactor or reaction method, it is suitable for each of granular, powder, honeycomb, etc. You can choose the shape.
  • the aluminum and magnesium supported on the carrier contain aluminum in an atomic ratio of at least 2 with respect to magnesium.
  • Magnesium is preferably contained in an amount of 0.1 to 20.0% by mass based on the metal atom.
  • the spinel-type crystalline composite oxide is formed, for example, by firing a carrier supporting aluminum and magnesium.
  • the spinel structure is a structure found in an oxide having a chemical formula of XY 2 O 4 and belongs to a cubic system, and Al and Mg are known to form a MgAl 2 O 4 spinel structure.
  • the reason for the nitrous oxide decomposition catalyst of the present invention is not clear, but at least a part of aluminum forms a spinel crystalline composite oxide with magnesium, thereby improving the resolution of nitrous oxide. It is considered that the effect of reducing the generation amount of NO x is exhibited.
  • At least one metal selected from the group consisting of zinc, iron, manganese and nickel and aluminum supported on the carrier is selected from the group consisting of zinc, iron, manganese and nickel. It is preferable that at least 2 or more are contained by atomic ratio with respect to at least 1 type of metal. In addition, it is preferable that at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass in terms of metal atoms.
  • At least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel.
  • the spinel crystalline composite oxide can be produced by firing a carrier supporting aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel.
  • M Zn, Fe, Mn, Ni.
  • the reason for the nitrous oxide decomposition catalyst of the present invention is not clear, but at least a part of aluminum is at least one metal selected from the group consisting of zinc, iron, manganese and nickel, and a spinel crystalline composite. that forms the oxides, thereby improving the resolution of nitrous oxide, is believed to exert an effect of reducing the amount of generation of NO x.
  • the carrier used for the catalyst of [2] is alumina, and the alumina is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used.
  • the magnesium supported on the alumina preferably contains aluminum in an atomic ratio of at least 2 with respect to magnesium. Magnesium is preferably contained in an amount of 0.1 to 20.0% by mass in terms of metal atoms. Moreover, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with magnesium.
  • the carrier used for the catalyst of [5] is alumina, and the alumina is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used.
  • At least one metal selected from the group consisting of zinc, iron, manganese and nickel supported on alumina is an atomic ratio of aluminum to at least one metal selected from the group consisting of zinc, iron, manganese and nickel. It is preferable that at least two or more are included. It is preferable that at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass based on the metal atom.
  • at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel.
  • a catalyst in which a spinel-type crystalline composite oxide is formed of at least a part of aluminum and magnesium is used as the catalyst [3].
  • the atomic ratio of aluminum and magnesium in the catalyst of [3] is preferably such that aluminum is contained in an atomic ratio of at least 2 with respect to magnesium.
  • Magnesium is preferably contained in an amount of 0.1 to 20.0% by mass based on the metal atom.
  • the catalyst [6] uses a carrier in which a spinel crystalline composite oxide is formed of at least a part of aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel.
  • the atomic ratio of aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel in the catalyst of [6] is at least 1 selected from the group where aluminum is zinc, iron, manganese and nickel It is preferable that at least 2 or more is contained by atomic ratio with respect to the metal of seed
  • the rhodium contained in the nitrous oxide decomposition catalyst of the present invention is preferably 0.05 to 10% by mass in terms of metal atoms in any of the catalysts [1] to [6]. More preferably, the content is 0.1 to 6.0% by mass. Although it is possible to improve the catalyst activity at low temperature by increasing the amount of rhodium supported, it is not preferable to support 10% by mass or more in view of the cost of the catalyst, and 0.05% by mass or less. Sufficient nitrous oxide decomposition activity cannot be obtained.
  • nitrous oxide decomposition catalyst of the present invention Next, the method for producing the nitrous oxide decomposition catalyst of the present invention will be described.
  • Various production methods can be used for the nitrous oxide decomposition catalyst of the present invention.
  • (1) impregnation method, (2) coprecipitation method, (3) kneading method, and the like can be used.
  • the production method of the nitrous oxide decomposition catalyst of the present invention will be described.
  • the support selected from the group consisting of alumina, zirconia, ceria, titania and tin oxide is firstly at least one selected from the group consisting of aluminum and zinc, iron, manganese and nickel. Impregnation with inorganic acid salts (nitrate, hydrochloride, sulfate, etc.) or organic acid salts (oxalate, acetate, etc.) of seed metals.
  • an alumina carrier is impregnated with a magnesium inorganic acid salt (nitrate, hydrochloride, sulfate, etc.) or an organic acid salt (oxalate, acetate, etc.).
  • an inorganic support nitrate, hydrochloride, sulfate, etc.
  • an organic salt of at least one metal selected from the group consisting of zinc, iron, manganese, and nickel is used on an alumina support. Impregnate with acid salts (oxalate, acetate, etc.).
  • acid salts oxalate, acetate, etc.
  • the at least one metal salt selected from the group consisting of an aluminum salt, a magnesium salt and zinc, iron, manganese, and nickel it is preferable to use a nitrate.
  • the amount supported on the carrier of aluminum and magnesium is preferably such that aluminum is supported so that the atomic ratio with respect to magnesium is 2 or more. It is preferable to make it 0.1 to 20.0% by mass.
  • the amount of aluminum supported on at least one metal carrier selected from the group consisting of aluminum, zinc, iron, manganese and nickel is aluminum, zinc, iron, manganese and nickel. It is preferably supported so that the atomic ratio with respect to at least one metal selected from the group consisting of 2 or more is supported, and the supported amount of at least one metal selected from the group consisting of zinc, iron, manganese and nickel However, it is preferable to be 0.1 to 40.0% by mass of the total catalyst.
  • magnesium is supported so that the atomic ratio to aluminum is 1 ⁇ 2 or less, and the amount of magnesium supported is 0.1-20. It is preferable to be 0% by mass.
  • at least one metal selected from the group consisting of zinc, iron, manganese and nickel is supported so that the atomic ratio with respect to aluminum is 1 ⁇ 2 or less.
  • the supported amount of at least one metal selected from the group consisting of zinc, iron, manganese and nickel is 0.1 to 40.0% by mass of the total catalyst.
  • the carrier After supporting the desired metal salt on the carrier, the carrier is dried and fired to contain, for example, aluminum and magnesium, and at least part of the aluminum forms a spinel-type crystalline composite oxide with magnesium.
  • a carrier can be obtained, and this carrier is used as the carrier for the catalyst of [1].
  • it contains aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel, and at least a part of aluminum is selected from the group consisting of zinc, iron, manganese and nickel.
  • a support in which a spinel-type crystalline composite oxide is formed with at least one kind of metal can be obtained, and this support is used as a support for the catalyst of [4].
  • the drying temperature after impregnating the aluminum salt and magnesium salt in the catalyst [1], the aluminum salt in the catalyst [4], and at least one metal salt selected from the group consisting of zinc, iron, manganese and nickel is not particularly limited, but is preferably in the temperature range of 80 to 150 ° C, more preferably in the temperature range of 100 to 130 ° C.
  • the drying atmosphere is not particularly limited, and nitrogen or air can be used.
  • the drying time is not particularly limited, but when using the impregnation method, it may usually be about 2 to 4 hours.
  • Calcination of the carrier after impregnation and drying can be performed in a temperature range of 400 to 900 ° C., preferably 500 to 700 ° C.
  • the firing time is not particularly limited, but may be about 1 to 10 hours, preferably about 2 to 4 hours, and the firing temperature may be changed stepwise. Long-term firing is economically undesirable because the effect is saturated, and short-term firing may be less effective.
  • baking can be performed using a baking furnace, a muffle furnace, etc., and any of nitrogen or air may be used as a distribution gas at this time.
  • a rhodium salt is supported on the carrier obtained by firing.
  • an inorganic acid salt nitrate, hydrochloride, sulfate, etc.
  • an organic acid salt oxalate, acetate, etc.
  • the rhodium salt for example, in the case of producing a catalyst containing three kinds of metals, aluminum, magnesium and rhodium, as essential components, at least a part of the aluminum obtained using the above method is magnesium and It is preferably performed on the carrier forming the spinel crystalline composite oxide, but it may be performed simultaneously with the step of impregnating and supporting aluminum and magnesium on the carrier or the step of impregnating and supporting magnesium on the alumina carrier. Further, the supported amount of rhodium is preferably 0.05 to 10% by mass of the whole catalyst.
  • the step of supporting the rhodium salt is for producing a catalyst containing as essential components at least one metal selected from the group consisting of two metals, aluminum and rhodium, and zinc, iron, manganese and nickel.
  • the aluminum obtained by the above method is used as a carrier that forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel.
  • it is carried out with respect to the step of impregnating and supporting at least one metal selected from the group consisting of aluminum and zinc, iron, manganese and nickel on the support, or from zinc, iron, manganese and nickel on the alumina support.
  • the supported amount of rhodium is preferably 0.05 to 10% by mass of the whole catalyst.
  • the catalyst of [3] is produced by supporting a rhodium salt on the support in the same manner as described above. can do.
  • a rhodium salt is added to the support.
  • the catalyst of [6] can be produced by supporting the catalyst.
  • the rhodium-supported catalyst precursor is dried under the same drying conditions as described above, and the dried catalyst precursor is calcined.
  • the firing temperature is preferably 200 to 500 ° C, more preferably 300 to 400 ° C.
  • the catalyst obtained by calcination can be used as a nitrous oxide decomposition catalyst, it is preferable to further perform a reduction treatment, and a rhodium-containing catalyst with higher activity can be obtained by carrying out the reduction treatment.
  • the reduction treatment can be performed by, for example, (1) a method of re-drying after hydrazine reduction and firing, or (2) a method of hydrogen reduction, and a method of hydrogen reduction is preferably used.
  • the reduction temperature is preferably 200 to 500 ° C., more preferably 300 to 400 ° C.
  • the reduction time is not particularly limited, the treatment can be performed in about 1 to 10 hours, preferably about 2 to 4 hours. Moreover, you may perform a reduction process, without performing a baking process, and a rhodium containing catalyst with high activity can be obtained also in this case.
  • a method for producing a catalyst by carrying out a reduction treatment without performing a calcination treatment a method in which hydrogen is reduced at a temperature of 200 to 500 ° C. is preferable.
  • the above catalysts [3] and [6] can be produced.
  • a method for producing the catalyst of [3] using the coprecipitation method for example, ammonia water is dropped into an aqueous solution containing aluminum and magnesium nitrate to neutralize and precipitate, and if necessary, left to age and washed with filtered water. Check that the water has been thoroughly washed with the conductivity of the washing water. Next, after drying for about 10 to 12 hours under the same conditions as in the impregnation method, the obtained dried body is pulverized and molded with uniform particle sizes. Further, a carrier in which at least a part of aluminum forms a spinel-type crystalline composite oxide with magnesium is obtained by baking in a nitrogen or air atmosphere under the same conditions as in the impregnation method.
  • the amount of aluminum and magnesium is preferably such that aluminum has an atomic ratio of 2 or more with respect to magnesium, and magnesium is preferably contained in an amount of 0.1 to 20.0% by mass of the total catalyst in terms of metal atoms. .
  • At least a part of the aluminum thus obtained carries a rhodium salt on a carrier that forms a spinel-type crystalline composite oxide with magnesium.
  • the method, the amount supported, and the subsequent treatment method are the same as the above impregnation method. Can be done.
  • an aqueous solution containing an aluminum nitrate and at least one metal nitrate selected from the group consisting of zinc, iron, manganese and nickel is used as a method for producing the catalyst of [6] using the coprecipitation method.
  • Aqueous ammonia is added dropwise to neutralize and precipitate, and if necessary, aged as it is, washed with filtered water, and it is confirmed that it has been sufficiently washed with the conductivity of the washing water.
  • the obtained dried body is pulverized and molded with uniform particle sizes.
  • At least a part of aluminum is selected from the group consisting of zinc, iron, manganese and nickel and spinel crystallinity.
  • a carrier forming a complex oxide is obtained.
  • the amount of at least one metal selected from the group consisting of aluminum and zinc, iron, manganese and nickel is an atomic ratio of aluminum to at least one metal selected from the group consisting of zinc, iron, manganese and nickel.
  • at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass in terms of metal atoms. It is preferable.
  • At least a portion of the aluminum thus obtained carries a rhodium salt on a carrier that forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese and nickel.
  • the method, the loading amount and the subsequent treatment method can be carried out in the same manner as the above impregnation method.
  • Catalyst production method using a kneading method [3] and [6] catalysts can be produced using a kneading method.
  • a method for producing the catalyst of [3] using the kneading method for example, water is added to alumina and / or aluminum hydroxide and magnesium oxide, magnesium hydroxide and / or magnesium salt, for example, if necessary, The mixture obtained by mechanical mixing can be dried, and further subjected to a firing treatment under the same conditions as in the impregnation method to obtain the spinel crystalline composite oxide.
  • the amount of aluminum and magnesium is preferably such that aluminum has an atomic ratio of 2 or more with respect to magnesium, and magnesium is preferably contained in an amount of 0.1 to 20.0% by mass of the total catalyst in terms of metal atoms. .
  • At least a portion of the aluminum thus obtained carries a rhodium salt on a fired body that forms a spinel-type crystalline composite oxide with magnesium.
  • the method, the amount supported, and the subsequent treatment method are the same as the above impregnation method. This method can be used.
  • the rhodium salt may be added in advance when alumina or the like is mechanically mixed.
  • Examples of the method for producing the catalyst of [6] using the kneading method include at least one oxide selected from the group consisting of alumina and / or aluminum hydroxide and zinc, iron, manganese and nickel, and hydroxylation.
  • at least one oxide selected from the group consisting of alumina and / or aluminum hydroxide and zinc, iron, manganese and nickel, and hydroxylation For example, water is added to the product and / or metal salt, if necessary, and the mixture obtained by mechanical mixing is dried, and further subjected to a firing treatment under the same conditions as in the impregnation method. An oxide can be obtained.
  • the amount of at least one metal selected from the group consisting of aluminum and zinc, iron, manganese and nickel is such that aluminum is based on at least one metal selected from the group consisting of zinc, iron, manganese and nickel.
  • the atomic ratio is preferably 2 or more, and at least one metal selected from the group consisting of zinc, iron, manganese and nickel is 0.1 to
  • At least a portion of the aluminum thus obtained carries a rhodium salt on a fired body that forms a spinel-type crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel.
  • a rhodium salt may be added in advance when alumina or the like is mechanically mixed.
  • the decomposition reaction of nitrous oxide is performed using the decomposition catalyst of the present invention, it can be performed in a temperature range of 200 to 600 ° C.
  • the decomposition catalyst of the present invention and nitrous oxide may be contacted in the gas phase, preferably in the temperature range of 300 to 500 ° C, more preferably in the temperature range of 350 to 450 ° C. If the temperature is lower than 200 ° C., decomposition of nitrous oxide is not sufficient, and if it is 600 ° C. or higher, the catalyst life tends to be short, which is not preferable.
  • the catalyst bed system is not particularly limited, but a fixed bed is generally preferably used.
  • the catalytic activity of the conventional palladium catalyst decreases due to the influence of moisture and does not return to the original activity even when the moisture is removed, whereas the cracking catalyst of the present invention has 1 to 3% moisture coexistence. Although the activity may slightly decrease depending on the condition, it has a characteristic of returning to the original activity again when moisture is removed.
  • the concentration of nitrous oxide contained in exhaust gas discharged from factories and incineration facilities is 10% or less.
  • the concentration of nitrous oxide discharged from the operating room by the surplus anesthetic gas exclusion device may be as high as 3 to 70%.
  • the reaction when decomposing nitrous oxide contained in the anesthetic gas, the reaction usually involves 13 to 20% oxygen, and the reaction is performed under conditions that are severe for the decomposition catalyst.
  • the concentration of nitrous oxide to be decomposed is not particularly limited, but the reaction in which nitrous oxide decomposes into nitrogen and oxygen is an exothermic reaction.
  • the concentration of nitric oxide is preferably 3 to 50%, preferably 3 to 25%, more preferably 3 to 10%.
  • Space velocity is the amount of gas supplied per unit catalyst (SV: Space Velocity) may be in the range of 10hr -1 ⁇ 20000hr -1, preferably in the range of 100hr -1 ⁇ 10000hr -1.
  • the nitrous oxide decomposition catalyst of the present invention is a catalyst capable of decomposing a low concentration to a high concentration nitrous oxide.
  • the concentration of nitrous oxide contained in the surplus anesthetic gas discharged from the operating room is 70% or less, although it is somewhat diluted with compressed air, and is very high. This can be achieved by using a decomposition catalyst for nitrogen oxides.
  • the nitrous oxide decomposition catalyst of the present invention can recover its activity by activating regeneration even when it is deteriorated by the volatile anesthetic contained in the excess anesthetic gas. Moreover at a relatively low temperature can decompose nitrous oxide, less subject to deactivation due to water even when water coexists, it is possible to suppress the generation amount of the NO x to less than the allowable concentration, conventional cracking catalysts respect, it is possible to reduce the generation amount of the NO x to about 1 / 10-1 / 100 following levels.
  • the nitrous oxide decomposition catalyst of the present invention contains at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium as an essential component, and is any one of the following (1) to (3) A catalyst can be used.
  • a catalyst comprising (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium on a carrier selected from silica or silica alumina.
  • the silica support includes (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, (b) aluminum, and (c) at least one metal selected from the group consisting of zinc, iron and manganese. And a catalyst.
  • the support used for the catalyst of (1) is silica or silica alumina, and these supports are not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used.
  • the carrier used for the catalyst of (2) is silica and is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used. Although there is no restriction
  • At least one metal selected from the group (c) consisting of zinc, iron and manganese is preferably contained in an amount of 0.1 to 5.0% by mass of the total catalyst mass, more preferably Is preferably contained in an amount of 0.2 to 1.0% by mass. Even if the metal selected from the group (c) is contained in an amount of 5.0% by mass or more based on the total mass of the catalyst, the effect may be saturated.
  • the aluminum supported on the silica support is preferably contained in an atomic ratio of at least 2 to at least one metal selected from the group (c) consisting of zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (c), and the spinel crystalline composite oxide includes, for example, aluminum, zinc, iron And can be produced by firing a support on which at least one metal selected from the group consisting of manganese is supported.
  • a spinel structure is a structure found in an oxide having a chemical formula of XY 2 O 4 , belongs to a cubic system, and Al, Zn, Fe, and Mn are ZnAl 2 O 4 , FeAl 2 O 4 , and MnAl 2 O, respectively. It is known to form four spinel structures.
  • at least a part of aluminum is a part or all of at least one metal selected from the group (c) and a spinel-type crystalline composite oxide. It is considered that by forming, the effect of improving the resolution of nitrous oxide and reducing the amount of NO x generated is exhibited.
  • the carrier used for the catalyst of (3) is silica alumina and is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used.
  • the at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese supported on the silica-alumina carrier is preferably contained in an amount of 0.1 to 5.0% by mass of the total catalyst mass, and more preferably Is preferably contained in an amount of 0.2 to 1.0% by mass. Even if the metal selected from the group (d) is contained in an amount of 5.0% by mass or more of the entire catalyst mass, the effect may be saturated.
  • the aluminum contained in the catalyst is preferably contained in an atomic ratio of at least 2 to at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (d).
  • the spinel type crystalline composite oxide can be produced by supporting at least one metal selected from the group (d) on a silica alumina support and firing the support.
  • the at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium contained in the nitrous oxide decomposition catalyst of the present invention may be any of the above-mentioned catalysts (1) to (3).
  • the content is preferably 0.05 to 10% by mass, more preferably 0.1 to 6.0% by mass based on the total mass of the catalyst.
  • nitrous oxide decomposition catalyst of this invention is demonstrated.
  • Various production methods can be used for the nitrous oxide decomposition catalyst of the present invention.
  • methods such as (1) impregnation method, (2) coprecipitation method, and (3) kneading method can be used.
  • a method for producing the catalyst (2) using the impregnation method will be described, but it is needless to say that the present invention is not limited thereto.
  • the method of producing the catalyst of (2) using the impregnation method can include the following three steps. [1] A step of supporting (b) aluminum and (c) at least one metal selected from the group consisting of zinc, iron and manganese on a silica support. [2] A step of calcining the carrier obtained from step [1] at 400 to 900 ° C. [3] A step of (a) supporting at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium on the calcined carrier obtained from the step [2].
  • step [1] an inorganic acid salt of aluminum and at least one metal inorganic acid salt selected from the group (c) consisting of zinc, iron and manganese (nitrate, hydrochloride, sulfate, etc.) Alternatively, impregnation with an organic acid salt (oxalate, acetate, etc.).
  • both the aluminum and the salt of at least one metal selected from the group (c) are nitrates.
  • the amount of aluminum and at least one metal selected from group (c) supported on the carrier is preferably such that aluminum is supported at an atomic ratio of at least 2 with respect to at least one metal selected from group (c).
  • the supported amount of at least one metal selected from the group (c) is 0.1 to 5.0% by mass of the entire catalyst mass.
  • the support is dried and further subjected to calcination step [2] to contain at least one metal selected from the group consisting of aluminum and group (c).
  • a carrier in which a part forms a spinel crystalline composite oxide with at least one metal selected from the group (c) consisting of zinc, iron and manganese can be obtained.
  • the drying temperature after step [1] is not particularly limited, but is preferably in the temperature range of 80 to 150 ° C, more preferably in the temperature range of 100 to 130 ° C.
  • the drying atmosphere is not particularly limited, but air is preferably used.
  • the drying time is not particularly limited, but when using the impregnation method, it may usually be about 2 to 4 hours.
  • the firing step [2] can be performed in a temperature range of 400 to 900 ° C., preferably 500 to 700 ° C.
  • the firing time is not particularly limited, but may be about 1 to 10 hours, preferably about 2 to 4 hours, and the firing temperature may be changed stepwise. Long-time firing may be saturated economically because the effect may be saturated, and short-time firing may be less effective.
  • baking can be performed using a baking furnace, a muffle furnace, etc., and any of nitrogen or air may be used as a distribution gas at this time.
  • At least a part of the aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (c) consisting of zinc, iron and manganese.
  • a salt of at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium As the salt of at least one noble metal selected from the group (a), an inorganic acid salt (nitrate, hydrochloride, sulfate, etc.) or an organic acid salt (oxalate, acetate, etc.) can be used. Preference is given to using the nitrate salt.
  • the step [3] is performed on the support obtained in the step [2] in which at least a part of aluminum forms a spinel crystalline complex oxide with at least one metal selected from the group (c). Although it is preferable, it may be performed simultaneously with the step [1]. In that case, the process [1] and the process [3] are performed at the same time, and then the process [2] is performed. At least a part of the aluminum is at least one metal selected from the group (c) and the spinel crystalline composite. It is preferable to form an oxide. In any case, it is preferable that the supported amount of at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium is 0.05 to 10% by mass based on the total mass of the catalyst. .
  • the catalyst precursor subjected to step [3] is dried under the same drying conditions as described above.
  • the dried catalyst precursor is preferably subjected to a reduction treatment, and a catalyst containing at least one noble metal selected from the group (a) having high activity can be obtained by the reduction treatment.
  • the reduction treatment can be performed by, for example, (1) a method of re-drying after hydrazine reduction and firing, or (2) a method of hydrogen reduction, and a method of hydrogen reduction is preferably used.
  • the reduction temperature is preferably 200 to 500 ° C., more preferably 300 to 400 ° C.
  • the reduction time is not particularly limited, the treatment can be performed in about 1 to 10 hours, preferably about 2 to 4 hours.
  • the dried catalyst precursor may be calcined in nitrogen or air without the reduction treatment (1) or (2).
  • the firing temperature at this time is preferably 200 to 500 ° C., more preferably 300 to 400 ° C.
  • the nitrous oxide decomposition method of the present invention includes the following four methods.
  • the nitrous oxide decomposition method (1) of the present invention is characterized in that a gas containing nitrous oxide is brought into contact with the catalyst at 200 to 600 ° C.
  • the nitrous oxide decomposition method (2) of the present invention is a catalyst in which at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium is supported on a support made of silica or silica alumina. Yes, the gas containing nitrous oxide and the catalyst are brought into contact with each other at 200 to 600 ° C.
  • the supply of the gas containing nitrous oxide is stopped and 500 ° C. It is characterized by restarting the supply of gas containing nitrous oxide after heating to ⁇ 900 ° C. to activate and regenerate the catalyst.
  • the catalyst is silica and the support includes (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, and (b) aluminum. And (c) a catalyst carrying at least one metal selected from the group consisting of zinc, iron and manganese, contacting the gas containing nitrous oxide with the catalyst at 200 to 600 ° C. for decomposition
  • the supply of the gas containing nitrous oxide is stopped and heated to 500 ° C. to 900 ° C., and the catalyst is activated and regenerated. The supply is resumed.
  • the catalyst is a silica alumina carrier, and (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, and (D) A catalyst which carries at least one metal selected from the group consisting of magnesium, zinc, iron and manganese, which is brought into contact with the gas containing nitrous oxide at 200 to 600 ° C. for decomposition.
  • the supply of the gas containing nitrous oxide is stopped and heated to 500 ° C. to 900 ° C., and the catalyst is activated and regenerated. The supply is resumed.
  • the contact temperature between the nitrous oxide-containing gas and the decomposition catalyst is 200 to 600 ° C., preferably 300 to 500 ° C., more preferably 350 ° C. to 450 ° C. It is desirable to do.
  • the contact temperature is lower than 200 ° C., decomposition of nitrous oxide may not be sufficient, and when it is 600 ° C. or higher, the catalyst life tends to be short.
  • the catalyst bed system is not particularly limited, but a fixed bed can be employed.
  • the concentration of nitrous oxide contained in the exhaust gas discharged from factories and incineration facilities is usually 1000 ppm or less, but it is discharged by the surplus anesthetic gas exclusion device in the operating room.
  • the concentration of nitrous oxide is very high, about 8-50%.
  • 13 to 20% of oxygen is usually present in the excess anesthetic gas, it is a severe condition for the decomposition catalyst. If heat removal is possible and the temperature can be controlled, the concentration of nitrous oxide contacted with the cracking catalyst is not particularly limited.
  • nitrous oxide The concentration is preferably 50% or less, preferably 25% or less, and more preferably about 5%.
  • Space velocity is the amount of gas supplied per unit catalyst (Space Velocity) is preferably in the range of 10hr -1 ⁇ 20000hr -1, more preferably from 100 hr -1 ⁇ 10000 hr -1 is preferred.
  • the gas containing nitrous oxide may contain a volatile anesthetic, but the nitrous oxide decomposition catalyst of the present invention is not easily poisoned by the volatile anesthetic and is also poisoned by the volatile anesthetic. Even when the catalytic activity is reduced due to the above, by using the decomposition method of the present invention, the catalytic activity can be recovered and nitrous oxide can be decomposed over a long period of time. Therefore, when a decrease in the activity of the nitrous oxide decomposition catalyst is observed, the supply of the gas containing nitrous oxide is once stopped, the catalyst is activated to regenerate by calcination, and then the nitrous oxide is contained. The supply of gas can be resumed.
  • the calcination treatment for activating and regenerating the catalyst can be performed at a temperature of 500 to 900 ° C., preferably a decomposition catalyst whose activity is reduced at a temperature of 600 to 800 ° C., more preferably 650 to 750 ° C. .
  • an inert gas such as helium or nitrogen or air can be circulated through the catalyst layer, and oxygen may be contained in the inert gas. It is convenient and preferable to use air.
  • the firing treatment time is 10 minutes to 12 hours, preferably 20 minutes to 6 hours, more preferably about 30 minutes to 2 hours.
  • the catalyst supporting at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium
  • the catalyst is less susceptible to poisoning by volatile anesthetics and the activity of the catalyst is easily recovered. It is a catalyst containing ruthenium, and there is a tendency that the activity decreases in the order of rhodium and palladium. Therefore, it is desirable to use at least ruthenium as the noble metal component selected from the group (a). Further, after the baking treatment, a reduction treatment with hydrogen may be performed.
  • the catalyst used in the decomposition method (3) of the present invention comprises at least one metal selected from the group (c) consisting of zinc, iron, and manganese among the components supported on the silica support, in an amount of 0.1% of the total catalyst mass. It is preferably contained in an amount of ⁇ 5.0% by mass, more preferably 0.2-1.0% by mass. Even if the metal selected from the group (c) is contained in an amount of 5.0% by mass or more based on the total mass of the catalyst, the effect may be saturated.
  • the aluminum supported on the silica support is preferably contained in an atomic ratio of at least 2 to at least one metal selected from the group (c) consisting of zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (c), and the spinel crystalline composite oxide includes, for example, aluminum, zinc, iron And can be produced by firing a support on which at least one metal selected from the group consisting of manganese is supported.
  • the catalyst used in the decomposition method (4) is a catalyst comprising at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese supported on a silica-alumina carrier in an amount of 0.1 to The content is preferably 5.0% by mass, more preferably 0.2 to 1.0% by mass. Even if the metal selected from the group (d) is contained in an amount of 5.0% by mass or more of the entire catalyst mass, the effect may be saturated.
  • aluminum is contained in an atomic ratio of at least 2 with respect to at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (d).
  • the spinel type crystalline composite oxide can be produced by supporting at least one metal selected from the group (d) on a silica alumina support and firing the support.
  • At least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium contained in the catalyst used in the nitrous oxide decomposition method of the present invention is any of the decompositions (1) to (4) above Even when the method is used, it is preferably contained in an amount of 0.05 to 10% by mass, more preferably 0.1 to 6.0% by mass based on the total mass of the catalyst. Although it is possible to improve the catalytic activity at low temperature by increasing the amount of at least one noble metal selected from the group (a), it is not preferable to support 10% by mass or more in view of the cost of the catalyst, Further, if it is 0.05% by mass or less, sufficient nitrous oxide decomposition activity may not be obtained.
  • a catalyst for decomposing nitrous oxide made by Showa Denko KK, alumina carrier (manufactured by JGC Universal Co., Ltd.) with 5% rhodium and 1% zinc, granular, average particle size: 3 .2 mm
  • 2.12 g (4 ml) decomposition reactor nickel reaction tube, 1/2 inch diameter, catalyst layer height 57 mm
  • the nitrous oxide gas was decomposed while supplying a nitrous oxide (N 2 O) gas having a concentration of 100% by downflow to the decomposition reactor.
  • the flow rate was adjusted in a range of 20 to 2422 cc / min by a flow rate adjusting valve. Then, the linear velocity (LV: Linear Velocity) [m / min] and the space velocity (SV) [hr ⁇ 1 ] of the nitrous oxide gas supplied to the decomposition reactor at that time are measured, and The maximum value max [° C.] of the exothermic temperature (catalyst temperature) in the reaction vessel after decomposing the nitrogen oxide gas was measured with a temperature measuring device. Further, the amount of the NO X after decomposing nitrous oxide gas [ppm] was measured to determine the degradation rate of the nitrous oxide gas [%].
  • LV Linear Velocity
  • SV space velocity
  • Table 1 shows a summary of the measurement results. Moreover, the graph which put together the relationship between the linear velocity (LV) of nitrous oxide gas, the exothermic temperature in reaction container, and the decomposition rate of nitrous oxide gas from the measurement result of Table 1 is shown in FIG.
  • nitrous oxide has the same decomposition rate (98.7%) as that during heating while maintaining the heat generation temperature in the reaction vessel by the decomposition heat generated by the decomposition of nitrous oxide gas even after the heater is stopped. It turns out that the decomposition of the gas can be continued. For this reason, about 1 hour (hr) after the heater stopped, the supply of the nitrous oxide gas was stopped and the decomposition of the nitrous oxide gas was forcibly terminated. From this, it was found that the decomposition heat generated by the decomposition of the nitrous oxide gas can continue the decomposition of the nitrous oxide gas supplied thereafter without heating by the heater.
  • nitrous oxide by using energy generated by decomposition of nitrous oxide, it is possible to use nitrous oxide as energy friendly to the global environment. Further, since nitrous oxide is finally decomposed into nitrogen and oxygen as a decomposition gas, this decomposition gas can be utilized as a new resource. Furthermore, since nitrous oxide can also be industrially produced, its industrial utility value is very high in the present invention.
  • nitrous oxide is a stable gas at normal temperature and atmospheric pressure, and since it has low toxicity, it is highly safe and easy to handle.
  • a liquefied high-pressure gas filled in a high-pressure gas container it can be easily transported and stored before decomposition.
  • nitrous oxide has a low melting point (about ⁇ 90 ° C.) and does not freeze in outer space. Therefore, nitrous oxide does not stop its use on the earth, and other celestial bodies (such as the moon and Mars) and outer space (for example, It can also be used on a space station or spaceship.
  • nitrous oxide can be decomposed into nitrogen and oxygen, for example, in the space environment such as a space station and a spacecraft, and in the sea environment such as a submarine station and a submarine, energy required for space activities and underwater activities is obtained. It can be used not only as a supply source, but also as a supply source of respiratory gas necessary for life support.
  • oxygen obtained by decomposing nitrous oxide can be combined with an appropriate fuel such as hydrogen or methanol to be used for a fuel cell (primary cell), for example. Further, it can be combined with a battery (secondary battery) or the like.

Abstract

Provided are a heat transport apparatus and a heat transport method with which nitrous oxide can be used as an environmentally friendly energy source. A fuel gas including nitrous oxide (N2O) is supplied to a decomposition reactor (22) having disposed therein a catalyst (21) for decomposing nitrous oxide, and the catalyst (21) is used to decompose the nitrous oxide included in the fuel gas. Steam is generated by a decomposition-gas boiler by way of heat recovery from decomposition gas (N2, O2) generated by decomposing nitrous oxide, the steam generated by the decomposition-gas boiler is used to drive the rotation of a steam turbine to obtain motive power, and the motive power is subsequently used to drive a heat pump to transport heat. Alternatively, the decomposition gas (N2, O2) generated by decomposing nitrous oxide is used to drive the rotation of a decomposition-gas turbine to obtain motive power, and the motive power is subsequently used to drive the heat pump to transport heat.

Description

熱輸送装置及び熱輸送方法Heat transport device and heat transport method
 本発明は、亜酸化窒素(NO、一酸化二窒素とも言う。)の分解により発生するエネルギーを利用した熱輸送装置及び熱輸送方法に関する。 The present invention relates to a heat transport apparatus and a heat transport method using energy generated by decomposition of nitrous oxide (also referred to as N 2 O, dinitrogen monoxide).
 近年、環境破壊や資源の枯渇などの地球環境に対する意識の高まりによって、石油や石炭、天然ガスなどの化石燃料に依存した社会から、自然エネルギーや再生可能な代替エネルギーを利用した社会への転換が求められている。 In recent years, with the growing awareness of the global environment, such as environmental destruction and resource depletion, there has been a shift from a society that relies on fossil fuels such as oil, coal, and natural gas to one that uses natural energy and renewable alternative energy. It has been demanded.
 一方、これまで環境問題やエネルギー安全保障の面から有利とされてきた原子力エネルギーの利用についても、放射性廃棄物の処理問題や原発事故の発生などによって、その安全面に対する見直しが迫られている。 On the other hand, the use of nuclear energy, which has been advantageous from the viewpoints of environmental problems and energy security, has been urged to review its safety aspects due to radioactive waste disposal problems and the occurrence of nuclear accidents.
 したがって、深刻化するエネルギー問題や環境問題に対して、従来の化石燃料や原子力エネルギーに代わる地球環境に優しい新エネルギーの出現が望まれている。 Therefore, the emergence of new energy friendly to the global environment in place of conventional fossil fuels and nuclear energy is desired in response to serious energy problems and environmental problems.
特開平5-4027号公報Japanese Patent Laid-Open No. 5-4027 特開2005-230795号公報Japanese Patent Laying-Open No. 2005-230795 特開2006-181570号公報JP 2006-181570 A 特許第4232820号公報Japanese Patent No. 4232820
 上述した地球環境に優しいエネルギーへの関心が高まる中で、加熱(暖房、給湯、温水、乾燥等を含む。)や冷却(冷房、冷蔵、冷凍、冷水、製氷等を含む。)、除湿、加湿などの様々な熱利用を行う冷凍空調分野においても、従来の化石燃料等に代わるエネルギーの利用が求められている。 Amid growing interest in the above-mentioned environmentally friendly energy, heating (including heating, hot water supply, hot water, drying, etc.) and cooling (including cooling, refrigeration, freezing, cold water, ice making, etc.), dehumidification, and humidification Even in the field of refrigeration and air conditioning that uses various heat sources such as these, the use of energy in place of conventional fossil fuels is required.
 かかる状況において、本発明者らは、亜酸化窒素の分解により発生するエネルギーを利用することによって、地球環境に優しいエネルギーとしての亜酸化窒素の利用を提案する。 In such a situation, the present inventors propose use of nitrous oxide as energy friendly to the global environment by using energy generated by decomposition of nitrous oxide.
 亜酸化窒素は、化学的に安定で取り扱いも容易であり、食品添加物として認可(厚生労働省令第三十四号、平成17年3月22日)されている一方、医療用麻酔やロケットの助燃剤などにも利用されている。 Nitrous oxide is chemically stable and easy to handle, and is approved as a food additive (Ministry of Health, Labor and Welfare No. 34, March 22, 2005). It is also used as a combustion aid.
 その一方で、亜酸化窒素は、二酸化炭素(CO)の約310倍の温暖化効果を持つ温室効果ガスとして、地球温暖化の原因の一つとされている。このため、近年では、亜酸化窒素の大気中への放出を防ぐため、例えば工場や焼却設備、自動車などから排出される排ガス中の亜酸化窒素を触媒を用いて分解除去する技術が多数開発されている(例えば、特許文献1~3を参照。)。 On the other hand, nitrous oxide is considered to be one of the causes of global warming as a greenhouse gas having a warming effect about 310 times that of carbon dioxide (CO 2 ). For this reason, in recent years, in order to prevent the release of nitrous oxide into the atmosphere, many technologies have been developed to decompose and remove nitrous oxide in exhaust gas discharged from, for example, factories, incineration facilities, and automobiles using catalysts. (For example, see Patent Documents 1 to 3.)
 また、上記特許文献1,2には、アジピン酸の製造工程で亜酸化窒素の分解時に発生した熱を亜酸化窒素の予熱に利用する技術が開示されている。一方、上記特許文献3には、余剰麻酔ガスに含まれる亜酸化窒素を分解処理する装置において、この分解装置に導入されるガスと分解装置から排出されるガスとの間で熱交換を行うことによって、加熱エネルギーと冷却エネルギーを減少させてエネルギー効率を高める技術が開示されている。 In addition, Patent Documents 1 and 2 disclose a technique in which heat generated during decomposition of nitrous oxide in the production process of adipic acid is used for preheating nitrous oxide. On the other hand, in Patent Document 3 described above, in an apparatus for decomposing nitrous oxide contained in excess anesthetic gas, heat exchange is performed between a gas introduced into the decomposition apparatus and a gas discharged from the decomposition apparatus. Discloses a technique for increasing energy efficiency by reducing heating energy and cooling energy.
 しかしながら、これらの技術は、何れも大気中に放出される亜酸化窒素の分解除去を目的としたものである。また、亜酸化窒素の分解時に発生する熱の利用については、分解前の亜酸化窒素を加熱(予熱)することが開示されているものの、本発明者らが提案する代わる代替エネルギーとしての亜酸化窒素の利用については開示も示唆も全くなされていない。 However, these techniques are all aimed at decomposing and removing nitrous oxide released into the atmosphere. In addition, regarding the use of heat generated during decomposition of nitrous oxide, although heating (preheating) of nitrous oxide before decomposition is disclosed, suboxidation as an alternative energy alternative proposed by the present inventors is disclosed. There is no disclosure or suggestion about the use of nitrogen.
 一方、本発明者らは、亜酸化窒素を触媒分解することで得られる分解ガスを利用して、推力を発生させるスラスタ装置を既に開発している(特許文献4を参照。)。この特許文献4に記載されているように、亜酸化窒素は、亜酸化窒素分解用触媒を用いて分解したときに、その分解熱によって追加の亜酸化窒素を自己分解(熱分解)させることが可能である。 On the other hand, the present inventors have already developed a thruster device that generates thrust by using a cracked gas obtained by catalytically decomposing nitrous oxide (see Patent Document 4). As described in Patent Document 4, when nitrous oxide is decomposed using a catalyst for decomposing nitrous oxide, additional nitrous oxide may be self-decomposed (thermal decomposition) by the heat of decomposition. Is possible.
 本発明者らは、このような知見に基づいて、亜酸化窒素の分解により発生するエネルギーを利用することで、上述した地球環境に優しいエネルギーとしての亜酸化窒素の利用が可能であることを見出し、鋭意研究を重ねた結果、本発明を完成するに至った。 Based on such knowledge, the present inventors have found that the use of nitrous oxide as the above-mentioned environmentally friendly energy is possible by utilizing the energy generated by the decomposition of nitrous oxide. As a result of intensive studies, the present invention has been completed.
 すなわち、本発明の目的は、地球環境に優しいエネルギーとしての亜酸化窒素の利用を可能とすると共に、この亜酸化窒素の分解により発生するエネルギーを利用した熱輸送を可能とした熱輸送装置及び熱輸送方法を提供することにある。 That is, an object of the present invention is to enable the use of nitrous oxide as energy friendly to the global environment, and a heat transport device and heat that enable heat transport using energy generated by decomposition of the nitrous oxide. It is to provide a transportation method.
 本発明は、以下の手段を提供する。
(1) 亜酸化窒素の分解により発生した分解ガスからの熱回収により蒸気を発生させる分解ガスボイラーと、
 前記分解ガスボイラーで発生した蒸気により回転駆動される蒸気タービンと、
 前記蒸気タービンの駆動により熱輸送を行うヒートポンプとを備える熱輸送装置。
(2) 亜酸化窒素の分解により発生した分解ガスにより回転駆動する分解ガスタービンと、
 前記分解ガスタービンの駆動により熱輸送を行うヒートポンプとを備える熱輸送装置。
(3) 前記分解ガスボイラー又は分解ガスタービンは、前記亜酸化窒素を分解する亜酸化窒素分解用触媒が配置された分解反応部と、前記分解反応部に亜酸化窒素を含む燃料ガスを供給する燃料ガス供給手段とを備え、
 前記分解反応部において、前記燃料ガス中に含まれる亜酸化窒素を前記亜酸化窒素分解用触媒を用いて分解した後、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される燃料ガス中の亜酸化窒素の分解が継続されることを特徴とする前項(1)又は(2)に記載の熱輸送装置。
(4) 前記分解ガスボイラー又は分解ガスタービンは、前記分解反応部に供給される燃料ガスの流量を調整する流量調整手段を備え、
 前記分解反応部に供給される燃料ガスの流量を調整することによって、前記分解ガスの温度制御を行うことを特徴とする前項(3)に記載の熱輸送装置。
(5) 前記分解ガスボイラー又は分解ガスタービンは、前記燃料ガス中に含まれる亜酸化窒素の濃度を調整する濃度調整手段を備え、
 前記燃料ガス中に含まれる亜酸化窒素の濃度を調整することによって、前記分解ガスの温度制御を行うことを特徴とする前項(3)又は(4)に記載の熱輸送装置。
(6) 前記濃度調整手段は、前記燃料ガス中に窒素を添加することによって、前記燃料ガス中に含まれる亜酸化窒素の濃度調整を行うことを特徴とする前項(5)に記載の熱輸送装置。
(7) 前記分解ガスボイラー又は分解ガスタービンは、前記亜酸化窒素分解用触媒又は分解ガスの温度を測定する温度測定手段を備え、
 前記温度測定手段による測定結果に基づいて、前記流量調整手段による流量調整、又は、前記濃度調整手段による濃度調整を行うことを特徴とする前項(4)~(6)の何れか一項に記載の熱輸送装置。
(8) 前記分解ガスボイラー又は分解ガスタービンは、前記亜酸化窒素分解用触媒を予熱する予熱手段を備え、
 前記亜酸化窒素の分解を開始する前に、前記亜酸化窒素分解用触媒の予熱を行うことを特徴とする前項(3)~(7)の何れか一項に記載の熱輸送装置。
(9) 前記分解ガスボイラー又は分解ガスタービンは、前記分解反応部に窒素ガスを供給する窒素ガス供給手段を備え、
 前記分解反応部への燃料ガスの供給を停止した後に、前記分解反応部に窒素ガスを供給することを特徴とする前項(3)~(8)の何れか一項に記載の熱輸送装置。
(10) 前記ヒートポンプは、冷媒が循環する冷媒循環系と、前記冷媒循環系中の冷媒を圧縮して送り出す圧縮部と、前記圧縮部で圧縮された冷媒を凝縮させながら、この冷媒から熱を放出させる凝縮部と、前記凝縮部で放熱された冷媒を膨張させる膨張部と、前記膨張部で膨張された冷媒を蒸発させながら、この冷媒に熱を吸収させる蒸発部とを備え、前記圧縮部が前記蒸気タービン又は分解ガスタービンにより駆動されることを特徴とする前項(1)~(9)の何れか一項に記載の熱輸送装置。
(11) 前記ヒートポンプは、前記冷媒が流れる方向を切り換える切換手段を備えることを特徴とする前項(10)に記載の熱輸送装置。
The present invention provides the following means.
(1) a cracked gas boiler that generates steam by recovering heat from cracked gas generated by the decomposition of nitrous oxide;
A steam turbine that is rotationally driven by steam generated in the cracked gas boiler;
A heat transport device comprising: a heat pump that transports heat by driving the steam turbine.
(2) a cracked gas turbine that is rotationally driven by cracked gas generated by the decomposition of nitrous oxide;
A heat transport device comprising: a heat pump that transports heat by driving the cracked gas turbine.
(3) The cracking gas boiler or cracking gas turbine supplies a cracking reaction section in which a nitrous oxide decomposition catalyst for cracking the nitrous oxide is disposed, and a fuel gas containing nitrous oxide to the cracking reaction section. Fuel gas supply means,
In the decomposition reaction section, after decomposing nitrous oxide contained in the fuel gas using the nitrous oxide decomposing catalyst, the fuel supplied thereafter by the decomposition heat generated by the decomposition of the nitrous oxide The heat transport device according to (1) or (2) above, wherein the decomposition of nitrous oxide in the gas is continued.
(4) The cracked gas boiler or cracked gas turbine includes a flow rate adjusting means for adjusting a flow rate of the fuel gas supplied to the cracking reaction unit,
The heat transport device according to (3), wherein the temperature of the cracked gas is controlled by adjusting the flow rate of the fuel gas supplied to the cracking reaction section.
(5) The cracked gas boiler or cracked gas turbine includes a concentration adjusting unit that adjusts the concentration of nitrous oxide contained in the fuel gas,
The heat transport device according to (3) or (4) above, wherein the temperature of the cracked gas is controlled by adjusting the concentration of nitrous oxide contained in the fuel gas.
(6) The heat transport according to (5) above, wherein the concentration adjusting means adjusts the concentration of nitrous oxide contained in the fuel gas by adding nitrogen to the fuel gas. apparatus.
(7) The cracked gas boiler or cracked gas turbine includes temperature measuring means for measuring the temperature of the nitrous oxide cracking catalyst or cracked gas,
The flow rate adjustment by the flow rate adjustment unit or the concentration adjustment by the concentration adjustment unit is performed based on the measurement result by the temperature measurement unit, or any one of the items (4) to (6), Heat transport equipment.
(8) The cracked gas boiler or cracked gas turbine includes a preheating means for preheating the nitrous oxide decomposition catalyst,
The heat transport device according to any one of (3) to (7), wherein the nitrous oxide decomposition catalyst is preheated before the decomposition of the nitrous oxide is started.
(9) The cracked gas boiler or cracked gas turbine includes a nitrogen gas supply means for supplying nitrogen gas to the cracking reaction section,
9. The heat transport device according to any one of the above items (3) to (8), wherein nitrogen gas is supplied to the decomposition reaction unit after supply of fuel gas to the decomposition reaction unit is stopped.
(10) The heat pump heats the refrigerant while condensing a refrigerant circulating system in which the refrigerant circulates, a compression unit that compresses and sends out the refrigerant in the refrigerant circulation system, and the refrigerant compressed in the compression unit. A condensing part to be discharged; an inflating part for expanding the refrigerant radiated by the condensing part; and an evaporating part for allowing the refrigerant to absorb heat while evaporating the refrigerant expanded in the inflating part. The heat transport device according to any one of the preceding items (1) to (9), characterized in that is driven by the steam turbine or cracked gas turbine.
(11) The heat transport device according to (10), wherein the heat pump includes switching means for switching a direction in which the refrigerant flows.
(12) 亜酸化窒素の分解により発生した分解ガスからの熱回収により分解ガスボイラーで蒸気を発生させるステップと、
 前記分解ガスボイラーで発生した蒸気により蒸気タービンを回転駆動するステップと、
 前記蒸気タービンの駆動によりヒートポンプで熱輸送を行うステップとを有する熱輸送方法。
(13) 亜酸化窒素の分解により発生した分解ガスにより分解ガスタービンを回転駆動するステップと、
 前記分解ガスタービンの駆動によりヒートポンプで熱輸送を行うステップとを有する熱輸送方法。
(14) 前記亜酸化窒素を分解する亜酸化窒素分解用触媒が配置された分解反応部に、前記亜酸化窒素を含む燃料ガスを供給し、この分解反応部において、前記燃料ガス中に含まれる亜酸化窒素を前記亜酸化窒素分解用触媒を用いて分解した後、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される燃料ガス中の亜酸化窒素の分解を継続することを特徴とする前項(12)又は(13)に記載の熱輸送方法。
(15) 前記分解ガスの温度を制御することによって、前記亜酸化窒素の分解を継続的に行わせることを特徴とする前項(14)に記載の熱輸送方法。
(16) 前記燃料ガスの流量を調整することによって、前記分解ガスの温度制御を行うことを特徴とする前項(15)に記載の熱輸送方法。
(17) 前記燃料ガス中に含まれる亜酸化窒素の濃度を調整することによって、前記分解ガスの温度制御を行うことを特徴とする前項(15)又は(16)に記載の熱輸送方法。
(18) 前記燃料ガス中に窒素を添加することによって、前記燃料ガス中に含まれる亜酸化窒素の濃度調整を行うことを特徴とする前項(17)に記載の熱輸送方法。
(19) 前記亜酸化窒素分解用触媒又は分解ガスの温度を測定し、この測定結果に基づいて前記分解ガスの温度制御を行うことを特徴とする前項(15)~(18)に記載の熱輸送方法。
(20) 前記亜酸化窒素の分解を開始する前に、前記亜酸化窒素分解用触媒を予熱することを特徴とする前項(14)~(19)の何れか一項に記載の熱輸送方法。
(21) 前記分解反応部への燃料ガスの供給を停止した後に、前記分解反応部に窒素ガスを供給することを特徴とする前項(14)~(20)の何れか一項に記載の熱輸送方法。
(12) generating steam with a cracked gas boiler by heat recovery from cracked gas generated by the decomposition of nitrous oxide;
Rotating the steam turbine with steam generated by the cracked gas boiler;
A heat transport method including a step of performing heat transport with a heat pump by driving the steam turbine.
(13) rotationally driving a cracked gas turbine with cracked gas generated by cracking of nitrous oxide;
A heat transport method comprising: performing heat transport with a heat pump by driving the cracked gas turbine.
(14) A fuel gas containing the nitrous oxide is supplied to a cracking reaction section in which a nitrous oxide decomposition catalyst for decomposing the nitrous oxide is disposed, and is contained in the fuel gas in the cracking reaction section. After decomposing nitrous oxide using the nitrous oxide decomposition catalyst, the decomposition heat generated by the decomposition of nitrous oxide is used to continue the decomposition of nitrous oxide in the fuel gas supplied thereafter. The heat transport method according to item (12) or (13), which is characterized in that
(15) The heat transport method according to (14), wherein the decomposition of the nitrous oxide is continuously performed by controlling the temperature of the cracked gas.
(16) The heat transport method according to (15), wherein the temperature of the cracked gas is controlled by adjusting the flow rate of the fuel gas.
(17) The heat transport method as described in (15) or (16) above, wherein the temperature of the cracked gas is controlled by adjusting the concentration of nitrous oxide contained in the fuel gas.
(18) The heat transport method according to (17), wherein the concentration of nitrous oxide contained in the fuel gas is adjusted by adding nitrogen to the fuel gas.
(19) The heat according to any one of (15) to (18) above, wherein the temperature of the nitrous oxide decomposition catalyst or cracked gas is measured, and the temperature of the cracked gas is controlled based on the measurement result. Transport method.
(20) The heat transport method according to any one of (14) to (19) above, wherein the nitrous oxide decomposition catalyst is preheated before the decomposition of the nitrous oxide is started.
(21) The heat described in any one of (14) to (20) above, wherein nitrogen gas is supplied to the decomposition reaction section after supply of fuel gas to the decomposition reaction section is stopped. Transport method.
 以上のように、本発明によれば、地球環境に優しいエネルギーとしての亜酸化窒素の利用を可能とすると共に、この亜酸化窒素の分解により発生するエネルギーを利用した熱輸送が可能である。 As described above, according to the present invention, it is possible to use nitrous oxide as energy friendly to the global environment, and it is possible to transport heat using the energy generated by the decomposition of nitrous oxide.
本発明を適用した分解ガスボイラーを備える熱輸送装置の構成を示す概略系統図である。It is a schematic system diagram which shows the structure of the heat transport apparatus provided with the cracked gas boiler to which this invention is applied. 本発明を適用した分解ガスタービンを備える熱輸送装置の構成を示す概略系統図である。It is a schematic system diagram which shows the structure of the heat transport apparatus provided with the cracked gas turbine to which this invention is applied. 図1に示す分解ガスボイラー及び図2に示す分解ガスタービンが備える本発明の特徴部分を示す概略構成図である。It is a schematic block diagram which shows the characterizing part of this invention with which the cracked gas boiler shown in FIG. 1 and the cracked gas turbine shown in FIG. 2 are provided. 本発明の特徴部分における具体的な動作(制御方法)の一例を示すフローチャートである。It is a flowchart which shows an example of the specific operation | movement (control method) in the characteristic part of this invention. 図1に示す熱輸送装置を用いた熱輸送方法の工程図である。It is process drawing of the heat transport method using the heat transport apparatus shown in FIG. 図2に示す熱輸送装置を用いた熱輸送方法の工程図である。It is process drawing of the heat transport method using the heat transport apparatus shown in FIG. 本発明を適用したエアコンが備えるヒートポンプであり、(a)は冷房時の状態を示す概略系統図であり、(b)は暖房時の状態を示す概略系統図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a heat pump with which the air-conditioner to which this invention is applied, (a) is a schematic system diagram which shows the state at the time of cooling, (b) is a schematic system diagram which shows the state at the time of heating. 実施例において、亜酸化窒素ガスの線速度と反応容器内の発熱温度及びNOの分解率との関係を示すグラフである。In embodiments, a graph showing the relationship between heating temperature and the N 2 O decomposition rate in the linear velocity and reactor nitrous oxide gas.
 以下、本発明を適用した熱輸送装置及び熱輸送方法について、図面を参照して詳細に説明する。 Hereinafter, a heat transport apparatus and a heat transport method to which the present invention is applied will be described in detail with reference to the drawings.
 本発明を適用した熱輸送装置及び熱輸送方法は、亜酸化窒素(NO、一酸化二窒素とも言う。)の分解により発生するエネルギーを利用することによって、地球環境に優しいエネルギーとしての亜酸化窒素の利用を可能としたものである。 A heat transport apparatus and a heat transport method to which the present invention is applied use substituting energy generated by the decomposition of nitrous oxide (N 2 O, also referred to as dinitrogen monoxide) as sub-environment-friendly energy. Nitrogen oxide can be used.
 亜酸化窒素は、常温、大気圧下で安定したガスである。一方、その温度が約500℃以上になると、発熱しながら自己分解(熱分解)する。このように亜酸化窒素の分解は、発熱を伴ったもの(発熱反応)である。そして、この分解に伴う温度上昇(分解熱)によって高温化した亜酸化窒素の分解ガスは約1600℃にもなることから、亜酸化窒素は高いエネルギーを内蔵した物質と言える。 Nitrous oxide is a stable gas at normal temperature and atmospheric pressure. On the other hand, when the temperature is about 500 ° C. or higher, self-decomposition (thermal decomposition) occurs while generating heat. Thus, decomposition of nitrous oxide is accompanied by exotherm (exothermic reaction). And since the decomposition gas of the nitrous oxide heated up by the temperature rise (heat of decomposition) accompanying this decomposition becomes about 1600 degreeC, it can be said that nitrous oxide is a substance with built-in high energy.
 また、亜酸化窒素は、触媒を用いて分解したときに、その分解開始温度を例えば350~400℃程度に引き下げることができる。そして、亜酸化窒素の分解後は、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される亜酸化窒素の分解を継続的に行わせることが可能である。また、触媒を用いて分解された亜酸化窒素は、発熱しながら窒素(N)と酸素(O)との混合ガス(分解ガス)となる。 Further, when nitrous oxide is decomposed using a catalyst, the decomposition start temperature can be lowered to, for example, about 350 to 400 ° C. And after decomposition | disassembly of nitrous oxide, it is possible to carry out decomposition | disassembly of the nitrous oxide supplied after that with the decomposition | disassembly heat generated by decomposition | disassembly of this nitrous oxide. Further, the nitrous oxide decomposed using the catalyst becomes a mixed gas (decomposed gas) of nitrogen (N 2 ) and oxygen (O 2 ) while generating heat.
 本発明者らは、このような知見に基づいて、亜酸化窒素の分解により発生するエネルギーを利用することで、上述した地球環境に優しいエネルギーとしての亜酸化窒素の利用が可能であることを見出し、更に鋭意研究を重ねた結果、本発明を完成するに至ったものである。 Based on such knowledge, the present inventors have found that the use of nitrous oxide as the above-mentioned environmentally friendly energy is possible by utilizing the energy generated by the decomposition of nitrous oxide. As a result of further earnest research, the present invention has been completed.
 以下、本発明の実施形態として図1及び図2に示す熱輸送装置及びこれを用いた熱輸送方法について説明する。
 図1は、本発明を適用した分解ガスボイラー1を備える熱輸送装置の構成を示す概略系統図である。この熱輸送装置は、亜酸化窒素(NO)の分解により発生する分解熱を利用して熱輸送を行うものである。
Hereinafter, a heat transport apparatus shown in FIGS. 1 and 2 and a heat transport method using the heat transport apparatus will be described as embodiments of the present invention.
FIG. 1 is a schematic system diagram showing a configuration of a heat transport device including a cracked gas boiler 1 to which the present invention is applied. This heat transport device performs heat transport using the heat of decomposition generated by the decomposition of nitrous oxide (N 2 O).
 具体的に、この図1に示す熱輸送装置は、亜酸化窒素の分解により発生した分解ガス(N,O)からの熱回収により蒸気を発生させる分解ガスボイラー1と、分解ガスボイラー1で発生した蒸気により回転駆動される蒸気タービン2と、蒸気タービン2の駆動により熱輸送を行う圧縮式のヒートポンプ80と、蒸気タービン2からの蒸気を冷却して復水する復水器4と、復水器4からの復水を分解ガスボイラー1に給水する給水ポンプ5とを概略備えている。 Specifically, the heat transport device shown in FIG. 1 includes a cracked gas boiler 1 that generates steam by heat recovery from cracked gas (N 2 , O 2 ) generated by the decomposition of nitrous oxide, and a cracked gas boiler 1. The steam turbine 2 that is rotationally driven by the steam generated in step 1, the compression heat pump 80 that transports heat by driving the steam turbine 2, the condenser 4 that cools and condenses the steam from the steam turbine 2, A water supply pump 5 for supplying the condensate from the condenser 4 to the cracked gas boiler 1 is schematically provided.
 また、本発明を適用した分解ガスボイラー1は、亜酸化窒素を分解する分解反応部6と、亜酸化窒素を分解することで得られる分解ガスとの熱交換により蒸気を発生させる蒸気発生部7とを備えている。 Further, the cracked gas boiler 1 to which the present invention is applied includes a steam generating section 7 that generates steam by heat exchange between a cracking reaction section 6 that decomposes nitrous oxide and a cracked gas obtained by cracking nitrous oxide. And.
 一方、図2は、本発明を適用した分解ガスタービン11を備える熱輸送装置の構成を示す概略系統図である。この熱輸送装置は、亜酸化窒素(NO)の分解により発生する分解ガス(N,O)を利用して熱輸送を行うものである。 On the other hand, FIG. 2 is a schematic system diagram showing a configuration of a heat transport device including the cracked gas turbine 11 to which the present invention is applied. This heat transport device performs heat transport using a decomposition gas (N 2 , O 2 ) generated by decomposition of nitrous oxide (N 2 O).
 具体的に、この図2に示す熱輸送装置は、亜酸化窒素の分解により発生した分解ガスにより回転駆動される分解ガスタービン11と、分解ガスタービン11の駆動により熱輸送を行う圧縮式のヒートポンプ80とを概略備えている。 Specifically, the heat transport apparatus shown in FIG. 2 includes a cracked gas turbine 11 that is rotationally driven by cracked gas generated by the decomposition of nitrous oxide, and a compression heat pump that transports heat by driving the cracked gas turbine 11. 80.
 また、本発明を適用した分解ガスタービン11は、亜酸化窒素を分解する分解反応部13と、亜酸化窒素を分解することで得られる分解ガスをノズル(静翼)からタービン翼(動翼)に吹き付けて、それによりタービン軸を回転させて動力を得るタービン部14とを備えている。 Further, the cracked gas turbine 11 to which the present invention is applied includes a cracking reaction section 13 for cracking nitrous oxide and a cracked gas obtained by cracking nitrous oxide from a nozzle (static blade) to a turbine blade (moving blade). And a turbine section 14 for obtaining power by rotating the turbine shaft.
 これら図1及び図2に示す分解ガスボイラー1及び分解ガスタービン11は、本発明の特徴部分として、上述した亜酸化窒素を分解する分解反応部6,13を備えている。すなわち、これらの分解反応部6,13は、従来の化石燃料等を燃焼させたときの燃焼熱を利用して蒸気を発生させる燃焼ガスボイラーや、従来の化石燃料等を燃焼させたときの燃焼ガスを利用して回転駆動される燃焼ガスタービンが備える燃焼器(燃焼反応部)と置き換わるものである。 The cracked gas boiler 1 and the cracked gas turbine 11 shown in FIGS. 1 and 2 include the cracking reaction sections 6 and 13 for cracking nitrous oxide described above as a characteristic part of the present invention. That is, these decomposition reaction units 6 and 13 are combustion gas boilers that generate steam using combustion heat generated when conventional fossil fuels or the like are burned, and combustion when conventional fossil fuels or the like are burned. It replaces a combustor (combustion reaction unit) provided in a combustion gas turbine that is rotationally driven using gas.
 具体的に、本発明の特徴部分は、例えば図3に示すように、亜酸化窒素を分解する亜酸化窒素分解用触媒(以下、単に触媒という。)21が配置された分解反応器(上記分解反応部6,13に対応する。)22と、分解反応器22に亜酸化窒素(NO)を含む燃料ガスを供給する燃料ガス供給ライン(燃料ガス供給手段)23と、分解反応器22に窒素ガス(N)を供給する窒素ガス供給ライン(窒素ガス供給手段)24と、分解反応器22に供給される燃料ガスの流量を調整する流量調整部(流量調整手段)25と、触媒21の温度を測定する温度測定器(温度測定手段)26と、各部の制御を行う制御部(制御手段)27とを備えている。 Specifically, for example, as shown in FIG. 3, the characteristic part of the present invention is a decomposition reactor (the above-mentioned decomposition) in which a nitrous oxide decomposition catalyst (hereinafter simply referred to as a catalyst) 21 for decomposing nitrous oxide is disposed. Corresponding to the reaction units 6 and 13) 22, a fuel gas supply line (fuel gas supply means) 23 for supplying a fuel gas containing nitrous oxide (N 2 O) to the cracking reactor 22, and a cracking reactor 22 A nitrogen gas supply line (nitrogen gas supply means) 24 for supplying nitrogen gas (N 2 ) to the reactor, a flow rate adjusting unit (flow rate adjusting means) 25 for adjusting the flow rate of the fuel gas supplied to the decomposition reactor 22, and a catalyst A temperature measuring device (temperature measuring means) 26 that measures the temperature of 21 and a control unit (control means) 27 that controls each part are provided.
 分解反応器22は、その内側に触媒21を収納した本体部(分解反応室)22aを備え、この本体部22aの一端側に燃料ガスが導入されるガス導入口22bと、この本体部22aの他端側に分解ガスが排出されるガス排出口22cとが設けられた構造を有している。 The decomposition reactor 22 includes a main body (decomposition reaction chamber) 22a containing the catalyst 21 inside, a gas inlet 22b through which fuel gas is introduced into one end side of the main body 22a, and the main body 22a. It has a structure in which a gas discharge port 22c through which cracked gas is discharged is provided on the other end side.
 なお、分解反応器22の材質については、耐熱性及び耐酸化性に優れたものを使用することが好ましく、特に、分解ガスによって高温高圧に晒されるガス排出口22c側の部材等については、高温高圧下での熱疲労や酸化等に十分耐え得るものを使用することが好ましい。そのような材料としては、例えばステンレス鋼やNi基合金、Co基合金などを挙げることができる。また、セラミックスやシリコンカーバイト(SiC)などを遮熱材として用いることができる。さらに、これらの複合材料を用いてもよい。また、分解反応器22は、水冷や空冷などによって強制的に冷却する機構を備えたものであってもよい。 In addition, it is preferable to use a material having excellent heat resistance and oxidation resistance as the material of the decomposition reactor 22, and in particular, a member on the side of the gas discharge port 22 c exposed to high temperature and high pressure by the decomposition gas has a high temperature. It is preferable to use a material that can sufficiently withstand thermal fatigue or oxidation under high pressure. Examples of such materials include stainless steel, Ni-base alloy, and Co-base alloy. Moreover, ceramics, silicon carbide (SiC), or the like can be used as a heat shielding material. Further, these composite materials may be used. Moreover, the decomposition reactor 22 may be provided with a mechanism for forcibly cooling by water cooling or air cooling.
 触媒21には、広い温度域(特に低温域)で亜酸化窒素を効率良く分解することができ、なお且つ、高温下での熱疲労や酸化等に十分耐え得るものを使用することが好ましい。このような亜酸化窒素の分解効率が高く、耐熱性及び耐酸化性に優れた触媒として、例えば後述する「特開2002-153734号公報」や「特開2002-253967号公報」に開示されたものなどを使用することができる。 As the catalyst 21, it is preferable to use a catalyst that can efficiently decompose nitrous oxide in a wide temperature range (particularly in a low temperature range) and can sufficiently withstand thermal fatigue, oxidation, and the like at high temperatures. Examples of such a catalyst having high decomposition efficiency of nitrous oxide and excellent heat resistance and oxidation resistance are disclosed in, for example, “JP 2002-153734 A” and “JP 2002-253967 A” described later. Things can be used.
 具体的には、以下の〔1〕~〔6〕に示す何れかの触媒を用いることができる。
〔1〕 アルミニウム(Al)、マグネシウム(Mg)及びロジウム(Rh)が担体に担持されている触媒。 
〔2〕 マグネシウム(Mg)及びロジウム(Rh)がアルミナ(Al)担体に担持されている触媒。 
〔3〕 アルミニウム(Al)の少なくとも一部とマグネシウム(Mg)により、スピネル型結晶性複合酸化物が形成されている担体に、ロジウム(Rh)が担持されている触媒。 
〔4〕 亜鉛(Zn)、鉄(Fe)、マンガン(Mn)及びニッケル(Ni)からなる群から選ばれる少なくとも1種の金属、アルミニウム(Al)及びロジウム(Rh)が担体に担持されている触媒。 
〔5〕 亜鉛(Zn)、鉄(Fe)、マンガン(Mn)及びニッケル(Ni)からなる群から選ばれる少なくとも1種の金属及びロジウム(Rh)がアルミナ(Al)担体に担持されている触媒。 
〔6〕 アルミニウム(Al)の少なくとも一部と、亜鉛(Zn)、鉄(Fe)、マンガン(Mn)及びニッケル(Ni)からなる群から選ばれる少なくとも1種の金属により、スピネル型結晶性複合酸化物が形成されている担体にロジウム(Rh)が担持されている触媒。
Specifically, any of the catalysts shown in the following [1] to [6] can be used.
[1] A catalyst in which aluminum (Al), magnesium (Mg), and rhodium (Rh) are supported on a carrier.
[2] A catalyst in which magnesium (Mg) and rhodium (Rh) are supported on an alumina (Al 2 O 3 ) support.
[3] A catalyst in which rhodium (Rh) is supported on a carrier in which a spinel crystalline composite oxide is formed of at least a part of aluminum (Al) and magnesium (Mg).
[4] At least one metal selected from the group consisting of zinc (Zn), iron (Fe), manganese (Mn) and nickel (Ni), aluminum (Al) and rhodium (Rh) is supported on the carrier. catalyst.
[5] At least one metal selected from the group consisting of zinc (Zn), iron (Fe), manganese (Mn) and nickel (Ni) and rhodium (Rh) are supported on an alumina (Al 2 O 3 ) support. Catalyst.
[6] A spinel crystalline composite comprising at least a part of aluminum (Al) and at least one metal selected from the group consisting of zinc (Zn), iron (Fe), manganese (Mn), and nickel (Ni) A catalyst in which rhodium (Rh) is supported on a support on which an oxide is formed.
 また、本発明では、シリカ(SiO)、シリカアルミナ(SiO-Al)から選ばれる担体に、ロジウム(Rh)、ルテニウム(Ru)、パラジウム(Pd)からなる群から選ばれる少なくとも1つの貴金属を担持してなる触媒などを好適に用いることができる。このような触媒21を用いることによって、亜酸化窒素を100%に近い分解効率で窒素と酸素に分解することが可能である。特に、シリカ(SiO)又はシリカアルミナ(SiO-Al)からなる担体にロジウム(Rh)を担持した触媒を用いた場合には、一酸化窒素(NO)や二酸化窒素(NO)などといったNOガスの発生がほとんど無く、亜酸化窒素をほぼ完全に窒素と酸素に分解することが可能である。 In the present invention, the support selected from silica (SiO 2 ) and silica alumina (SiO 2 —Al 2 O 3 ) is at least selected from the group consisting of rhodium (Rh), ruthenium (Ru), and palladium (Pd). A catalyst or the like carrying one noble metal can be suitably used. By using such a catalyst 21, it is possible to decompose nitrous oxide into nitrogen and oxygen with a decomposition efficiency close to 100%. In particular, when a catalyst having rhodium (Rh) supported on a support made of silica (SiO 2 ) or silica alumina (SiO 2 —Al 2 O 3 ) is used, nitrogen monoxide (NO) or nitrogen dioxide (NO 2). ) hardly occurs of the NO x gases, such as, it is possible to decompose almost completely nitrogen and oxygen nitrous oxide.
 さらに、触媒21には、アルミナをウォッシュコートしたコージェライト及びメタルハニカム又は多孔質セラミックスの担体に、窒素酸化物の分解に有効なロジウムを、質量分率で2~3%含浸させたものや、アルミナやコージェライト又は炭化珪素のセラミックス製ハニカム構造体に、アルミナからなる担体層を形成させ、この担体層に窒素酸化物の分解に有効なロジウムなどが担持されたものなどを例示することができるが、これらに必ずしも限定されるものではない。 Further, the catalyst 21 is a cordierite and metal honeycomb or porous ceramic carrier coated with alumina and impregnated with rhodium effective for decomposing nitrogen oxides by 2 to 3% by mass, Examples thereof include those in which a support layer made of alumina is formed on a honeycomb structure made of alumina, cordierite, or silicon carbide, and rhodium that is effective in decomposing nitrogen oxides is supported on the support layer. However, it is not necessarily limited to these.
 また、その他の触媒21としては、例えばアジピン酸の製造工程や硝酸の製造工程などで排出される排ガス中の亜酸化窒素を分解除去する際に使用される触媒なども用いることができる。このような触媒としては、例えば、MAl(Mは、Pd、Cu,Cu/Mg,Cu/Zn,Cu/Zn/Mgの何れかである。)で表され、Mを10~30質量%の割合で含むアルミナ担体に、貴金属を0.1~2質量%の割合で担時させたものを挙げることができる。 In addition, as the other catalyst 21, for example, a catalyst used for decomposing and removing nitrous oxide in exhaust gas discharged in a manufacturing process of adipic acid, a manufacturing process of nitric acid, or the like can be used. Such a catalyst is represented by, for example, MAl 2 O 3 (M is any one of Pd, Cu, Cu / Mg, Cu / Zn, Cu / Zn / Mg), and M is 10 to 30. Examples thereof include a support in which a precious metal is supported at a rate of 0.1 to 2% by mass on an alumina support containing at a rate of mass%.
 触媒21の形状については、特に限定されるものではなく、例えば、粉末状、顆粒状、ペレット状、ハニカム状、多孔質状、粉砕状、メッシュ状、板状、シート状のものなど、任意の形状の中から最適な形状及びサイズのものを適宜選択して使用すればよい。 The shape of the catalyst 21 is not particularly limited. For example, any shape such as powder, granule, pellet, honeycomb, porous, pulverized, mesh, plate, or sheet can be used. What is necessary is just to select and use the optimal shape and size suitably from shapes.
 また、触媒21の本体部22aへの充填方法や、触媒21に合わせた本体部22aの形状等についても、上記分解ガスボイラー1及び分解ガスタービン11が備える分解反応部6,13の設計に合わせて、任意に実施することができる。 The filling method of the main body 22a of the catalyst 21 and the shape of the main body 22a according to the catalyst 21 are also matched to the design of the cracking reaction sections 6 and 13 included in the cracking gas boiler 1 and the cracking gas turbine 11. And can be implemented arbitrarily.
 分解反応器22は、触媒21の経時的な劣化に合わせて、触媒21を(場合によっては本体部22aごと)交換可能な構成としてもよい。また、性能が低下した触媒21から貴金属成分を抽出精製して回収した後、この回収された貴金属を新しい担体に担時させたものを再生触媒として使用することも可能である。 The decomposition reactor 22 may be configured to be able to replace the catalyst 21 (in some cases, the main body 22a) in accordance with the deterioration of the catalyst 21 over time. In addition, it is possible to extract and purify a noble metal component from the catalyst 21 whose performance has been reduced and recover it, and then use the recovered noble metal on a new carrier as a regenerated catalyst.
 分解反応器22には、上記触媒21を加熱するヒータ(予熱手段)28が設けられている。このヒータ28は、亜酸化窒素の分解を開始する前、すなわち分解反応器22に燃料ガスを供給する前に、亜酸化窒素が分解可能な温度(分解開始温度)まで触媒21を予め加熱(予熱)するためのものである。 The decomposition reactor 22 is provided with a heater (preheating means) 28 for heating the catalyst 21. The heater 28 preheats (preheats) the catalyst 21 to a temperature at which nitrous oxide can be decomposed (decomposition start temperature) before starting decomposition of nitrous oxide, that is, before supplying fuel gas to the decomposition reactor 22. ).
 例えば図3に示すヒータ28は、本体部22aの内側に触媒21の周囲に接触した状態で配置されている。また、ヒータ28は、電力供給ライン29を介して電源(図示せず。)と接続されており、この電源からの電力供給によって発熱することが可能となっている。また、ヒータ28としては、抵抗加熱方式や誘導加熱方式のものなどを使用することができる。 For example, the heater 28 shown in FIG. 3 is disposed inside the main body portion 22a so as to be in contact with the periphery of the catalyst 21. The heater 28 is connected to a power source (not shown) via a power supply line 29, and can generate heat by supplying power from the power source. In addition, as the heater 28, a resistance heating method, an induction heating method, or the like can be used.
 なお、触媒21の加熱方法については、このような本体部22aの内側に配置されたヒータ28によって触媒21を加熱する方法に限らず、本体部22aの外側に配置されたヒータ28によって触媒21を加熱する方法を用いることも可能である。この場合、ヒータ28によって本体部22aを加熱し、この本体部22aからの輻射や熱伝導等によって触媒21を加熱することが可能である。 The heating method of the catalyst 21 is not limited to the method of heating the catalyst 21 with the heater 28 arranged inside the main body 22a, and the catalyst 21 is heated with the heater 28 arranged outside the main body 22a. It is also possible to use a method of heating. In this case, the main body 22a is heated by the heater 28, and the catalyst 21 can be heated by radiation or heat conduction from the main body 22a.
 また、触媒21の加熱方法としては、触媒21に電力を直接供給することによって当該触媒21を加熱する方法を用いることも可能である。それ以外にも、触媒21の加熱方法については、特に限定されるものではなく、触媒21を加熱する方法の中から適宜選択して用いることができる。 Further, as a method for heating the catalyst 21, it is also possible to use a method for heating the catalyst 21 by directly supplying electric power to the catalyst 21. In addition, the method for heating the catalyst 21 is not particularly limited, and can be appropriately selected from the methods for heating the catalyst 21.
 燃料ガス供給ライン23は、その一端側が流量調整部25を介して分解反応器22の入側(ガス導入口22b)に接続された配管(流路)であり、その他端側には、燃料ガス開閉弁30を介して燃料ガス供給源31が接続されている。 The fuel gas supply line 23 is a pipe (flow path) whose one end is connected to the inlet side (gas inlet 22 b) of the cracking reactor 22 via the flow rate adjusting unit 25, and the other end side is a fuel gas A fuel gas supply source 31 is connected via the on-off valve 30.
 燃料ガス開閉弁30は、燃料ガス供給ライン23を開閉し、燃料ガス供給源31からの燃料ガスの供給/遮断を行うためのもの(開閉手段)である。また、燃料ガス開閉弁30には、燃料ガス供給ライン23を開閉するだけでなく、その開度(圧力等を含む。)が調整可能なものなどを用いることができる。 The fuel gas on-off valve 30 is for opening / closing the fuel gas supply line 23 and for supplying / cutting off the fuel gas from the fuel gas supply source 31 (open / close means). In addition, the fuel gas on / off valve 30 can be used not only for opening and closing the fuel gas supply line 23 but also for adjusting the opening degree (including pressure and the like).
 さらに、燃料ガス開閉弁30には、その流量制御が可能な流量調整付きのコントロールバルブ(流量調整弁)を用いることもできる。そして、この燃料ガス開閉弁30は、制御部27と電気的に接続されており、この制御部27によって燃料ガス開閉弁30を駆動制御することが可能となっている。 Furthermore, the fuel gas on-off valve 30 can be a control valve with a flow rate control (flow rate control valve) that can control the flow rate. The fuel gas on / off valve 30 is electrically connected to the control unit 27, and the control of the fuel gas on / off valve 30 can be controlled by the control unit 27.
 なお、この燃料ガス開閉弁30については、上述した流量調整付きのコントロールバルブ(流量調整弁)を用いた構成に限らず、燃料ガス供給ライン23を開閉するバルブ(開閉弁)とは別に、燃料ガス供給ライン23内を流れる燃料ガスの流量を調整するレギュレータ(流量調整器)等が設けられた構成とすることも可能である。 The fuel gas on / off valve 30 is not limited to the configuration using the above-described control valve with flow rate adjustment (flow rate adjustment valve), but separately from the valve (open / close valve) for opening and closing the fuel gas supply line 23. A configuration in which a regulator (flow rate regulator) for adjusting the flow rate of the fuel gas flowing in the gas supply line 23 is also possible.
 燃料ガス供給源31は、亜酸化窒素を含む燃料ガスを供給するため、燃料ガスが一旦貯留される燃料ガス貯留部を有し、この燃料ガス貯留部には、亜酸化窒素が充填された高圧ガス容器(例えば、ボンベ、タンク、カードルなど。)31aが配置されている。そして、この燃料ガス供給源31では、燃料ガス開閉弁30を開放することによって、高圧ガス容器31aから燃料ガス供給ライン23へと亜酸化窒素を含む燃料ガスを供給することが可能となっている。 The fuel gas supply source 31 has a fuel gas storage part in which the fuel gas is temporarily stored in order to supply fuel gas containing nitrous oxide, and the fuel gas storage part is filled with nitrous oxide. A gas container (for example, a cylinder, a tank, a cardle, etc.) 31a is arranged. The fuel gas supply source 31 can supply the fuel gas containing nitrous oxide from the high-pressure gas container 31a to the fuel gas supply line 23 by opening the fuel gas on-off valve 30. .
 窒素ガス供給ライン24は、その一端側が燃料ガス供給ライン23の流量調整部25よりも上流側に接続された配管(流路)であり、その他端側には、窒素ガス開閉弁32を介して窒素ガス供給源33が接続されている。また、窒素ガス供給ライン24は、燃料ガス供給ライン23に窒素ガスを導入することによって、燃料ガス中に含まれる亜酸化窒素の濃度を調整する濃度調整手段としての機能を有している。 The nitrogen gas supply line 24 is a pipe (flow path) whose one end side is connected to the upstream side of the flow rate adjustment unit 25 of the fuel gas supply line 23, and the nitrogen gas opening / closing valve 32 is connected to the other end side. A nitrogen gas supply source 33 is connected. The nitrogen gas supply line 24 has a function as a concentration adjusting means for adjusting the concentration of nitrous oxide contained in the fuel gas by introducing the nitrogen gas into the fuel gas supply line 23.
 窒素ガス開閉弁32は、窒素ガス供給ライン24を開閉し、窒素ガス供給源33からの窒素ガスの供給/遮断を行うためのもの(開閉手段)である。また、窒素ガス開閉弁32には、窒素ガス供給ライン24を開閉するだけでなく、その開度(圧力等を含む。)が調整可能なものなどを用いることができる。 The nitrogen gas opening / closing valve 32 is for opening / closing the nitrogen gas supply line 24 and for supplying / blocking the nitrogen gas from the nitrogen gas supply source 33 (opening / closing means). In addition, the nitrogen gas on / off valve 32 can be used not only for opening and closing the nitrogen gas supply line 24 but also for adjusting the opening degree (including pressure and the like).
 さらに、窒素ガス開閉弁32には、燃料ガス供給ライン23に供給される窒素ガスの供給量を調整するため、その流量制御が可能な流量調整付きのコントロールバルブ(流量調整弁)を用いることが好ましい。そして、この窒素ガス開閉弁32は、制御部27と電気的に接続されており、この制御部27によって窒素ガス開閉弁32を駆動制御することが可能となっている。 Furthermore, in order to adjust the supply amount of nitrogen gas supplied to the fuel gas supply line 23, a control valve with a flow rate adjustment (flow rate adjustment valve) capable of controlling the flow rate is used for the nitrogen gas on-off valve 32. preferable. The nitrogen gas on / off valve 32 is electrically connected to the control unit 27, and the control unit 27 can drive and control the nitrogen gas on / off valve 32.
 なお、この窒素ガス開閉弁32については、上述した流量調整付きのコントロールバルブ(流量調整弁)を用いた構成に限らず、窒素ガス供給ライン24を開閉するバルブ(開閉弁)とは別に、窒素ガス供給ライン24内を流れる窒素ガスの流量を調整するレギュレータ(流量調整器)等が設けられた構成とすることも可能である。 The nitrogen gas on / off valve 32 is not limited to the configuration using the above-described control valve with a flow rate adjustment (flow rate adjustment valve), but separately from the valve (open / close valve) for opening and closing the nitrogen gas supply line 24. A configuration in which a regulator (flow rate regulator) for adjusting the flow rate of the nitrogen gas flowing in the gas supply line 24 is also possible.
 窒素ガス供給源33は、窒素ガスが一旦貯留される窒素ガス貯留部を有し、この窒素ガス貯留部には、窒素が充填された高圧ガス容器(例えば、ボンベ、タンク、カードルなど。)33aが配置されている。そして、この窒素ガス供給源33では、窒素ガス開閉弁32を開放することによって、高圧ガス容器33aから窒素ガス供給ライン24へと窒素ガスを供給することが可能となっている。 The nitrogen gas supply source 33 has a nitrogen gas storage part in which nitrogen gas is temporarily stored, and the nitrogen gas storage part has a high-pressure gas container (for example, a cylinder, a tank, a curdle, etc.) 33a filled with nitrogen. Is arranged. The nitrogen gas supply source 33 can supply the nitrogen gas from the high-pressure gas container 33 a to the nitrogen gas supply line 24 by opening the nitrogen gas on-off valve 32.
 流量調整部25は、燃料ガス供給ライン23から分解反応器22に導入される燃料ガスの流量(導入量)を調整可能なものであればよく、例えばレギュレータ(流量調整器)や流量調整付きのコントロールバルブ(流量調整弁)などを用いることができる。そして、この流量調整部25は、制御部27と電気的に接続されており、この制御部27によって流量調整部25を駆動制御することが可能となっている。 The flow rate adjusting unit 25 may be anything that can adjust the flow rate (introduction amount) of the fuel gas introduced from the fuel gas supply line 23 into the decomposition reactor 22. A control valve (flow rate adjusting valve) or the like can be used. The flow rate adjusting unit 25 is electrically connected to the control unit 27, and the control unit 27 can drive and control the flow rate adjusting unit 25.
 なお、流量調整部25では、この流量調整部25内を流れる燃料ガスの流量を計測する流量計(流量計測手段)を設けて、又は、このような流量計付きのレギュレータやコントロールバルブ等を用いて、分解反応器22に導入される燃料ガスの流量調整を精度良く行うことも可能である。 In the flow rate adjusting unit 25, a flow meter (flow rate measuring means) for measuring the flow rate of the fuel gas flowing in the flow rate adjusting unit 25 is provided, or a regulator or a control valve with such a flow meter is used. Thus, the flow rate of the fuel gas introduced into the decomposition reactor 22 can be adjusted with high accuracy.
 温度測定器26は、上記触媒21の温度を直接又は間接的に測定するものであり、制御部27と電気的に接続されて、この制御部27へと測定結果(測定データ)を出力する。 The temperature measuring device 26 measures the temperature of the catalyst 21 directly or indirectly, is electrically connected to the control unit 27, and outputs a measurement result (measurement data) to the control unit 27.
 例えば図3に示す温度測定器26は、分解反応器22の本体部22aに取り付けられて、触媒21に接触しながら、この触媒21の下流側の温度を測定することが可能となっている。 For example, the temperature measuring device 26 shown in FIG. 3 is attached to the main body portion 22 a of the decomposition reactor 22, and can measure the temperature on the downstream side of the catalyst 21 while contacting the catalyst 21.
 触媒21を用いた亜酸化窒素の分解では、この触媒21中を亜酸化窒素が通過する間に亜酸化窒素が分解されるため、一般的に触媒21の上流(ガス導入口22b)側の温度よりも下流(ガス排出口22c)側の温度の方が高くなる。したがって、分解ガスによって高温高圧に晒される触媒21やガス排出口22c側の部材等の劣化(例えば熱疲労や酸化など。)、特に亜酸化窒素は分解ガス中に酸素を含むことから、この酸素との反応(酸化)を防ぐ上で、上述した触媒21の下流(ガス排出口22c)側の温度を測定することが好ましい。 In the decomposition of nitrous oxide using the catalyst 21, since the nitrous oxide is decomposed while the nitrous oxide passes through the catalyst 21, the temperature on the upstream side (gas inlet 22b) side of the catalyst 21 is generally used. The temperature on the downstream (gas discharge port 22c) side becomes higher than that. Therefore, the catalyst 21 exposed to the high temperature and high pressure by the cracked gas, the deterioration of the members on the gas outlet 22c side (for example, thermal fatigue, oxidation, etc.), especially nitrous oxide contains oxygen in the cracked gas. It is preferable to measure the temperature on the downstream side (gas exhaust port 22c) side of the catalyst 21 described above in order to prevent the reaction (oxidation).
 一方、温度測定器26は、上述した図3に示す構成に限らず、触媒21の上流(ガス導入口22b)側の温度を測定する構成としてもよい。これは、亜酸化窒素の分解を開始する前に、上記ヒータ28によって加熱された触媒21が上記分解開始温度まで加熱されたか否かを検出する上で好ましい。そして、この温度測定器26による測定結果に基づいて、触媒21が上記分解開始温度まで加熱されたときに、上記ヒータ28による加熱を停止すればよい。これにより、上記ヒータ28による加熱を効率良く行うことが可能である。 On the other hand, the temperature measuring device 26 is not limited to the configuration shown in FIG. 3 described above, and may be configured to measure the temperature on the upstream side (gas inlet 22b) side of the catalyst 21. This is preferable in detecting whether or not the catalyst 21 heated by the heater 28 has been heated to the decomposition start temperature before starting the decomposition of nitrous oxide. Then, based on the measurement result by the temperature measuring device 26, when the catalyst 21 is heated to the decomposition start temperature, the heating by the heater 28 may be stopped. Thereby, the heating by the heater 28 can be performed efficiently.
 なお、触媒21の温度を測定する箇所については、上記の箇所に必ずしも限定されるものではなく、例えば、触媒21の平均的な温度を測定するため、触媒21の中央部分の温度を測定したり、これら複数箇所の温度を別々に測定したりすることも可能である。 In addition, about the location which measures the temperature of the catalyst 21, it is not necessarily limited to said location, For example, in order to measure the average temperature of the catalyst 21, the temperature of the center part of the catalyst 21 is measured. It is also possible to measure the temperatures at these multiple locations separately.
 また、温度測定器26は、触媒21の温度を直接測定する構成に限らず、例えば触媒21を収納した本体部22aの温度を測定することによって、触媒21の温度を間接的に測定することも可能である。 In addition, the temperature measuring device 26 is not limited to the configuration that directly measures the temperature of the catalyst 21, and may indirectly measure the temperature of the catalyst 21 by measuring the temperature of the main body 22 a that houses the catalyst 21, for example. Is possible.
 また、温度測定器26は、上述した触媒21の温度を直接又は間接的に測定する構成に限らず、上記分解反応器22のガス排出口22cから排出される分解ガスの温度を直接又は間接的に測定する構成としてもよい。さらに、これら触媒21と分解ガスとの両方の温度を測定する構成としてもよい。 Further, the temperature measuring device 26 is not limited to the configuration for directly or indirectly measuring the temperature of the catalyst 21 described above, but directly or indirectly determines the temperature of the cracked gas discharged from the gas discharge port 22c of the cracking reactor 22. It is good also as a structure to measure to. Furthermore, it is good also as a structure which measures the temperature of both these catalysts 21 and cracked gas.
 なお、温度測定器26については、例えば熱電対を使用した温度計や、放射温度計等の非接触式の温度計、データロガーなどを用いることができるが、これらのものに必ずしも限定されるものではなく、それ以外にも触媒21や分解ガスの温度が測定可能なものの中から適宜選択して使用することができる。 As the temperature measuring device 26, for example, a thermometer using a thermocouple, a non-contact type thermometer such as a radiation thermometer, a data logger, or the like can be used, but it is not necessarily limited to these. Instead, the catalyst 21 and the cracked gas can be appropriately selected from those that can be measured and used.
 制御部27は、コンピュータ(CPU)等からなり、温度測定器26からの測定結果(測定データ)に基づいて、内部に記録された制御プログラムに従って、上述した流量調整部25や燃料ガス開閉弁30、窒素ガス開閉弁32に対する制御等を行う。 The control unit 27 is composed of a computer (CPU) or the like, and based on the measurement result (measurement data) from the temperature measuring device 26, according to the control program recorded therein, the flow rate adjusting unit 25 and the fuel gas on-off valve 30 described above. Control of the nitrogen gas on-off valve 32 is performed.
 具体的に、上記分解反応器22において、上記触媒21を用いた亜酸化窒素の分解を継続的に行わせるためには、分解ガスの温度を制御することが重要となる。 Specifically, in order to continuously perform the decomposition of nitrous oxide using the catalyst 21 in the decomposition reactor 22, it is important to control the temperature of the decomposition gas.
 すなわち、分解ガスの温度が高くなり過ぎると、上述したように分解ガスによって高温高圧に晒される触媒21やガス排出口22c側の部材等の劣化(例えば熱疲労や酸化など。)を招く可能性がある。一方、分解ガスの温度が低くなり過ぎると、亜酸化窒素の自己分解を継続させることが困難となる可能性がある。また、亜酸化窒素が分解されずに分解反応器22のガス排出口22cから排出されたり、場合によっては、上述したNOガスが発生したりする。これらのガスは、上述した地球温暖化や大気汚染の原因ともなる。 That is, if the temperature of the cracked gas becomes too high, as described above, the catalyst 21 exposed to the high temperature and high pressure by the cracked gas, the members on the gas discharge port 22c side, etc. may be deteriorated (for example, thermal fatigue or oxidation). There is. On the other hand, if the temperature of the cracked gas becomes too low, it may be difficult to continue the self-decomposition of nitrous oxide. Also, or is discharged from the gas discharge ports 22c of the decomposition reactor 22 without nitrous oxide is decomposed, optionally, NO x gases described above or occur. These gases cause the above-mentioned global warming and air pollution.
 したがって、制御部27は、このような問題が生じることがないよう、上記分解反応器22において触媒21を用いた亜酸化窒素の分解が継続される範囲で、分解ガスの温度制御を行うことが好ましい。 Therefore, the control unit 27 can control the temperature of the cracked gas within a range in which the decomposition of the nitrous oxide using the catalyst 21 is continued in the cracking reactor 22 so that such a problem does not occur. preferable.
 ここで、分解ガスの温度を制御する方法としては、(1)分解反応器22に供給される燃料ガスの流量を調整する方法と、(2)燃料ガス中に含まれる亜酸化窒素の濃度を調整する方法とを挙げることができる。 Here, as a method of controlling the temperature of the cracked gas, (1) a method of adjusting the flow rate of the fuel gas supplied to the cracking reactor 22, and (2) the concentration of nitrous oxide contained in the fuel gas. And a method of adjustment.
 このうち、上記(1)を用いた方法では、上記温度測定器26からの測定結果に基づいて、上記制御部27が流量調整部25を制御し、燃料ガス供給ライン23から分解反応器22に供給される燃料ガスの流量調整を行う。 Among these, in the method using the above (1), the control unit 27 controls the flow rate adjusting unit 25 based on the measurement result from the temperature measuring device 26, and the fuel gas supply line 23 supplies the decomposition reactor 22. The flow rate of the supplied fuel gas is adjusted.
 具体的に、分解ガスの温度を上げる場合には、燃料ガス供給ライン23から分解反応器22に供給される燃料ガスの流量を相対的に上げる制御を行う。これにより、分解反応器22に導入される燃料ガスの導入量を増やし、この分解反応器22で分解される亜酸化窒素の分解量(分解熱)の増加により分解ガスの温度を相対的に上げることが可能である。 Specifically, when increasing the temperature of the cracked gas, control is performed to relatively increase the flow rate of the fuel gas supplied from the fuel gas supply line 23 to the cracking reactor 22. As a result, the amount of fuel gas introduced into the cracking reactor 22 is increased, and the temperature of the cracked gas is relatively increased by increasing the amount of decomposition (heat of decomposition) of nitrous oxide decomposed in the cracking reactor 22. It is possible.
 一方、分解ガスの温度を下げる場合には、分解反応器22に供給される燃料ガスの流量を相対的に下げる制御を行う。これにより、分解反応器22に導入される燃料ガスの導入量を減らし、この分解反応器22で分解される亜酸化窒素の分解量(分解熱)の減少により分解ガスの温度を相対的に下げることが可能である。 On the other hand, when lowering the temperature of the cracked gas, control is performed to relatively lower the flow rate of the fuel gas supplied to the cracking reactor 22. As a result, the amount of fuel gas introduced into the cracking reactor 22 is reduced, and the temperature of the cracked gas is relatively lowered by reducing the amount of decomposition of nitrous oxide (heat of decomposition) decomposed in the cracking reactor 22. It is possible.
 以上のようにして、上記図3に示す本発明の特徴部分では、上記制御部27により分解ガスの温度を制御しながら、上記分解反応器22において触媒21を用いた亜酸化窒素の分解を継続的に行わせることが可能である。 As described above, in the characteristic part of the present invention shown in FIG. 3, the decomposition of nitrous oxide using the catalyst 21 is continued in the decomposition reactor 22 while the temperature of the decomposition gas is controlled by the control unit 27. Can be performed automatically.
 一方、上記(2)を用いた方法では、上記温度測定器26からの測定結果に基づいて、上記制御部27が上記窒素ガス開閉弁32を制御し、窒素ガス供給ライン24から燃料ガス供給ライン23に供給される窒素ガスの流量調整を行う。 On the other hand, in the method using the above (2), the control unit 27 controls the nitrogen gas on-off valve 32 based on the measurement result from the temperature measuring device 26 and the nitrogen gas supply line 24 to the fuel gas supply line. The flow rate of the nitrogen gas supplied to 23 is adjusted.
 具体的に、分解ガスの温度を上げる場合には、燃料ガス中に含まれる亜酸化窒素の濃度を相対的に上げる制御を行う。すなわち、窒素ガス供給ライン24から燃料ガス供給ライン23に供給される窒素ガスの流量を相対的に下げる、又は、窒素ガス供給ライン24から燃料ガス供給ライン23への窒素ガスの供給を停止する制御を行う。これにより、燃料ガス供給ライン23内を流れる燃料ガスへの窒素ガスの添加を止める又はその添加量を少なくして、この燃料ガス中に含まれる亜酸化窒素の濃度を相対的に高くすることができる。そして、これに伴って分解反応器22で分解される亜酸化窒素の分解量(分解熱)が増加することにより分解ガスの温度を相対的に上げることが可能である。 Specifically, when increasing the temperature of the cracked gas, control is performed to relatively increase the concentration of nitrous oxide contained in the fuel gas. That is, a control for relatively reducing the flow rate of nitrogen gas supplied from the nitrogen gas supply line 24 to the fuel gas supply line 23 or stopping supply of nitrogen gas from the nitrogen gas supply line 24 to the fuel gas supply line 23. I do. Thereby, the addition of nitrogen gas to the fuel gas flowing in the fuel gas supply line 23 is stopped or the amount added is reduced, and the concentration of nitrous oxide contained in the fuel gas can be relatively increased. it can. As the amount of decomposition (heat of decomposition) of nitrous oxide decomposed in the decomposition reactor 22 increases accordingly, the temperature of the decomposition gas can be relatively increased.
 一方、分解ガスの温度を下げる場合には、燃料ガス中に含まれる亜酸化窒素の濃度を相対的に下げる制御を行う。すなわち、窒素ガス供給ライン24から燃料ガス供給ライン23に供給される窒素ガスの流量を相対的に上げる、又は、窒素ガス供給ライン24から燃料ガス供給ライン23への窒素ガスの供給を開始する制御を行う。これにより、燃料ガス供給ライン23内を流れる燃料ガスに窒素ガスを添加する又はその添加量を増やして、この燃料ガス中に含まれる亜酸化窒素を窒素ガスで希釈しながら、亜酸化窒素の濃度を相対的に低くすることができる。そして、これに伴って分解反応器22で分解される亜酸化窒素の分解量(分解熱)が減少することにより分解ガスの温度を相対的に下げることが可能である。 On the other hand, when lowering the temperature of the cracked gas, control is performed to relatively lower the concentration of nitrous oxide contained in the fuel gas. That is, a control for relatively increasing the flow rate of nitrogen gas supplied from the nitrogen gas supply line 24 to the fuel gas supply line 23 or starting supply of nitrogen gas from the nitrogen gas supply line 24 to the fuel gas supply line 23. I do. Accordingly, the concentration of nitrous oxide is increased while adding or increasing the amount of nitrogen gas to the fuel gas flowing in the fuel gas supply line 23 and diluting the nitrous oxide contained in the fuel gas with the nitrogen gas. Can be made relatively low. As a result, the decomposition amount (heat of decomposition) of nitrous oxide decomposed in the decomposition reactor 22 decreases, so that the temperature of the decomposition gas can be relatively lowered.
 なお、上記(2)を用いた方法では、上述した窒素ガス以外にも、例えばヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、キセノン(Xe)、クリプトン(Kr)などの不活性ガスや、空気(乾燥空気を含む。)等を燃料ガス中に添加することによって、この燃料ガス中に含まれる亜酸化窒素の濃度を調整することも可能である。 In the method using the above (2), in addition to the nitrogen gas described above, an inert gas such as helium (He), neon (Ne), argon (Ar), xenon (Xe), krypton (Kr), etc. Alternatively, the concentration of nitrous oxide contained in the fuel gas can be adjusted by adding air (including dry air) or the like to the fuel gas.
 以上のようにして、上記図3に示す本発明の特徴部分では、分解ガスの温度を制御しながら、上記分解反応器22において触媒21を用いた亜酸化窒素の分解を継続的に行わせることが可能である。 As described above, in the characteristic part of the present invention shown in FIG. 3, nitrous oxide is continuously decomposed using the catalyst 21 in the decomposition reactor 22 while controlling the temperature of the decomposition gas. Is possible.
 なお、上記図3に示す本発明の特徴部分では、上記(1),(2)を用いた方法を組み合わせて、上述した分解ガスの温度制御を行うことも可能である。そして、これら上記(1),(2)を用いた方法では、上述した分解ガスの温度制御を簡便な構成で、なお且つ、安定的に行うことが可能である。一方、本発明では、上記(1),(2)を用いた方法に必ずしも限定されるものではなく、それ以外の方法を用いて、分解ガスの温度制御を行ってもよい。 In addition, in the characteristic part of the present invention shown in FIG. 3, the above-described temperature control of the cracked gas can be performed by combining the methods using (1) and (2). In the method using the above (1) and (2), the above-described temperature control of the cracked gas can be stably performed with a simple configuration. On the other hand, in this invention, it is not necessarily limited to the method using said (1), (2), You may perform temperature control of cracked gas using the method of other than that.
 また、本発明では、上記分解ガス中のNO濃度を計測するNO計(NO計測手段)を設けてもよい。この場合、上記分解ガス中に含まれる未分解の亜酸化窒素(NO)や、一酸化窒素(NO)、二酸化窒素(NO)などといったNOガスの濃度を計測することで、上述した分解ガスの温度制御を精度良く行うことが可能である。 Further, in the present invention may be provided with NO x meter for measuring the concentration of NO x in the decomposition gas (NO x measurement means). In this case, by measuring the concentration of NO x gas such as undecomposed nitrous oxide (N 2 O), nitric oxide (NO), nitrogen dioxide (NO 2 ), etc. contained in the cracked gas, It is possible to accurately control the temperature of the cracked gas.
 さらに、本発明では、分解ガス中に含まれるNOを除去する手段(NO除去手段)を設けることも可能である。NO除去手段としては、例えば、NOを含む分解ガス中にアンモニア(NH)を添加し、脱硝用触媒によりアンモニアとNOとを選択的に反応(還元)させて、水(HO)と窒素(N)とに分解する脱硝装置などを用いることができる。なお、脱硝用触媒については、従来公知のものの中から最適なものを選択して使用すればよい。また、NO除去手段としては、分解ガス中に含まれるNOを直接分解可能なNO分解用触媒を用いてもよい。 Furthermore, in the present invention, it is possible to provide means for removing NO x contained in the cracked gas (NO x removing means). The NO x removal unit, for example, by adding ammonia (NH 3) decomposition gas containing NO x, and selective reaction (reduction) is not ammonia and NO x by denitration catalyst, water (H 2 A denitration apparatus that decomposes into O) and nitrogen (N 2 ) can be used. As the denitration catalyst, an optimum one may be selected from conventionally known ones. Further, as the NO x removal means, a NO x decomposition catalyst capable of directly decomposing NO x contained in the cracked gas may be used.
 また、上記分解反応器22において、上記触媒21を用いた亜酸化窒素の分解を停止する場合は、上記分解反応器22への燃料ガスの供給を停止した後に、上記分解反応器22に窒素ガスを供給することが好ましい。 Further, when the decomposition of nitrous oxide using the catalyst 21 is stopped in the cracking reactor 22, the supply of fuel gas to the cracking reactor 22 is stopped, and then nitrogen gas is supplied to the cracking reactor 22. Is preferably supplied.
 これは、上記分解反応器22への燃料ガスの供給を停止した直後は、触媒21内に分解ガスが滞留しており、この分解ガスに含まれる酸素によって触媒21が劣化してしまう虞があるためである。 This is because immediately after the supply of the fuel gas to the cracking reactor 22 is stopped, the cracked gas stays in the catalyst 21, and the catalyst 21 may be deteriorated by oxygen contained in the cracked gas. Because.
 この場合、制御部27は、上記燃料ガス開閉弁30を閉塞する制御を行うことによって、上記分解反応器22への燃料ガスの供給を停止し、上記窒素ガス供給ライン24から供給される窒素ガスのみを上記分解反応器22に導入させる。 In this case, the control unit 27 performs control to close the fuel gas on-off valve 30, thereby stopping the supply of the fuel gas to the decomposition reactor 22, and the nitrogen gas supplied from the nitrogen gas supply line 24. Is introduced into the decomposition reactor 22.
 これにより、上記分解反応器22に導入された窒素ガスが、触媒21内に滞留した分解ガスを押し出し、この触媒21内に滞留した分解ガスを除去することができる。そして、制御部27は、上記分解反応器22に一定の時間、すなわち触媒21内に滞留した分解ガスを除去するのに十分な時間だけ窒素ガスを導入した後、上記窒素ガス開閉弁32を閉塞する制御を行い、上記分解反応器22への窒素ガスの供給を停止する。 Thereby, the nitrogen gas introduced into the cracking reactor 22 pushes out the cracked gas retained in the catalyst 21, and the cracked gas retained in the catalyst 21 can be removed. The control unit 27 introduces nitrogen gas into the cracking reactor 22 for a certain period of time, that is, a sufficient time to remove the cracked gas remaining in the catalyst 21, and then closes the nitrogen gas on-off valve 32. And the supply of nitrogen gas to the decomposition reactor 22 is stopped.
 これにより、触媒21の酸素による劣化を防ぐことができ、この触媒21の寿命を延ばすことができる。また、上述した触媒21を交換する頻度を減らす(交換サイクルを延長する)ことが可能である。さらに、この方法を用いた場合、亜酸化窒素の分解を一時停止させた後に、亜酸化窒素の分解を容易に再開することが可能である。 Thereby, deterioration of the catalyst 21 due to oxygen can be prevented, and the life of the catalyst 21 can be extended. Further, it is possible to reduce the frequency of replacing the above-described catalyst 21 (extend the replacement cycle). Furthermore, when this method is used, it is possible to easily resume the decomposition of nitrous oxide after temporarily stopping the decomposition of nitrous oxide.
 なお、上述した亜酸化窒素の分解を停止させる場合は、上記窒素ガス以外にも、例えばHe、Ne、Xe、Ar、Krなどの不活性ガスや、空気(乾燥空気を含む。)等を分解反応器22に導入することも可能である。 When the above-described decomposition of nitrous oxide is stopped, in addition to the nitrogen gas, for example, inert gases such as He, Ne, Xe, Ar, Kr, air (including dry air), and the like are decomposed. It is also possible to introduce into the reactor 22.
 ここで、図4に示すフローチャートを参照しながら、本発明の特徴部分における具体的な動作(制御方法)の一例について説明する。
 本発明の特徴部分では、先ず、ステップS101において、亜酸化窒素の分解を開始する前に、ヒータ28を駆動し、触媒21を加熱(予熱)する。
Here, an example of a specific operation (control method) in the characteristic part of the present invention will be described with reference to the flowchart shown in FIG.
In the characterizing portion of the present invention, first, in step S101, the heater 28 is driven and the catalyst 21 is heated (preheated) before starting the decomposition of nitrous oxide.
 次に、ステップS102において、温度測定器26が測定した触媒21の温度に基づいて、制御部27が、分解開始温度まで触媒21が加熱されたか否かの判定を行う。そして、触媒21が分解開始温度まで加熱されたと判定された場合には、ステップS103へと進み、このステップS103において、ヒータ28の駆動を停止する。一方、触媒21が分解開始温度まで加熱されていないと判定された場合には、触媒21が分解開始温度となるまで、ヒータ28による触媒21の加熱を継続する。 Next, in step S102, based on the temperature of the catalyst 21 measured by the temperature measuring device 26, the control unit 27 determines whether or not the catalyst 21 has been heated to the decomposition start temperature. If it is determined that the catalyst 21 has been heated to the decomposition start temperature, the process proceeds to step S103, and the driving of the heater 28 is stopped in step S103. On the other hand, when it is determined that the catalyst 21 has not been heated to the decomposition start temperature, the heating of the catalyst 21 by the heater 28 is continued until the catalyst 21 reaches the decomposition start temperature.
 次に、ステップS104において、分解反応器22に燃料ガスを供給し、この分解反応器22において触媒21を用いた亜酸化窒素の分解を行う。なお、分解反応器22に供給される燃料ガスの流量や、この燃料ガス中に含まれる亜酸化窒素の濃度等については、予め設定された値となっている。 Next, in step S104, fuel gas is supplied to the decomposition reactor 22, and the decomposition reactor 22 decomposes nitrous oxide using the catalyst 21. Note that the flow rate of the fuel gas supplied to the decomposition reactor 22, the concentration of nitrous oxide contained in the fuel gas, and the like are set in advance.
 次に、ステップS105において、温度測定器26が測定した触媒21(又は分解ガス)の温度に基づいて、制御部27が、触媒21(又は分解ガス)の温度が予め設定された値(範囲)を超えたか否かの判定を行う。そして、触媒21(又は分解ガス)の温度が設定値(範囲)を超えたと判定された場合には、ステップS106に進む。一方、触媒21(又は分解ガス)の温度が設定値(範囲)にあると判定された場合には、ステップS110に進む。 Next, in step S105, based on the temperature of the catalyst 21 (or cracked gas) measured by the temperature measuring device 26, the control unit 27 sets a value (range) in which the temperature of the catalyst 21 (or cracked gas) is set in advance. It is determined whether or not the number is exceeded. If it is determined that the temperature of the catalyst 21 (or cracked gas) has exceeded the set value (range), the process proceeds to step S106. On the other hand, if it is determined that the temperature of the catalyst 21 (or cracked gas) is within the set value (range), the process proceeds to step S110.
 次に、ステップS106において、制御部27が、触媒21(又は分解ガス)の温度が設定値(範囲)よりも高いか低いかの判定(比較)を行う。 Next, in step S106, the control unit 27 determines (comparison) whether the temperature of the catalyst 21 (or cracked gas) is higher or lower than a set value (range).
 そして、触媒21(又は分解ガス)の温度が設定値(範囲)よりも高いと判定された場合には、ステップS107に進み、このステップS107において、制御部27が、分解反応器22に供給される燃料ガスの流量、若しくは、この燃料ガス中に含まれる亜酸化窒素の濃度を下げる方向に調整を行う。そして、調整後は、ステップS109に進む。 When it is determined that the temperature of the catalyst 21 (or cracked gas) is higher than the set value (range), the process proceeds to step S107, and the controller 27 is supplied to the cracking reactor 22 in step S107. The fuel gas flow rate or the concentration of nitrous oxide contained in the fuel gas is adjusted to decrease. Then, after the adjustment, the process proceeds to step S109.
 一方、触媒21(又は分解ガス)の温度が設定値(範囲)よりも低いと判定された場合には、ステップS108に進み、このステップS108において、制御部27が、分解反応器22に供給される燃料ガスの流量、若しくは、この燃料ガス中に含まれる亜酸化窒素の濃度を上げる方向に調整を行う。そして、調整後は、ステップS109に進む。 On the other hand, when it is determined that the temperature of the catalyst 21 (or cracked gas) is lower than the set value (range), the process proceeds to step S108, and the controller 27 is supplied to the cracking reactor 22 in step S108. The adjustment is made to increase the flow rate of the fuel gas or the concentration of nitrous oxide contained in the fuel gas. Then, after the adjustment, the process proceeds to step S109.
 これらステップS107又はステップS108における調整では、例えば、分解反応器22に供給される燃料ガスの流量の設定値、若しくは、この燃料ガス中に含まれる亜酸化窒素の濃度の設定値を調整可能な範囲で所定の段階数に分けて、その設定値を現段階よりも1段階下げて又は上げて行う。 In the adjustment in step S107 or step S108, for example, a range in which the set value of the flow rate of the fuel gas supplied to the cracking reactor 22 or the set value of the concentration of nitrous oxide contained in the fuel gas can be adjusted. Then, it is divided into a predetermined number of steps, and the set value is lowered or increased by one step from the current step.
 次に、ステップS109において、温度測定器26が測定した触媒21(又は分解ガス)の温度に基づいて、制御部27が、触媒21(又は分解ガス)の温度が設定値(範囲)に戻ったか否かの判定を行う。そして、触媒21(又は分解ガス)の温度が設定値(範囲)に戻ったと判定された場合には、ステップS110に進む。 Next, in step S109, based on the temperature of the catalyst 21 (or cracked gas) measured by the temperature measuring device 26, the control unit 27 determines whether the temperature of the catalyst 21 (or cracked gas) has returned to the set value (range). Determine whether or not. When it is determined that the temperature of the catalyst 21 (or cracked gas) has returned to the set value (range), the process proceeds to step S110.
 一方、触媒21(又は分解ガス)の温度が設定値(範囲)に戻らない場合には、ステップS106に戻り、再び触媒21(又は分解ガス)の温度が設定値(範囲)よりも高いか低いかの判定(比較)を行った後、ステップS107又はS108に進み、上記分解反応器22に供給される燃料ガスの流量の設定値、若しくは、この燃料ガス中に含まれる亜酸化窒素の濃度の設定値を更に1段階下げる又は上げる方向に調整を行う。そして、ステップS109に進み、触媒21(又は分解ガス)の温度が設定値(範囲)に戻ったか否かの判定を行い、触媒21(又は分解ガス)の温度が設定値(範囲)に戻るまで、そのような調整を繰り返す。また、このような調整を繰り返した結果、調整可能な範囲を超えた場合には、制御部27が異常と判定して強制的にステップS110に進むものとする(図4において図示せず。)。 On the other hand, if the temperature of the catalyst 21 (or cracked gas) does not return to the set value (range), the process returns to step S106, and the temperature of the catalyst 21 (or cracked gas) is again higher or lower than the set value (range). After the determination (comparison), the process proceeds to step S107 or S108, and the set value of the flow rate of the fuel gas supplied to the decomposition reactor 22 or the concentration of nitrous oxide contained in the fuel gas is determined. Adjust the setting value further down or up one step. Then, the process proceeds to step S109, where it is determined whether or not the temperature of the catalyst 21 (or cracked gas) has returned to the set value (range), and until the temperature of the catalyst 21 (or cracked gas) returns to the set value (range). Repeat such adjustments. Further, as a result of repeating such adjustment, if the adjustable range is exceeded, the control unit 27 determines that it is abnormal and forcibly proceeds to step S110 (not shown in FIG. 4).
 次に、ステップS110において、制御部27が、燃料ガスの供給を停止するか否かの判定を行う。燃料ガスの供給を停止する場合としては、例えば、外部から停止命令を受けたときや、上記ステップS109において異常と判定されたときなどを挙げることができる。そして、燃料ガスの供給を停止する場合は、ステップS111に進む。一方、燃料ガスの供給を停止しない場合は、ステップS105に戻り、温度測定器26による触媒21(又は分解ガス)の温度測定を継続する。 Next, in step S110, the control unit 27 determines whether or not to stop the fuel gas supply. Examples of the case of stopping the supply of the fuel gas include a case where a stop command is received from the outside and a case where it is determined that there is an abnormality in step S109. And when stopping supply of fuel gas, it progresses to Step S111. On the other hand, when the supply of the fuel gas is not stopped, the process returns to step S105, and the temperature measurement of the catalyst 21 (or cracked gas) by the temperature measuring device 26 is continued.
 次に、ステップS111において、燃料ガスの供給を停止した後に、ステップS112に進み、このステップS112おいて、分解反応器22に窒素ガスを供給する。これにより、窒素ガスが触媒21内に滞留した分解ガスを押し出し、この触媒21内に滞留した分解ガスを除去することができる。 Next, in step S111, after the supply of fuel gas is stopped, the process proceeds to step S112, and in this step S112, nitrogen gas is supplied to the decomposition reactor 22. Thereby, the cracked gas which nitrogen gas stayed in the catalyst 21 is pushed out, and the cracked gas stayed in the catalyst 21 can be removed.
 以上のようにして、上記図3に示す本発明の特徴部分では、分解ガスの温度を制御しながら、上記分解反応器22において触媒21を用いた亜酸化窒素の分解を継続的に行わせることが可能である。 As described above, in the characteristic part of the present invention shown in FIG. 3, nitrous oxide is continuously decomposed using the catalyst 21 in the decomposition reactor 22 while controlling the temperature of the decomposition gas. Is possible.
 なお、本発明では、上述した温度測定器26が測定した測定データ及びそれに基づく制御部27の判定結果を、例えば、図示を省略するモニタに表示したり、プリンタに出力したりしてもよい。また、上述した制御部27による自動制御に限らず、例えば、オペレータ等による手動制御を行ってもよい。 In the present invention, the measurement data measured by the temperature measuring device 26 and the determination result of the control unit 27 based on the measurement data may be displayed on a monitor (not shown) or output to a printer, for example. Moreover, not only the automatic control by the control part 27 mentioned above but you may perform manual control by an operator etc., for example.
 また、上記ステップS109において異常と判定された場合には、必要に応じてその旨を告知するようにしてもよい。告知方法については、特に限定されるものではなく、例えば、警報を発したり、表示を行ったりすることができる。 In addition, when it is determined that there is an abnormality in step S109, it may be notified as necessary. The notification method is not particularly limited, and for example, an alarm can be issued or a display can be performed.
 上記図1に示す分解ガスボイラー1及び上記図2に示す分解ガスタービン11では、以上のような本発明の特徴部分と同様の構成を備えることによって、上述した分解ガスの温度を制御しながら、亜酸化窒素の分解を継続的に行わせることが可能である。 The cracked gas boiler 1 shown in FIG. 1 and the cracked gas turbine 11 shown in FIG. 2 have the same configuration as the characteristic part of the present invention as described above, thereby controlling the temperature of the cracked gas described above, It is possible to continuously decompose nitrous oxide.
 すなわち、これら本発明の特徴部分を備える分解ガスボイラー1及び分解ガスタービン11では、上記分解反応部6,13に亜酸化窒素を含む燃料ガスを供給し、この分解反応部6,13において、燃料ガス中に含まれる亜酸化窒素を上記触媒21を用いて分解した後、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される燃料ガス中の亜酸化窒素の分解を継続的に行わせることが可能である。 That is, in the cracked gas boiler 1 and the cracked gas turbine 11 having the characteristic portions of the present invention, a fuel gas containing nitrous oxide is supplied to the cracking reaction units 6 and 13, and in the cracking reaction units 6 and 13, fuel is supplied. After the nitrous oxide contained in the gas is decomposed using the catalyst 21, the decomposition heat generated by the decomposition of the nitrous oxide continuously decomposes the nitrous oxide in the fuel gas supplied thereafter. It can be done.
 次に、上記図1及び図2に示す熱輸送装置が備える圧縮式のヒートポンプ80について説明する。
 この圧縮式のヒートポンプ80は、冷媒Rが循環する冷媒循環系81と、冷媒循環系81中の冷媒Rを圧縮して送り出す圧縮部82と、圧縮部82で圧縮された冷媒Rを凝縮させながら、この冷媒Rから熱を放出させる凝縮部83と、凝縮部83で放熱された冷媒Rを膨張させる膨張部84と、膨張部84で膨張された冷媒Rを蒸発させながら、この冷媒Rに熱を吸収させる蒸発部85とを概略備えている。
Next, the compression heat pump 80 provided in the heat transport apparatus shown in FIGS. 1 and 2 will be described.
The compression heat pump 80 includes a refrigerant circulation system 81 in which the refrigerant R circulates, a compression section 82 that compresses and sends out the refrigerant R in the refrigerant circulation system 81, and condenses the refrigerant R compressed by the compression section 82. , The condensing part 83 for releasing heat from the refrigerant R, the expansion part 84 for expanding the refrigerant R radiated by the condensing part 83, and the refrigerant R expanded by the expansion part 84 while evaporating the heat, And an evaporating unit 85 that absorbs water.
 冷媒循環系81は、圧縮部82と凝縮部83と膨張部84と蒸発部85との間を順に接続した配管(流路)からなる。冷媒Rは、熱の輸送を行う熱媒体として、圧力変化(圧縮・膨張)に伴う状態変化(気化・液化)により、吸熱と放熱とを繰り返しながら、冷媒循環系81内を循環することになる。なお、このような冷媒Rとしては、例えば、フルオロカーボン(フロン)類(ハイドロフルオロカーボン(HFC)、ハイドロクロロフルオロカーボン(HCFC)等)、二酸化炭素、アンモニア、炭化水素(プロパン、ブタン、イソブタン等)、水などを用いることができる。 The refrigerant circulation system 81 includes a pipe (flow path) in which the compression unit 82, the condensing unit 83, the expansion unit 84, and the evaporation unit 85 are connected in order. The refrigerant R circulates in the refrigerant circulation system 81 while repeating heat absorption and heat release due to state change (vaporization / liquefaction) accompanying pressure change (compression / expansion) as a heat medium for transporting heat. . Examples of the refrigerant R include fluorocarbons (fluorocarbons) (hydrofluorocarbon (HFC), hydrochlorofluorocarbon (HCFC), etc.), carbon dioxide, ammonia, hydrocarbons (propane, butane, isobutane, etc.), water, and the like. Etc. can be used.
 圧縮部82は、圧縮機(コンプレッサ)からなり、上記蒸気タービン2又は分解ガスタービン11(タービン部14)と連結されることによって駆動される。冷媒Rは、この圧縮部82で圧縮されることによって昇温しながら、高温・高圧の気体となって凝縮部83へと送り出される。 The compression unit 82 includes a compressor (compressor), and is driven by being connected to the steam turbine 2 or the cracked gas turbine 11 (turbine unit 14). The refrigerant R is sent out to the condensing unit 83 as a high-temperature and high-pressure gas while being heated by being compressed by the compression unit 82.
 凝縮部83は、凝縮器(コンデンサ)と呼ばれる熱交換器(放熱器)からなり、圧縮部82で圧縮された冷媒Rが内部を通過する間に、外部との熱交換により冷媒Rを凝縮させながら、この冷媒Rから熱を放出させる。これにより、冷媒Rは、常温・高圧の液体となって膨張部84へと送り出される。また、ヒートポンプ80では、この凝縮部83側にファン(送風手段)86を設けることによって、外部に熱気Tを効率良く放出することが可能である。さらに、凝縮部83では、この熱気Tを利用して加熱を行うことも可能であり、この放熱(高温)側の熱交換器を加熱器(加熱手段)として用いることが可能である。 The condensing unit 83 includes a heat exchanger (heat radiator) called a condenser (condenser), and condenses the refrigerant R by heat exchange with the outside while the refrigerant R compressed by the compression unit 82 passes through the inside. However, heat is released from the refrigerant R. As a result, the refrigerant R is sent to the expansion section 84 as a normal temperature / high pressure liquid. Further, in the heat pump 80, by providing a fan (air blowing means) 86 to the condenser section 83 side, it is possible to efficiently release the hot air T H to the outside. Further, the condensing section 83, it is also possible to perform the heating using the hot air T H, it is possible to use a heat exchanger of the radiator (hot) side as a heater (heating means).
 膨張部84は、膨張弁(エクスパンションバルブ)又はキャピラリーチューブからなる。冷媒Rは、この膨張部84で膨張されることによって降温しながら、低温・低圧の液体となって蒸発部85へと送られる。 The expansion part 84 is composed of an expansion valve (expansion valve) or a capillary tube. The refrigerant R is expanded by the expansion unit 84 and is cooled to a low-temperature / low-pressure liquid, and is sent to the evaporation unit 85.
 蒸発部85は、蒸発器(エバポレータ)と呼ばれる熱交換器(吸熱器)からなり、膨張部84で膨張された冷媒Rが内部を通過する間に、外部との熱交換により冷媒Rを蒸発させながら、この冷媒Rに熱を吸収させる。これにより、冷媒Rは、低温・低圧の気体となって圧縮部82へと送られる。また、ヒートポンプ80では、この蒸発部85側にファン(送風手段)87を設けることによって、外部に冷気Tを効率良く放出することが可能である。さらに、蒸発部85では、この冷気Tを利用して冷却を行うことも可能であり、この吸熱(低温)側の熱交換器を冷却器(冷却手段)として用いることが可能である。 The evaporation unit 85 includes a heat exchanger (heat absorber) called an evaporator (evaporator), and evaporates the refrigerant R by heat exchange with the outside while the refrigerant R expanded by the expansion unit 84 passes through the inside. However, the refrigerant R absorbs heat. Thus, the refrigerant R is sent to the compression unit 82 as a low-temperature and low-pressure gas. Further, in the heat pump 80, it is possible to efficiently discharge the cold air TL to the outside by providing the fan (blower unit) 87 on the evaporation unit 85 side. Further, the evaporator 85 can perform cooling using the cold air TL , and the heat exchanger (low temperature) side heat exchanger can be used as a cooler (cooling means).
 以上のようにして、この圧縮式のヒートポンプ80では、上記蒸気タービン2又は分解ガスタービン11を動力源として、冷媒Rを冷媒循環系81内で循環させながら、熱輸送を行うことが可能である。 As described above, the compression heat pump 80 can perform heat transport while circulating the refrigerant R in the refrigerant circulation system 81 using the steam turbine 2 or the cracked gas turbine 11 as a power source. .
 本発明を適用した熱輸送方法は、図5に示すように、亜酸化窒素の分解により発生した分解ガスからの熱回収により分解ガスボイラー1で蒸気を発生させるステップS1-1と、分解ガスボイラー1で発生した蒸気により蒸気タービン2を回転駆動するステップS1-2と、蒸気タービン2の駆動により圧縮式のヒートポンプ80で熱輸送を行うステップS1-3とを有する。 As shown in FIG. 5, the heat transport method to which the present invention is applied includes step S1-1 in which steam is generated in the cracked gas boiler 1 by heat recovery from cracked gas generated by decomposition of nitrous oxide, and a cracked gas boiler. 1, the steam turbine 2 is rotationally driven by the steam generated in 1, and the heat transport is performed by the compression heat pump 80 by driving the steam turbine 2.
 具体的に、上記図1に示す分解ガスボイラー1では、亜酸化窒素を分解することによって得られた高温高圧の分解ガスを上記分解反応部6から上記蒸気発生部7へと供給する。これにより、上記蒸気発生部7において、分解ガスとの熱交換により蒸気を発生させることが可能である。 Specifically, in the cracked gas boiler 1 shown in FIG. 1, a high-temperature and high-pressure cracked gas obtained by cracking nitrous oxide is supplied from the cracking reaction section 6 to the steam generating section 7. Thereby, in the said steam generation part 7, it is possible to generate a vapor | steam by heat exchange with cracked gas.
 さらに、上記分解ガスボイラー1を備える熱輸送装置では、上記分解ガスボイラー1(蒸気発生部7)で発生させた蒸気により蒸気タービン2を回転駆動する。そして、この蒸気タービン2の駆動により上記圧縮式のヒートポンプ80で熱輸送を行うことが可能である。 Furthermore, in the heat transport device including the cracked gas boiler 1, the steam turbine 2 is rotationally driven by the steam generated by the cracked gas boiler 1 (steam generating unit 7). Then, heat transport can be performed by the compression heat pump 80 by driving the steam turbine 2.
 そして、蒸気タービン2から排出された蒸気は、復水器4で冷却して復水された後、給水ポンプ5で分解ガスボイラー1に給水されて、再び分解ガスボイラー1で分解ガスとの熱交換により蒸気となって循環することになる。 Then, the steam discharged from the steam turbine 2 is cooled by the condenser 4 and condensed, and then supplied to the cracked gas boiler 1 by the feed water pump 5, and again heated by the cracked gas boiler 1 with the cracked gas. It will circulate as steam by exchange.
 なお、上記分解ガスボイラー1において、上述した本発明の特徴部分については、上記図3に示す構成に必ずしも限定されるものではない。すなわち、上記図3に示す本発明の特徴部分を上記分解ガスボイラー1に適用する場合には、ボイラーの形式や大きさ等に合わせて適宜変更を加えることが可能である。 In the cracked gas boiler 1, the above-described characteristic portions of the present invention are not necessarily limited to the configuration shown in FIG. That is, when the characteristic part of the present invention shown in FIG. 3 is applied to the cracked gas boiler 1, it can be appropriately changed according to the type and size of the boiler.
 例えば、分解反応器22は、その形状や数、配置等を上記分解ガスボイラー1の設計に合わせて適宜変更することができる。また、この分解反応器22に接続される燃料ガス供給ライン23や窒素ガス供給ライン24、流量調整部25、温度測定器26、制御部27、ヒータ28、電力供給ライン29、燃料ガス開閉弁30、燃料ガス供給源31、窒素ガス開閉弁32、窒素ガス供給源33等についても、上記分解ガスボイラー1の設計に合わせて適宜変更を加えることが可能である。 For example, the shape, number, arrangement, etc. of the decomposition reactor 22 can be appropriately changed according to the design of the decomposition gas boiler 1. Further, the fuel gas supply line 23 and the nitrogen gas supply line 24 connected to the decomposition reactor 22, the flow rate adjusting unit 25, the temperature measuring device 26, the control unit 27, the heater 28, the power supply line 29, and the fuel gas on / off valve 30. The fuel gas supply source 31, the nitrogen gas on / off valve 32, the nitrogen gas supply source 33, etc. can be appropriately changed according to the design of the cracked gas boiler 1.
 一方、上記分解ガスボイラー1において、上述した本発明の特徴部分以外の構造については、既存の燃焼ガスボイラーなどと同様の構造を有することができる。例えば、本発明が適用される分解ガスボイラー1の本発明の特徴部分以外の構造については、従来の丸ボイラーや水管ボイラーなどと同様の形式のものを用いることができる。なお、丸ボイラーについては、例えば、炉筒ボイラー、煙管ボイラー、炉筒煙管ボイラー、立てボイラーなどを挙げることができる。一方、水管ボイラーについては、例えば、自然循環式、強制循環式、貫流式のものなどを挙げることができる。 On the other hand, the cracked gas boiler 1 can have the same structure as that of an existing combustion gas boiler, etc., except for the above-described features of the present invention. For example, the structure of the cracked gas boiler 1 to which the present invention is applied other than the characteristic portions of the present invention may be of the same type as a conventional round boiler or water tube boiler. In addition, about a round boiler, a furnace tube boiler, a smoke tube boiler, a furnace tube fire tube boiler, a standing boiler etc. can be mentioned, for example. On the other hand, examples of the water pipe boiler include a natural circulation type, a forced circulation type, and a once-through type.
 また、上記分解ガスボイラー1では、上記分解反応部6から上記蒸気発生部7へと分解ガスを供給し、この蒸気発生部7において分解ガスとの熱交換により蒸気を発生させる構成となっているが、このような構成に必ずしも限定されるものではない。例えば、本発明では、上記分解反応部6と上記蒸気発生部7とを一体的に構成し、これら分解反応部6と蒸気発生部7との間で熱交換を行うことによって、蒸気を発生させることも可能である。 The cracked gas boiler 1 is configured to supply cracked gas from the cracking reaction section 6 to the steam generating section 7 and generate steam by heat exchange with the cracked gas in the steam generating section 7. However, it is not necessarily limited to such a configuration. For example, in the present invention, the decomposition reaction unit 6 and the steam generation unit 7 are configured integrally, and steam is generated by exchanging heat between the decomposition reaction unit 6 and the steam generation unit 7. It is also possible.
 具体的には、上記分解反応部6(分解反応器22)の外側に上記蒸気発生部7を設けて、上記分解反応部6で発生する熱(分解熱)との熱交換により蒸気を発生させる構成とすることが可能である。この場合、上記分解反応部6(分解反応器22)の冷却を行うと同時に、上記分解反応部6で発生する熱によって蒸気を得ることが可能である。 Specifically, the steam generation unit 7 is provided outside the decomposition reaction unit 6 (decomposition reactor 22), and steam is generated by heat exchange with heat (decomposition heat) generated in the decomposition reaction unit 6. It can be configured. In this case, it is possible to obtain steam by the heat generated in the decomposition reaction unit 6 at the same time that the decomposition reaction unit 6 (decomposition reactor 22) is cooled.
 また、上記分解ガスボイラー1は、上記図1に示す構成以外にも、例えば、上記蒸気発生部7で得られた蒸気を更に加熱して過熱蒸気とする過熱器や、上記分解反応部6で得られた高温の分解ガスによって燃料ガスや給水等を予熱する予熱器などの付属設備(機器/部品)、その他必要となる保安設備(機器/部品)等を備えた構成とすることが可能である。 In addition to the configuration shown in FIG. 1, the cracked gas boiler 1 includes, for example, a superheater that further heats the steam obtained in the steam generation unit 7 to form superheated steam, and the cracking reaction unit 6. It is possible to have a configuration equipped with auxiliary equipment (equipment / parts) such as a preheater that preheats fuel gas, feed water, etc. with the obtained high-temperature cracked gas, and other necessary safety equipment (equipment / parts). is there.
 また、上記図1に示す熱輸送装置では、上記分解ガスボイラー1以外の構成、すなわち、上述した蒸気タービン2や、復水器4、給水ポンプ5などについても、既存のものと同様のものを使用することが可能である。さらに、付属設備(機器/部品)や保安設備(機器/部品)等についても同様である。 Further, in the heat transport device shown in FIG. 1, the configuration other than the cracked gas boiler 1, that is, the steam turbine 2, the condenser 4, the feed water pump 5, and the like described above are the same as the existing ones. It is possible to use. Further, the same applies to ancillary equipment (equipment / parts) and security equipment (equipment / parts).
 以上のようにして、本発明を適用した分解ガスボイラー1を備える熱輸送装置及び熱輸送方法では、亜酸化窒素の分解により発生するエネルギーを利用した熱輸送が可能である。そして、本発明によれば、地球環境に優しいエネルギーとしての亜酸化窒素の利用を可能にした分解ガスボイラー1、このような分解ガスボイラー1を備えた熱輸送装置、並びにこのような熱輸送装置を用いた熱輸送方法を提供することが可能である。 As described above, in the heat transport apparatus and the heat transport method including the cracked gas boiler 1 to which the present invention is applied, heat transport using energy generated by the decomposition of nitrous oxide is possible. And according to this invention, the cracked gas boiler 1 which enabled utilization of nitrous oxide as energy friendly to a global environment, the heat transport apparatus provided with such a cracked gas boiler 1, and such a heat transport apparatus It is possible to provide a heat transport method using
 本発明を適用した別の熱輸送方法は、図6に示すように、亜酸化窒素の分解により発生した分解ガスにより分解ガスタービン11を回転駆動するステップS2-1と、分解ガスタービン11の駆動により圧縮式のヒートポンプ80で熱輸送を行うステップS2-2とを有する。 As shown in FIG. 6, another heat transport method to which the present invention is applied includes step S2-1 for rotationally driving the cracked gas turbine 11 with cracked gas generated by the decomposition of nitrous oxide, Step S2-2 in which heat transport is performed by the compression heat pump 80.
 具体的に、上記図2に示す分解ガスタービン11では、亜酸化窒素を分解することによって得られた高温高圧の分解ガスを上記分解反応部13から上記タービン部14へと供給する。これにより、上記タービン部14において、分解ガスをノズル(静翼)からタービン翼(動翼)に吹き付けて、それによりタービン軸を回転させて動力を得ることが可能である。 Specifically, in the cracked gas turbine 11 shown in FIG. 2, a high-temperature and high-pressure cracked gas obtained by cracking nitrous oxide is supplied from the cracking reaction section 13 to the turbine section 14. Thereby, in the turbine part 14, it is possible to spray cracked gas from the nozzle (stationary blade) to the turbine blade (moving blade), thereby rotating the turbine shaft to obtain power.
 さらに、上記分解ガスタービン11を備える熱輸送装置では、上記分解ガスタービン11(タービン部14)の駆動により上記圧縮式のヒートポンプ80で熱輸送を行うことが可能である。 Furthermore, in the heat transport device including the cracked gas turbine 11, it is possible to transport heat with the compression heat pump 80 by driving the cracked gas turbine 11 (turbine unit 14).
 なお、上記分解ガスタービン11において、上述した本発明の特徴部分については、上記図3に示す構成に限定されるものではない。すなわち、上記図3に示す本発明の特徴部分を上記分解ガスタービン11に適用する場合には、タービンの形式や大きさ等に合わせて適宜変更を加えることが可能である。 In the cracked gas turbine 11, the above-described characteristic portions of the present invention are not limited to the configuration shown in FIG. That is, when the characteristic part of the present invention shown in FIG. 3 is applied to the cracked gas turbine 11, it is possible to make appropriate changes in accordance with the type and size of the turbine.
 例えば、分解反応器22は、その形状や数、配置等を分解ガスタービン11の設計に合わせて適宜変更することができる。また、この分解反応器22に接続される燃料ガス供給ライン23や窒素ガス供給ライン24、流量調整部25、温度測定器26、制御部27、ヒータ28、電力供給ライン29、燃料ガス開閉弁30、燃料ガス供給源31、窒素ガス開閉弁32、窒素ガス供給源33等についても、上記分解ガスタービン11の設計に合わせて適宜変更を加えることが可能である。 For example, the shape, number, arrangement, etc. of the cracking reactor 22 can be appropriately changed according to the design of the cracking gas turbine 11. Further, the fuel gas supply line 23 and the nitrogen gas supply line 24 connected to the decomposition reactor 22, the flow rate adjusting unit 25, the temperature measuring device 26, the control unit 27, the heater 28, the power supply line 29, and the fuel gas on / off valve 30. The fuel gas supply source 31, the nitrogen gas on-off valve 32, the nitrogen gas supply source 33, etc. can be appropriately changed according to the design of the cracked gas turbine 11.
 一方、上記分解ガスタービン11において、上述した本発明の特徴部分以外の構造については、既存の燃焼ガスタービンが燃焼用空気を圧縮して燃焼器へと送り込む圧縮機を備えた構成であるのに対して、そのような構成が不要となるといった特徴を有している。これにより、上記分解ガスタービン11を簡便な構成とし、その軽量化を図ることが可能である。 On the other hand, in the cracked gas turbine 11, the structure other than the above-described features of the present invention has a configuration in which an existing combustion gas turbine includes a compressor that compresses combustion air and sends it to a combustor. On the other hand, such a configuration is unnecessary. Thereby, the decomposition gas turbine 11 can have a simple configuration and can be reduced in weight.
 一方、上記分解ガスタービン11は、タービン軸に連結された圧縮機(過給機)を備えた構成としてもよい(図示せず。)。そして、この圧縮機(過給機)によって圧縮(過給)された亜酸化窒素を含む燃料ガスを分解反応部13に供給する構成とすることも可能である。なお、燃料ガスを圧縮(過給)して使用する場合は、亜酸化窒素が液化しない範囲で圧縮(過給)することが好ましい。 On the other hand, the cracked gas turbine 11 may include a compressor (supercharger) connected to a turbine shaft (not shown). A fuel gas containing nitrous oxide compressed (supercharged) by the compressor (supercharger) may be supplied to the decomposition reaction unit 13. When the fuel gas is compressed (supercharged) and used, it is preferably compressed (supercharged) within a range where nitrous oxide is not liquefied.
 また、上記分解ガスタービン11は、上記図2に示す構成以外にも、例えば、上記分解反応部13で得られた高温の分解ガスによって燃料ガスを予熱する予熱器などの付属設備(機器/部品)、その他必要となる保安設備(機器/部品)等を備えた構成とすることが可能である。 In addition to the configuration shown in FIG. 2, the cracked gas turbine 11 includes, for example, auxiliary equipment (equipment / parts) such as a preheater that preheats fuel gas with the high-temperature cracked gas obtained in the cracking reaction section 13. ), And other necessary security equipment (equipment / parts).
 以上のようにして、本発明を適用した熱輸送装置及び熱輸送方法では、亜酸化窒素の分解により発生するエネルギーを利用した熱輸送が可能である。そして、本発明によれば、地球環境に優しいエネルギーとしての亜酸化窒素の利用を可能にした熱輸送装置、並びにこのような熱輸送装置を用いた熱輸送方法を提供することが可能である。 As described above, in the heat transport device and the heat transport method to which the present invention is applied, heat transport using energy generated by decomposition of nitrous oxide is possible. And according to this invention, it is possible to provide the heat transport apparatus which enabled utilization of nitrous oxide as energy friendly to a global environment, and the heat transport method using such a heat transport apparatus.
 なお、本発明は、上記図1及び図2に示す熱輸送装置の構成に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更等を加えることが可能である。 It should be noted that the present invention is not necessarily limited to the configuration of the heat transport device shown in FIGS. 1 and 2, and various modifications and the like can be added without departing from the spirit of the present invention.
 例えば、上記図1及び図2に示す熱輸送装置は、上記圧縮式のヒートポンプ80の代わりに、図7に示すような圧縮式のヒートポンプ80Aを備えることによって、冷房と暖房とを行う、いわゆるエアコンを構成することが可能である。 For example, the heat transport device shown in FIG. 1 and FIG. 2 includes a compression heat pump 80A as shown in FIG. 7 instead of the compression heat pump 80, thereby performing cooling and heating. Can be configured.
 なお、図7(a)は、冷房時のヒートポンプ80Aの状態を示し、図7(b)は、暖房時のヒートポンプ80Aの状態を示す。また、図7(a),(b)に示すヒートポンプ80Aにおいて、上記ヒートポンプ80と同等の部位については、その説明を省略すると共に、図面において同じ符号を付すものする。 7A shows the state of the heat pump 80A during cooling, and FIG. 7B shows the state of the heat pump 80A during heating. Further, in the heat pump 80A shown in FIGS. 7A and 7B, the description of the same parts as the heat pump 80 is omitted and the same reference numerals are given in the drawings.
 具体的に、この圧縮式のヒートポンプ80Aは、上記ヒートポンプ80の構成に加えて、上記冷媒循環系81内の冷媒Rが流れる方向を切り換える四方弁(切換手段)88と、屋内に設置される室内機89と、屋外に設置される室外機90とを概略備えている。 Specifically, the compression heat pump 80A includes, in addition to the configuration of the heat pump 80, a four-way valve (switching means) 88 that switches a direction in which the refrigerant R in the refrigerant circulation system 81 flows, and a room installed indoors. Machine 89 and an outdoor unit 90 installed outdoors.
 ここで、室内機89側の熱交換器と、室外機90側の熱交換器は、四方弁88により冷媒Rの流れる方向が切り換わることで、上記凝縮部83と上記蒸発部85の機能が入れ替わる。すなわち、図7(a)に示す冷房時には、室内機89側の熱交換器が上記蒸発部85として機能し、室外機90側の熱交換器が上記凝縮部83として機能することになる。一方、図7(b)に示す暖房時には、室内機89側の熱交換器が上記凝縮部83として機能し、室外機90側の熱交換器が上記蒸発部85として機能することになる。 Here, in the heat exchanger on the indoor unit 89 side and the heat exchanger on the outdoor unit 90 side, the functions of the condensing unit 83 and the evaporating unit 85 are changed by switching the flow direction of the refrigerant R by the four-way valve 88. Change. 7A, the heat exchanger on the indoor unit 89 side functions as the evaporator 85, and the heat exchanger on the outdoor unit 90 functions as the condenser 83. On the other hand, during the heating shown in FIG. 7B, the heat exchanger on the indoor unit 89 side functions as the condensing unit 83, and the heat exchanger on the outdoor unit 90 side functions as the evaporating unit 85.
 以上のようなヒートポンプ80Aを備えるエアコンでは、上記蒸気タービン2又は分解ガスタービン11(図7において図示を省略する。)により圧縮部82を駆動する。これにより、ヒートポンプ80Aでは、冷媒Rが冷媒循環系81内で循環しながら熱輸送を行う。そして、図7(a)に示す冷房時には、室内機89側のファン87によって、室内に冷風(冷気)Tを放出し、図7(b)に示す暖房時には、室内機89側のファン87によって、室内に温風(熱気)Tを放出することが可能となっている。 In an air conditioner including the heat pump 80A as described above, the compression unit 82 is driven by the steam turbine 2 or the cracked gas turbine 11 (not shown in FIG. 7). Thereby, in the heat pump 80A, the refrigerant R performs heat transport while circulating in the refrigerant circulation system 81. 7A, the indoor unit 89 side fan 87 discharges cool air (cold air) TL into the room, and during the heating shown in FIG. 7B, the indoor unit 89 side fan 87. Accordingly, it is possible to release the indoor warm air (the hot air) T H.
 なお、図7(a)に示す冷房時には、室外機90側のファン86によって、室外に熱気Tが放出される。一方、図7(b)に示す暖房時には、室外機90側のファン86によって、室外に冷気Tが放出される。 Note that during the cooling shown in FIG. 7A, the hot air TH is released to the outside by the fan 86 on the outdoor unit 90 side. On the other hand, during the heating shown in FIG. 7B, the cool air TL is discharged to the outside by the fan 86 on the outdoor unit 90 side.
 また、本発明を適用したエアコンでは、上述した冷房と暖房の他にも、室内を除湿を行う除湿機能を持たせることも可能である。この除湿については、例えば、風量を絞った冷房運転により、空気中の水分を室内機側の熱交換器で結露させ除湿した後、乾いた空気を室内に戻す弱冷房除湿(ドライ)方式や、空気中の水分を室内機側の熱交換器で結露させ除湿した後、乾いた冷たい空気を再熱器で暖め直してから室内に戻す再熱除湿(熱リサイクル)方式などを挙げることができる。 In addition to the cooling and heating described above, the air conditioner to which the present invention is applied can also have a dehumidifying function for dehumidifying the room. For this dehumidification, for example, by a cooling operation in which the air volume is reduced, moisture in the air is dewed with a heat exchanger on the indoor unit side to dehumidify, and then a weak cooling dehumidification (dry) method for returning the dried air to the room, There is a reheat dehumidification (heat recycling) method in which moisture in the air is dewed by dew condensation by a heat exchanger on the indoor unit side, and then dry and cool air is reheated by the reheater and then returned to the room.
 本発明を適用した熱輸送装置は、上述した冷気(低温)Tと、熱気(高温)Tとを得ることができるため、冷凍空調分野への様々な応用が可能である。例えば、本発明を適用した熱輸送装置は、上述した冷房や暖房を行うエアコンといった空調設備や空調機器などへの応用が可能である。また、加熱分野については、暖房の他に、給湯、温水、乾燥等を行う加熱設備や加熱機器などへの応用が可能である。一方、冷却分野については、冷房の他に、冷蔵、冷凍、冷水、製氷等を行う冷却設備や冷却機器などへの応用が可能である。 Heat transport apparatus according to the present invention, it is possible to obtain a cold air (cold) T L described above, a hot air (hot) T H, and can be variously applied to refrigeration and air conditioning fields. For example, the heat transport device to which the present invention is applied can be applied to air conditioning equipment and air conditioning equipment such as the above-described cooling and heating air conditioners. In the heating field, in addition to heating, the present invention can be applied to heating equipment, heating equipment, and the like that perform hot water supply, hot water, drying, and the like. On the other hand, in the cooling field, in addition to cooling, it can be applied to cooling equipment and cooling equipment for performing refrigeration, freezing, cold water, ice making, and the like.
 また、本発明を適用した熱輸送装置は、大規模なものから小規模なものまで、その大きさを問わず、様々なサイズのものに適用可能である。さらに、その用途についても、工場(工業)用や住宅(家庭)用などに限らず、あらゆる分野で利用可能であり、設置(定置)型や可搬型、携帯型など、その用途に合わせて設計すればよい。 Further, the heat transport apparatus to which the present invention is applied can be applied to a variety of sizes from large to small. In addition to its use for factories (industrial) and homes (households), it can be used in various fields, and it can be designed to suit the application, such as installation (stationary), portable, and portable. do it.
 本発明で用いられる亜酸化窒素は、工業的に製造することが可能である。具体的に、亜酸化窒素を工業的に製造する方法については、例えば、以下の(1)~(3)を用いた方法を挙げることができる。 Nitrous oxide used in the present invention can be produced industrially. Specifically, examples of the method for industrially producing nitrous oxide include methods using the following (1) to (3).
(1)アンモニア直接酸化法 
2NH3 + 2O → NO + 3H
(1) Ammonia direct oxidation method
2NH 3 + 2O 2 → N 2 O + 3H 2 O
(2)硝酸アンモニウム熱分解法 
NHNO → NO + 2H
(2) Ammonium nitrate pyrolysis method
NH 4 NO 3 → N 2 O + 2H 2 O
(3)スルファミン酸法 
NHSO + HNO→ NO + HSO + H
(3) Sulfamic acid method
NH 2 SO 3 H   + HNO 3 → N 2 O + H 2 SO 4 + H 2 O
 なお、工業的に製造された亜酸化窒素については、例えば、純度99.9(3N)~99.999(5N)%の高純度亜酸化窒素、純度97.0%以上(日本薬局方)の医療用亜酸化窒素、純度98%以上の工業用亜酸化窒素などを挙げることができる。 Regarding nitrous oxide produced industrially, for example, high purity nitrous oxide having a purity of 99.9 (3N) to 99.999 (5N)%, purity of 97.0% or more (Japan Pharmacopoeia) Examples thereof include medical nitrous oxide and industrial nitrous oxide having a purity of 98% or more.
 その他にも、亜酸化窒素の製造方法については、以下の(4)~(10)を用いた方法を挙げることができる。 In addition, examples of the method for producing nitrous oxide include the following methods (4) to (10).
(4)尿素分解法 
2(NH)CO+2HNO+HSO → 2NO+2CO+(NH)SO+2H
(4) Urea decomposition method
2 (NH 2 ) 2 CO + 2HNO 3 + H 2 SO 4 → 2N 2 O + 2CO 2 + (NH 4 ) 2 SO 4 + 2H 2 O
(5)ヒドロキシルアミンからの製法 
4NO + 2NHOH → 3NO + 3HO 
2NHOH + NO + NO → 2NO + 3HO 
2NHOH + O → NO + 3H
(5) Production method from hydroxylamine
4NO + 2NH 2 OH → 3N 2 O + 3H 2 O
2NH 2 OH + NO 2 + NO → 2N 2 O + 3H 2 O
2NH 2 OH + O 2 → N 2 O + 3H 2 O
(6)有機反応からの副生NO 
アジピン酸の製造工程からの副生NOの回収。 
グリオキザールの製造からの副生NOの回収。
(6) By-product N 2 O from organic reaction
Recovery of by-product N 2 O from the production process of adipic acid.
Recovery of by-product N 2 O from the production of glioxal.
(7)亜硝酸又は亜硝酸塩の還元 
亜硝酸又は亜硝酸塩の溶液を温亜硫酸、ナトリウム、アマルガム、塩化第一錫等を還元剤として還元する。
(7) Reduction of nitrite or nitrite
A solution of nitrous acid or nitrite is reduced using warm sulfite, sodium, amalgam, stannous chloride or the like as a reducing agent.
(8)硝酸の還元 
硝酸を亜鉛又は錫で還元するか、亜硫酸ガスで還元する。
(8) Reduction of nitric acid
Nitric acid is reduced with zinc or tin, or with sulfurous acid gas.
(9)硝酸塩の還元 
2KNO + 6HCOOH → NO + 4CO + 5HO + 2HCOOK
(9) Reduction of nitrate
2KNO 3 + 6HCOOH → N 2 O + 4CO 2 + 5H 2 O + 2HCOOK
(10)次亜硝酸の脱水 
 + HSO → HSO・HO + N
(10) Dehydration of hyponitrous acid
H 2 N 2 O 2 + H 2 SO 4 → H 2 SO 4 .H 2 O + N 2 O
 そして、製造された亜酸化窒素は、ガスメーカにて上記高圧ガス容器31aに充填された後、上記燃料ガス供給源31へと送られて燃料ガス貯留部に一旦貯留される。一方、高圧ガス容器31aは、使用後にガスメーカに返却されて、再充填されることによって繰り返し使用することが可能である。 Then, the produced nitrous oxide is filled in the high-pressure gas container 31a by a gas maker, then sent to the fuel gas supply source 31, and temporarily stored in the fuel gas storage section. On the other hand, the high-pressure gas container 31a can be used repeatedly by being returned to the gas manufacturer after use and being refilled.
 また、燃料ガスの供給方法については、上記高圧ガス容器31aを用いて供給する(高圧ガス容器31aを交換する)方法に限らず、例えばタンカーやタンクローリーなどの輸送手段を用いて、上記燃料ガス供給源31に設置された貯留タンク(高圧ガス容器31a)に供給する方法を用いることが可能である。さらに、亜酸化窒素を含む燃料ガスをパイプラインを通じて、上記燃料ガス供給源31に設置された貯留タンク(高圧ガス容器31a)に供給する方法を用いることも可能である。 The fuel gas supply method is not limited to the method of supplying using the high-pressure gas container 31a (replacement of the high-pressure gas container 31a). For example, the fuel gas supply is performed using a transportation means such as a tanker or a tank lorry. It is possible to use a method of supplying to a storage tank (high pressure gas container 31a) installed in the source 31. Furthermore, it is also possible to use a method of supplying fuel gas containing nitrous oxide to a storage tank (high pressure gas container 31a) installed in the fuel gas supply source 31 through a pipeline.
 なお、窒素ガスの供給方法についても、上記高圧ガス容器33aを用いて供給する(高圧ガス容器33aを交換する)方法に限らず、上述した燃料ガスの供給方法と同様の方法を用いて供給することが可能である。 The nitrogen gas supply method is not limited to the method of supplying using the high-pressure gas container 33a (replacement of the high-pressure gas container 33a), and the method of supplying using the same method as the fuel gas supply method described above. It is possible.
 本発明では、上記触媒21を用いることによって、亜酸化窒素の分解開始温度を引き下げることができる。そして、亜酸化窒素の分解後は、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される亜酸化窒素の分解を継続的に行うことが可能である。 In the present invention, the decomposition start temperature of nitrous oxide can be lowered by using the catalyst 21. After the decomposition of nitrous oxide, it is possible to continuously decompose the nitrous oxide supplied thereafter by the heat of decomposition generated by the decomposition of nitrous oxide.
 したがって、本発明では、亜酸化窒素の分解開始前に、上記触媒21を予熱しておくだけでよい。そして、亜酸化窒素の分解後は、この亜酸化窒素の分解により発生する分解熱によって、上記触媒21の温度を、亜酸化窒素を分解するのに必要な温度以上に保ちながら、亜酸化窒素の分解を継続的に行わせることが可能である。 Therefore, in the present invention, it is only necessary to preheat the catalyst 21 before starting the decomposition of nitrous oxide. After the decomposition of nitrous oxide, the heat of decomposition generated by the decomposition of nitrous oxide keeps the temperature of the catalyst 21 at or above the temperature necessary for decomposing nitrous oxide. Decomposition can be performed continuously.
 具体的に、上記触媒21の温度は、触媒活性の観点から200~600℃の範囲が好ましく、分解反応容易性の観点から350~450℃の範囲がより好ましい。すなわち、本発明では、上記触媒21の温度がこのような範囲となるように、上記ヒータ28による予熱や、上記制御部27による分解ガスの温度制御を行うことが好ましい。 Specifically, the temperature of the catalyst 21 is preferably in the range of 200 to 600 ° C. from the viewpoint of catalyst activity, and more preferably in the range of 350 to 450 ° C. from the viewpoint of ease of decomposition reaction. That is, in the present invention, it is preferable to perform preheating by the heater 28 and temperature control of the cracked gas by the control unit 27 so that the temperature of the catalyst 21 falls within such a range.
 一方、亜酸化窒素自体は約500℃以上で自己分解することから、上記分解反応器22を自己分解温度以上に保つことで、上記触媒21を用いずに亜酸化窒素の分解を継続的に行わせることも可能である。しかしながら、上記触媒21を用いずに亜酸化窒素を自己分解させた場合には、分解副生物としてNOガスが発生することがわかっている。したがって、本発明では、上記NOガスの発生を防ぐため、上記触媒21を用いることが好ましい。なお、上記触媒21は、亜酸化窒素の自己分解温度以上であっても使用することが可能である。 On the other hand, since nitrous oxide itself undergoes autolysis at about 500 ° C. or higher, nitrous oxide is continuously decomposed without using the catalyst 21 by keeping the decomposition reactor 22 at or above the autolysis temperature. It is also possible to However, it is known that when nitrous oxide is self-decomposed without using the catalyst 21, NO x gas is generated as a decomposition byproduct. Therefore, in the present invention, it is preferable to use the catalyst 21 in order to prevent the generation of the NO x gas. The catalyst 21 can be used even when the temperature is higher than the nitrous oxide autolysis temperature.
 燃料ガスの温度については、亜酸化窒素が液化しない温度であればよく、通常は常温以下で使用することが可能である。一方、燃料ガスは、常温よりも高い温度に予熱して使用することも可能である。例えば、燃料ガス中に含まれる亜酸化窒素の濃度が低い場合には、この燃料ガスを予熱することによって、亜酸化窒素の分解を促進させることが可能である。 The temperature of the fuel gas may be any temperature at which nitrous oxide does not liquefy, and can usually be used at room temperature or lower. On the other hand, the fuel gas can be used by preheating to a temperature higher than room temperature. For example, when the concentration of nitrous oxide contained in the fuel gas is low, the decomposition of nitrous oxide can be promoted by preheating the fuel gas.
 燃料ガス中に含まれる亜酸化窒素の濃度については、特に限定されるものではなく、例えば1~100%の範囲で調整されたもの、また、より多くのエネルギーを得る必要がある場合には、50%超~100%の範囲で調整されたもの、さらに、70%超~100%の範囲で調整されたものを使用することが可能である。また、上述した亜酸化窒素の濃度調整を行うことによって、亜酸化窒素の分解反応速度等を調整することが可能である。 The concentration of nitrous oxide contained in the fuel gas is not particularly limited. For example, the nitrous oxide concentration adjusted in the range of 1 to 100%, or when more energy needs to be obtained, Those adjusted in the range of more than 50% to 100% and further adjusted in the range of more than 70% to 100% can be used. Further, by adjusting the concentration of nitrous oxide described above, it is possible to adjust the decomposition reaction rate of nitrous oxide and the like.
 また、本発明では、上述した亜酸化窒素の濃度調整を行うことによって、分解ガスを呼吸気ガスとして利用することが可能である。具体的に、空気は、その体積の約8割が窒素(N)で、約2割が酸素(O)であるため、例えば、上記燃料ガス中に含まれる亜酸化窒素(NO)と窒素(N)の割合を体積比(モル比)で、NO:N=1:1とする。すなわち、上記燃料ガス中に窒素ガスを添加し、この燃料ガス中に含まれる亜酸化窒素の濃度を50%とすれば、この燃料ガス中に含まれる亜酸化窒素が最終的に窒素と酸素に分解されたときに、亜酸化窒素1モルは窒素1モルと酸素0.5モルに分解されるため、この分解ガス中に含まれる窒素(N)と酸素(O)の割合は、体積比(モル比)で、N:O=4:1となる。これにより、分解ガス中に含まれる窒素(N)と酸素(O)の割合を空気組成に近づけることができるため、この分解ガスを呼吸気ガスとして利用することが可能となる。 Moreover, in this invention, it is possible to utilize cracked gas as respiratory gas by adjusting the density | concentration of nitrous oxide mentioned above. Specifically, since about 80% of the volume of nitrogen is nitrogen (N 2 ) and about 20% is oxygen (O 2 ), for example, nitrous oxide (N 2 O contained in the fuel gas) is used. ) And nitrogen (N 2 ) in a volume ratio (molar ratio) of N 2 O: N 2 = 1: 1. That is, if nitrogen gas is added to the fuel gas and the concentration of nitrous oxide contained in the fuel gas is 50%, the nitrous oxide contained in the fuel gas is finally converted into nitrogen and oxygen. Since 1 mol of nitrous oxide is decomposed into 1 mol of nitrogen and 0.5 mol of oxygen when decomposed, the ratio of nitrogen (N 2 ) and oxygen (O 2 ) contained in this decomposition gas is The ratio (molar ratio) is N 2 : O 2 = 4: 1. Thereby, since the ratio of nitrogen (N 2 ) and oxygen (O 2 ) contained in the cracked gas can be brought close to the air composition, this cracked gas can be used as a breathing gas.
 具体的に、上記分解ガスを呼吸気ガスとして用いる場合には、その酸素濃度を18~24%程度の範囲とすることが好ましく、その場合、燃料ガス中に含まれる亜酸化窒素の濃度を44~63%程度の範囲とすることが好ましい。 Specifically, when the cracked gas is used as a breathing gas, the oxygen concentration is preferably in the range of about 18 to 24%. In this case, the concentration of nitrous oxide contained in the fuel gas is 44. It is preferable to be in the range of about ~ 63%.
 また、本発明では、亜酸化窒素の濃度が44%未満のもの、すなわち燃料ガスとして亜酸化窒素の濃度が低いものを使用することが可能である。この場合、燃料ガスの分解によって発生するエネルギー(エネルギー密度)は低くなるものの、この燃料ガス中に含まれる亜酸化窒素の分解反応を緩やかなものとすることで、上述した分解ガスによって高温高圧に晒される触媒21や分解反応器22などの各部材の劣化(例えば熱疲労や酸化など。)を抑制することが可能である。すなわち、本発明では、上述した触媒21や分解反応器22等の各部材料の耐熱性及び耐酸化性を考慮して、燃料ガス中に含まれる亜酸化窒素の濃度を調整することが可能である。 In the present invention, it is possible to use a nitrous oxide having a concentration of less than 44%, that is, a fuel gas having a low nitrous oxide concentration. In this case, although the energy (energy density) generated by the decomposition of the fuel gas is lowered, the decomposition reaction of the nitrous oxide contained in the fuel gas is made gentle so that the above-described decomposition gas increases the temperature and pressure. It is possible to suppress deterioration (for example, thermal fatigue, oxidation, etc.) of each member such as the exposed catalyst 21 and the decomposition reactor 22. That is, in the present invention, it is possible to adjust the concentration of nitrous oxide contained in the fuel gas in consideration of the heat resistance and oxidation resistance of the respective materials such as the catalyst 21 and the decomposition reactor 22 described above. .
 一方、本発明では、亜酸化窒素の濃度が63%超のもの、すなわち燃料ガスとして亜酸化窒素の濃度が高いものを使用することが可能である。この場合、燃料ガスの分解によって発生するエネルギー(エネルギー密度)を高めることができ、上記分解ガスボイラー1及び分解ガスタービン11の出力向上を図ることが可能である。 On the other hand, in the present invention, it is possible to use a nitrous oxide having a concentration exceeding 63%, that is, a fuel gas having a high nitrous oxide concentration. In this case, the energy (energy density) generated by the decomposition of the fuel gas can be increased, and the output of the decomposition gas boiler 1 and the decomposition gas turbine 11 can be improved.
 特に、本発明では、亜酸化窒素の濃度が100%のものを使用した場合でも、上記触媒21を用いて亜酸化窒素の分解を継続的に行わせることが可能である。なお、本発明では、高純度(例えば純度99.9(3N)~99.999(5N)%)の亜酸化窒素だけでなく、亜酸化窒素の製造コスト等を考慮して、それよりも純度の低い(例えば純度97%未満)亜酸化窒素を使用することも可能である。 In particular, in the present invention, even when a nitrous oxide concentration of 100% is used, it is possible to continuously decompose nitrous oxide using the catalyst 21. In the present invention, not only high-purity (for example, purity 99.9 (3N) to 99.999 (5N)%) nitrous oxide but also the purity of the nitrous oxide is considered in consideration of the production cost of nitrous oxide. It is also possible to use nitrous oxide with a low (for example less than 97% purity).
 上述した窒素ガスによる亜酸化窒素の濃度調整は、亜酸化窒素の分解前に燃料ガス中に窒素ガス等を添加する方法であっても、亜酸化窒素の分解後に分解ガス中に窒素ガス等を添加する方法であってもよい。さらに、予め亜酸化窒素の濃度調整が行われた燃料ガスを用いてもよい。 The concentration adjustment of nitrous oxide by nitrogen gas described above is a method of adding nitrogen gas or the like to the fuel gas before decomposition of nitrous oxide, but nitrogen gas or the like is added to the decomposition gas after decomposition of nitrous oxide. The method of adding may be sufficient. Further, a fuel gas in which the concentration of nitrous oxide has been adjusted in advance may be used.
 なお、上記燃料ガス中に含まれる亜酸化窒素以外の成分については、上述した亜酸化窒素の濃度調整のために添加された窒素等の他にも、後述する亜酸化窒素の製造時に混入した未反応物や、副生成物、空気、不可避不純物などを挙げることができる。 Regarding components other than nitrous oxide contained in the fuel gas, in addition to the nitrogen added for adjusting the concentration of nitrous oxide described above, unmixed components that were mixed during the production of nitrous oxide described later are used. Examples include reactants, by-products, air, and inevitable impurities.
 また、本発明では、上記分解ガス中の酸素濃度を計測する酸素濃度計(酸素計測手段)を設けてもよい。この場合、上記分解ガス中に含まれる酸素の濃度を計測し、この計測結果に基づいて、上述した分解ガスの温度制御を精度良く行うことが可能である。 In the present invention, an oxygen concentration meter (oxygen measuring means) for measuring the oxygen concentration in the cracked gas may be provided. In this case, it is possible to measure the concentration of oxygen contained in the cracked gas, and to accurately control the temperature of the cracked gas described above based on the measurement result.
 なお、上記分解反応器22に導入される燃料ガスの空間速度(Space Velocity)は、その設計に合わせて最適な値に設定すればよく、例えば、10~140,000hr-1の範囲、好ましくは100~10,000hr-1の範囲で設定することが可能である。 The space velocity (Space Velocity) of the fuel gas introduced into the decomposition reactor 22 may be set to an optimum value according to the design, for example, in the range of 10 to 140,000 hr −1 , preferably It can be set in the range of 100 to 10,000 hr −1 .
 また、本発明では、上記分解ガスを燃料の燃焼に利用することも可能である。なお、燃料については、上記分解ガス中に含まれる酸素を用いて燃焼可能なものであればよく、例えば石油や石炭、天然ガスなどの化石燃料の他にも、バイオマス燃料などの代替燃料を使用することができる。その他にも気体燃料、液体燃料、固体燃料の中から適宜選択して用いることが可能である。 In the present invention, the cracked gas can also be used for fuel combustion. As long as the fuel is combustible using oxygen contained in the cracked gas, for example, in addition to fossil fuels such as petroleum, coal, and natural gas, alternative fuels such as biomass fuel are used. can do. In addition, it is possible to appropriately select and use from gaseous fuel, liquid fuel, and solid fuel.
 以下、「特開2002-153734号公報」に記載の亜酸化窒素分解用触媒について説明する。
 工場や焼却設備から排出される排ガス中に含まれる亜酸化窒素の濃度は10%以下であり、一方手術室から排出される余剰麻酔ガス中に含まれる亜酸化窒素の濃度は、余剰麻酔ガス排除装置で圧縮空気によって多少は希釈されているとはいえ70%以下であり、非常に高濃度である。本発明の亜酸化窒素の分解触媒は低濃度から高濃度の亜酸化窒素の分解に対応できる触媒である。
Hereinafter, the nitrous oxide decomposition catalyst described in “JP 2002-153734 A” will be described.
The concentration of nitrous oxide contained in exhaust gas discharged from factories and incineration facilities is 10% or less, while the concentration of nitrous oxide contained in excess anesthetic gas discharged from the operating room excludes excess anesthetic gas. Although it is somewhat diluted with compressed air in the apparatus, it is 70% or less, which is a very high concentration. The nitrous oxide decomposition catalyst of the present invention is a catalyst that can cope with the decomposition of nitrous oxide having a low concentration to a high concentration.
 また、本発明の亜酸化窒素の分解触媒は、比較的低温での分解処理が可能であり、水分が共存する場合においても水分による活性劣化を受けにくく、しかもNOの発生量を許容濃度以下に抑制することができ、従来の分解触媒に対し、約1/10~1/100以下にまでNOの発生量を低減することができる。 Further, the nitrous oxide decomposition catalyst of the present invention can be decomposed at a relatively low temperature, is less susceptible to activity degradation due to moisture even in the presence of moisture, and reduces the generation amount of NO x below an allowable concentration. The amount of NO x generated can be reduced to about 1/10 to 1/100 or less of the conventional cracking catalyst.
 本発明の亜酸化窒素の分解触媒は、アルミニウム、マグネシウム及びロジウムの3種の金属を必須成分として含有する次の〔1〕~〔3〕のいずれかの触媒、〔1〕アルミニウム、マグネシウム及びロジウムが担体に担持されている触媒、〔2〕マグネシウム及びロジウムがアルミナ担体に担持されている触媒、〔3〕アルミニウムの少なくとも一部とマグネシウムにより、スピネル型結晶性複合酸化物が形成されている担体に、ロジウムが担持されている触媒、及び、アルミニウム及びロジウムの2種の金属と、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属を必須成分として含有する次の〔4〕~〔6〕のいずれかの触媒、〔4〕亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属と、アルミニウム及びロジウムが担体に担持されている触媒、〔5〕亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属と、ロジウムがアルミナ担体に担持されている触媒、〔6〕アルミニウムの少なくとも一部と、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属により、スピネル型結晶性複合酸化物が形成されている担体にロジウムが担持されている触媒、から選ばれる少なくとも1種の触媒を用いることができる。 The nitrous oxide decomposition catalyst of the present invention comprises any one of the following catalysts [1] to [3] containing three kinds of metals, aluminum, magnesium and rhodium as essential components: [1] aluminum, magnesium and rhodium [2] a catalyst in which magnesium and rhodium are supported on an alumina carrier, [3] a carrier in which a spinel crystalline composite oxide is formed of at least a part of aluminum and magnesium. The following [4] containing, as essential components, a catalyst on which rhodium is supported, and at least one metal selected from the group consisting of two metals, aluminum and rhodium, and zinc, iron, manganese and nickel. ] To [6], [4] at least one selected from the group consisting of zinc, iron, manganese and nickel A catalyst in which aluminum and rhodium are supported on a carrier, [5] a catalyst in which rhodium is supported on an alumina carrier, at least one metal selected from the group consisting of zinc, iron, manganese and nickel, [6] Rhodium is supported on a carrier on which a spinel crystalline composite oxide is formed by at least a part of aluminum and at least one metal selected from the group consisting of zinc, iron, manganese, and nickel. At least one catalyst selected from catalysts can be used.
 〔1〕の触媒に用いられる担体としては、アルミナ、シリカ、ジルコニア、セリア、チタニア及び酸化スズからなる群から選ばれる担体を用いることができ、〔4〕の触媒に用いられる担体としては、アルミナ、ジルコニア、セリア、チタニア及び酸化スズから選ばれる担体を用いることができる。担体は、表面積がそれぞれ30~300m/g程度のものを用いることができ、形状については特に制限はないが、反応器あるいは反応方法によって、粒状、粉末状、ハニカム状など、それぞれに適した形状を選ぶことができる。 As the carrier used for the catalyst of [1], a carrier selected from the group consisting of alumina, silica, zirconia, ceria, titania and tin oxide can be used, and as the carrier used for the catalyst of [4], alumina A carrier selected from zirconia, ceria, titania and tin oxide can be used. Carriers having a surface area of about 30 to 300 m 2 / g can be used, and there is no particular limitation on the shape, but depending on the reactor or reaction method, it is suitable for each of granular, powder, honeycomb, etc. You can choose the shape.
 〔1〕の触媒において、担体に担持するアルミニウムとマグネシウムは、アルミニウムが、マグネシウムに対する原子比で少なくとも2以上含まれることが好ましい。また、マグネシウムは金属原子換算で、触媒全体の0.1~20.0質量%含まれることが好ましい。 In the catalyst of [1], it is preferable that the aluminum and magnesium supported on the carrier contain aluminum in an atomic ratio of at least 2 with respect to magnesium. Magnesium is preferably contained in an amount of 0.1 to 20.0% by mass based on the metal atom.
 また、アルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成することが好ましく、スピネル型結晶性複合酸化物は、例えばアルミニウムとマグネシウムを担持させた担体を焼成することによって生成することができる。スピネル構造とはXYの化学式を持つ酸化物に見られる構造で立方晶系に属し、AlとMgはMgAlのスピネル構造を形成することが知られている。本発明の亜酸化窒素の分解触媒は、その理由は定かではないが、アルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成していることが、亜酸化窒素の分解能を向上させると共に、NOの発生量を低減させる効果を発揮すると考えられる。 Moreover, it is preferable that at least a part of aluminum forms a spinel-type crystalline composite oxide with magnesium, and the spinel-type crystalline composite oxide is formed, for example, by firing a carrier supporting aluminum and magnesium. be able to. The spinel structure is a structure found in an oxide having a chemical formula of XY 2 O 4 and belongs to a cubic system, and Al and Mg are known to form a MgAl 2 O 4 spinel structure. The reason for the nitrous oxide decomposition catalyst of the present invention is not clear, but at least a part of aluminum forms a spinel crystalline composite oxide with magnesium, thereby improving the resolution of nitrous oxide. It is considered that the effect of reducing the generation amount of NO x is exhibited.
 〔4〕の触媒において、担体に担持する、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とアルミニウムは、アルミニウムが、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属に対する原子比で、少なくとも2以上含まれることが好ましい。また、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属は、金属原子換算で触媒全体の0.1~40.0質量%含まれることが好ましい。 In the catalyst of [4], at least one metal selected from the group consisting of zinc, iron, manganese and nickel and aluminum supported on the carrier is selected from the group consisting of zinc, iron, manganese and nickel. It is preferable that at least 2 or more are contained by atomic ratio with respect to at least 1 type of metal. In addition, it is preferable that at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass in terms of metal atoms.
 また、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成することが好ましい。スピネル型結晶性複合酸化物は、アルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属を担持させた担体を焼成することによって生成することができる。アルミニウムと、亜鉛、鉄、マンガン及びニッケルはMAl(M=Zn、Fe、Mn、Ni)のスピネル構造を形成することが知られている。本発明の亜酸化窒素の分解触媒は、その理由は定かではないが、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成していることが、亜酸化窒素の分解能を向上させると共に、NOの発生量を低減させる効果を発揮すると考えられる。 Moreover, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel. The spinel crystalline composite oxide can be produced by firing a carrier supporting aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel. Aluminum, zinc, iron, manganese and nickel are known to form a spinel structure of MAl 2 O 4 (M = Zn, Fe, Mn, Ni). The reason for the nitrous oxide decomposition catalyst of the present invention is not clear, but at least a part of aluminum is at least one metal selected from the group consisting of zinc, iron, manganese and nickel, and a spinel crystalline composite. that forms the oxides, thereby improving the resolution of nitrous oxide, is believed to exert an effect of reducing the amount of generation of NO x.
 〔2〕の触媒に用いられる担体はアルミナであり、アルミナに特に制限はないが、表面積が50~300m/g程度のものを用いることができる。アルミナに担持するマグネシウムは、アルミニウムが、マグネシウムに対する原子比で少なくとも2以上含まれることが好ましい。マグネシウムは、金属原子換算で触媒全体の0.1~20.0質量%含まれることが好ましい。また、アルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成することが好ましい。 The carrier used for the catalyst of [2] is alumina, and the alumina is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used. The magnesium supported on the alumina preferably contains aluminum in an atomic ratio of at least 2 with respect to magnesium. Magnesium is preferably contained in an amount of 0.1 to 20.0% by mass in terms of metal atoms. Moreover, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with magnesium.
 〔5〕の触媒に用いられる担体はアルミナであり、アルミナに特に制限はないが、表面積が50~300m/g程度のものを用いることができる。アルミナに担持する、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属は、アルミニウムが、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属に対する原子比で、少なくとも2以上含まれることが好ましい。亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属は、金属原子換算で触媒全体の0.1~40.0質量%含まれることが好ましい。また、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成することが好ましい。 The carrier used for the catalyst of [5] is alumina, and the alumina is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used. At least one metal selected from the group consisting of zinc, iron, manganese and nickel supported on alumina is an atomic ratio of aluminum to at least one metal selected from the group consisting of zinc, iron, manganese and nickel. It is preferable that at least two or more are included. It is preferable that at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass based on the metal atom. Moreover, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel.
 〔3〕の触媒は、アルミニウムの少なくとも一部とマグネシウムにより、スピネル型結晶性複合酸化物が形成されている担体を用いる。〔3〕の触媒におけるアルミニウムとマグネシウムの原子比は、アルミニウムが、マグネシウムに対する原子比で少なくとも2以上含まれることが好ましい。また、マグネシウムは金属原子換算で触媒全体の0.1~20.0質量%含まれることが好ましい。 [3] A catalyst in which a spinel-type crystalline composite oxide is formed of at least a part of aluminum and magnesium is used as the catalyst [3]. The atomic ratio of aluminum and magnesium in the catalyst of [3] is preferably such that aluminum is contained in an atomic ratio of at least 2 with respect to magnesium. Magnesium is preferably contained in an amount of 0.1 to 20.0% by mass based on the metal atom.
 〔6〕の触媒は、アルミニウムの少なくとも一部と、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属により、スピネル型結晶性複合酸化物が形成されている担体を用いる。〔6〕の触媒におけるアルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の原子比は、アルミニウムが、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属に対する原子比で、少なくとも2以上含まれることが好ましい。また、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属は、金属原子換算で触媒全体の0.1~40.0質量%含まれることが好ましい。 The catalyst [6] uses a carrier in which a spinel crystalline composite oxide is formed of at least a part of aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel. [6] The atomic ratio of aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel in the catalyst of [6] is at least 1 selected from the group where aluminum is zinc, iron, manganese and nickel It is preferable that at least 2 or more is contained by atomic ratio with respect to the metal of seed | species. In addition, it is preferable that at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass in terms of metal atoms.
 本発明の亜酸化窒素の分解触媒に含まれるロジウムは、〔1〕~〔6〕のいずれの触媒を用いる場合も、金属原子換算で触媒全体の0.05~10質量%であることが好ましく、さらに好ましくは、0.1~6.0質量%であることがよい。ロジウムの担持量を増加させることによって低温における触媒活性を向上させることは可能であるが、10質量%以上担持させることは触媒のコストを考えると好ましくなく、また0.05質量%以下であると十分な亜酸化窒素の分解活性が得られない。 The rhodium contained in the nitrous oxide decomposition catalyst of the present invention is preferably 0.05 to 10% by mass in terms of metal atoms in any of the catalysts [1] to [6]. More preferably, the content is 0.1 to 6.0% by mass. Although it is possible to improve the catalyst activity at low temperature by increasing the amount of rhodium supported, it is not preferable to support 10% by mass or more in view of the cost of the catalyst, and 0.05% by mass or less. Sufficient nitrous oxide decomposition activity cannot be obtained.
 次に本発明の亜酸化窒素の分解触媒の製造方法について説明する。
 本発明の亜酸化窒素の分解触媒は各種の製造方法を用いることができ、例えば(1)含浸法、(2)共沈法、(3)混練法、等を用いることができる。以下に、この3つの製造方法を例に挙げて、本発明の亜酸化窒素の分解触媒の製造方法を説明する。
Next, the method for producing the nitrous oxide decomposition catalyst of the present invention will be described.
Various production methods can be used for the nitrous oxide decomposition catalyst of the present invention. For example, (1) impregnation method, (2) coprecipitation method, (3) kneading method, and the like can be used. Hereinafter, taking these three production methods as examples, the production method of the nitrous oxide decomposition catalyst of the present invention will be described.
 (1)含浸法を用いる触媒の製造方法
 含浸法を用いると、前記の〔1〕~〔6〕の触媒を製造することができる。〔1〕の触媒を製造する場合には、アルミナ、シリカ、ジルコニア、セリア、チタニア及び酸化スズからなる群から選ばれる担体に、先ずアルミニウム及びマグネシウムの無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を含浸させる。〔4〕の触媒を製造する場合には、アルミナ、ジルコニア、セリア、チタニア及び酸化スズからなる群から選ばれる担体に、先ずアルミニウム及び、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を含浸させる。〔2〕の触媒を製造する場合には、アルミナ担体にマグネシウムの無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を含浸させる。〔5〕の触媒を製造する場合には、アルミナ担体に、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を含浸させる。アルミニウム塩、マグネシウム塩及び、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属塩は、好ましくはいずれも硝酸塩を用いるのがよい。
(1) Method for producing catalyst using impregnation method When the impregnation method is used, the above-mentioned catalysts [1] to [6] can be produced. When the catalyst of [1] is produced, an inorganic acid salt (nitrate, hydrochloride, sulfate, etc.) of aluminum and magnesium is first applied to a support selected from the group consisting of alumina, silica, zirconia, ceria, titania and tin oxide. ) Or organic acid salts (oxalate, acetate, etc.). In the case of producing the catalyst of [4], the support selected from the group consisting of alumina, zirconia, ceria, titania and tin oxide is firstly at least one selected from the group consisting of aluminum and zinc, iron, manganese and nickel. Impregnation with inorganic acid salts (nitrate, hydrochloride, sulfate, etc.) or organic acid salts (oxalate, acetate, etc.) of seed metals. In the production of the catalyst [2], an alumina carrier is impregnated with a magnesium inorganic acid salt (nitrate, hydrochloride, sulfate, etc.) or an organic acid salt (oxalate, acetate, etc.). When the catalyst of [5] is produced, an inorganic support (nitrate, hydrochloride, sulfate, etc.) or an organic salt of at least one metal selected from the group consisting of zinc, iron, manganese, and nickel is used on an alumina support. Impregnate with acid salts (oxalate, acetate, etc.). As the at least one metal salt selected from the group consisting of an aluminum salt, a magnesium salt and zinc, iron, manganese, and nickel, it is preferable to use a nitrate.
 〔1〕の触媒を製造する場合、アルミニウムとマグネシウムの担体に担持する量としては、アルミニウムがマグネシウム対する原子比で2以上となるように担持することが好ましく、またマグネシウムの担持量が、触媒全体の0.1~20.0質量%となるようにすることが好ましい。〔4〕の触媒を製造する場合、アルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の担体に担持する量としては、アルミニウムが、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属に対する原子比で2以上となるように担持することが好ましく、また、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の担持量が、触媒全体の0.1~40.0質量%となるようにすることが好ましい。〔2〕の触媒を製造する場合には、マグネシウムが、アルミニウムに対する原子比で1/2以下となるように担持することが好ましく、またマグネシウムの担持量が、触媒全体の0.1~20.0質量%となるようにすることが好ましい。また、〔5〕の触媒を製造する場合には、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属が、アルミニウムに対する原子比で1/2以下となるように担持することが好ましく、また亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の担持量が、触媒全体の0.1~40.0質量%となるようにすることが好ましい。 When the catalyst of [1] is produced, the amount supported on the carrier of aluminum and magnesium is preferably such that aluminum is supported so that the atomic ratio with respect to magnesium is 2 or more. It is preferable to make it 0.1 to 20.0% by mass. When the catalyst of [4] is produced, the amount of aluminum supported on at least one metal carrier selected from the group consisting of aluminum, zinc, iron, manganese and nickel is aluminum, zinc, iron, manganese and nickel. It is preferably supported so that the atomic ratio with respect to at least one metal selected from the group consisting of 2 or more is supported, and the supported amount of at least one metal selected from the group consisting of zinc, iron, manganese and nickel However, it is preferable to be 0.1 to 40.0% by mass of the total catalyst. In the production of the catalyst [2], it is preferable that magnesium is supported so that the atomic ratio to aluminum is ½ or less, and the amount of magnesium supported is 0.1-20. It is preferable to be 0% by mass. In addition, when producing the catalyst of [5], at least one metal selected from the group consisting of zinc, iron, manganese and nickel is supported so that the atomic ratio with respect to aluminum is ½ or less. In addition, it is preferable that the supported amount of at least one metal selected from the group consisting of zinc, iron, manganese and nickel is 0.1 to 40.0% by mass of the total catalyst.
 担体に目的とする金属塩を担持した後、担体を乾燥して焼成処理することによって、例えばアルミニウム及びマグネシウムを含有し、アルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成した担体を得ることができ、この担体を〔1〕の触媒の担体として用いる。また、同様にして、アルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属を含有し、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成した担体を得ることができ、この担体を〔4〕の触媒の担体として用いる。例えば〔1〕の触媒におけるアルミニウム塩及びマグネシウム塩を含浸させた後の乾燥温度、〔4〕の触媒におけるアルミニウム塩と、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属塩を含浸させた後の乾燥温度はそれぞれ特に制限はないが、好ましくは80~150℃の温度範囲がよく、さらに好ましくは100~130℃の温度範囲がよい。また、乾燥雰囲気は特に制限はなく、窒素や空気を用いることができる。乾燥時間は特に制限はないが、含浸法を用いた場合、通常2~4時間程度でよい。 After supporting the desired metal salt on the carrier, the carrier is dried and fired to contain, for example, aluminum and magnesium, and at least part of the aluminum forms a spinel-type crystalline composite oxide with magnesium. A carrier can be obtained, and this carrier is used as the carrier for the catalyst of [1]. Similarly, it contains aluminum and at least one metal selected from the group consisting of zinc, iron, manganese and nickel, and at least a part of aluminum is selected from the group consisting of zinc, iron, manganese and nickel. Thus, a support in which a spinel-type crystalline composite oxide is formed with at least one kind of metal can be obtained, and this support is used as a support for the catalyst of [4]. For example, the drying temperature after impregnating the aluminum salt and magnesium salt in the catalyst [1], the aluminum salt in the catalyst [4], and at least one metal salt selected from the group consisting of zinc, iron, manganese and nickel The drying temperature after impregnating is not particularly limited, but is preferably in the temperature range of 80 to 150 ° C, more preferably in the temperature range of 100 to 130 ° C. The drying atmosphere is not particularly limited, and nitrogen or air can be used. The drying time is not particularly limited, but when using the impregnation method, it may usually be about 2 to 4 hours.
 含浸して乾燥させた後の担体の焼成処理は、400~900℃の温度範囲で行うことができ、好ましくは、500~700℃である。焼成温度が400℃より低い場合は、結晶化が十分ではなく、900℃以上では担体の比表面積の減少を招き好ましくない。焼成時間は特に限定されないが、1~10時間程度がよく、好ましくは2~4時間程度であり、段階的に焼成温度を変化させてもよい。長時間の焼成は、その効果が飽和するので経済的に好ましくなく、短時間の焼成ではその効果が薄い場合がある。また、焼成は焼成炉やマッフル炉等を用いて行うことができ、この時の流通ガスとしては、窒素または空気のいずれを使用してもよい。 Calcination of the carrier after impregnation and drying can be performed in a temperature range of 400 to 900 ° C., preferably 500 to 700 ° C. When the firing temperature is lower than 400 ° C., crystallization is not sufficient, and when it is 900 ° C. or higher, the specific surface area of the carrier is decreased, which is not preferable. The firing time is not particularly limited, but may be about 1 to 10 hours, preferably about 2 to 4 hours, and the firing temperature may be changed stepwise. Long-term firing is economically undesirable because the effect is saturated, and short-term firing may be less effective. Moreover, baking can be performed using a baking furnace, a muffle furnace, etc., and any of nitrogen or air may be used as a distribution gas at this time.
 次に、前記の焼成して得られた担体にロジウム塩を担持する。ロジウム塩としては、無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を用いることができ、硝酸塩を用いることが好ましい。ロジウム塩を担持する工程は、例えばアルミニウム、マグネシウム及びロジウムの3種の金属を必須成分として含有する触媒を製造する場合には、前記の方法を用いて得られたアルミニウムの少なくとも一部がマグネシウムとスピネル型結晶性複合酸化物を形成する担体に対して行うことが好ましいが、担体にアルミニウムとマグネシウムを含浸担持する工程、あるいはアルミナ担体にマグネシウムを含浸担持する工程と同時に行ってもよい。また、ロジウムの担持量は、触媒全体の0.05~10質量%となるようにすることが好ましい。 Next, a rhodium salt is supported on the carrier obtained by firing. As the rhodium salt, an inorganic acid salt (nitrate, hydrochloride, sulfate, etc.) or an organic acid salt (oxalate, acetate, etc.) can be used, and nitrate is preferably used. In the step of supporting the rhodium salt, for example, in the case of producing a catalyst containing three kinds of metals, aluminum, magnesium and rhodium, as essential components, at least a part of the aluminum obtained using the above method is magnesium and It is preferably performed on the carrier forming the spinel crystalline composite oxide, but it may be performed simultaneously with the step of impregnating and supporting aluminum and magnesium on the carrier or the step of impregnating and supporting magnesium on the alumina carrier. Further, the supported amount of rhodium is preferably 0.05 to 10% by mass of the whole catalyst.
 同様に、ロジウム塩を担持する工程は、アルミニウム及びロジウムの2種の金属と、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属を必須成分として含有する触媒を製造する場合には、前記の方法を用いて得られたアルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成する担体に対して行うことが好ましいが、担体にアルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属を含浸担持する工程、あるいはアルミナ担体に、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属を含浸担持する工程と同時に行ってもよい。また、ロジウムの担持量は、触媒全体の0.05~10質量%となるようにすることが好ましい。ここで、予めアルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成する担体を用いれば、この担体に前記と同様にしてロジウム塩を担持することにより〔3〕の触媒を製造することができる。また、予めアルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成する担体を用いれば、この担体にロジウム塩を担持することにより〔6〕の触媒を製造することができる。 Similarly, the step of supporting the rhodium salt is for producing a catalyst containing as essential components at least one metal selected from the group consisting of two metals, aluminum and rhodium, and zinc, iron, manganese and nickel. In the support, at least a part of the aluminum obtained by the above method is used as a carrier that forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel. Preferably, it is carried out with respect to the step of impregnating and supporting at least one metal selected from the group consisting of aluminum and zinc, iron, manganese and nickel on the support, or from zinc, iron, manganese and nickel on the alumina support. It may be performed simultaneously with the step of impregnating and supporting at least one metal selected from the group consisting of Further, the supported amount of rhodium is preferably 0.05 to 10% by mass of the whole catalyst. Here, if a support in which at least a part of aluminum forms a spinel crystalline composite oxide with magnesium is used in advance, the catalyst of [3] is produced by supporting a rhodium salt on the support in the same manner as described above. can do. In addition, if a support in which at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel is used, a rhodium salt is added to the support. The catalyst of [6] can be produced by supporting the catalyst.
 次に、このロジウムを担持させた触媒前駆体を前記と同様の乾燥条件で乾燥し、乾燥した触媒前駆体を焼成する。この焼成温度は200~500℃であることが好ましく、さらに好ましくは300~400℃がよい。焼成して得られた触媒は亜酸化窒素分解触媒として使用することができるが、さらに還元処理をすることが好ましく、還元処理をすることで、より活性の高いロジウム含有触媒を得ることができる。還元処理は、例えば、(1)ヒドラジンで還元後に再乾燥し、焼成する方法、または(2)水素還元する方法、によって行うことができ、水素還元する方法を用いることが好ましい。水素還元する方法を用いる場合は、還元温度は200~500℃であることが好ましく、より好ましくは300~400℃がよい。還元時間は特に限定されないが、1~10時間程度で処理することができ、好ましくは2~4時間程度である。また、焼成処理をせずに還元処理を行ってもよく、この場合も活性の高いロジウム含有触媒を得ることができる。焼成処理をせずに還元処理を行って触媒を製造する方法としては、200~500℃の温度で水素還元する方法が好ましい。 Next, the rhodium-supported catalyst precursor is dried under the same drying conditions as described above, and the dried catalyst precursor is calcined. The firing temperature is preferably 200 to 500 ° C, more preferably 300 to 400 ° C. Although the catalyst obtained by calcination can be used as a nitrous oxide decomposition catalyst, it is preferable to further perform a reduction treatment, and a rhodium-containing catalyst with higher activity can be obtained by carrying out the reduction treatment. The reduction treatment can be performed by, for example, (1) a method of re-drying after hydrazine reduction and firing, or (2) a method of hydrogen reduction, and a method of hydrogen reduction is preferably used. When using the hydrogen reduction method, the reduction temperature is preferably 200 to 500 ° C., more preferably 300 to 400 ° C. Although the reduction time is not particularly limited, the treatment can be performed in about 1 to 10 hours, preferably about 2 to 4 hours. Moreover, you may perform a reduction process, without performing a baking process, and a rhodium containing catalyst with high activity can be obtained also in this case. As a method for producing a catalyst by carrying out a reduction treatment without performing a calcination treatment, a method in which hydrogen is reduced at a temperature of 200 to 500 ° C. is preferable.
 (2)共沈法を用いる触媒の製造方法
 共沈法を用いると、前記の〔3〕及び〔6〕の触媒を製造することができる。共沈法を用いて〔3〕の触媒を製造する方法としては、例えばアルミニウムとマグネシウムの硝酸塩を含む水溶液にアンモニア水を滴下して中和沈殿させ、必要に応じて熟成放置し、ろ過水洗し、洗浄水の電導度などで十分に水洗したことを確認する。次に、含浸法と同様の条件で10~12時間程度乾燥後、得られた乾燥体を粉砕し、粒度を揃えて成型する。さらに窒素または空気雰囲気において、含浸法と同様の条件で焼成処理することにより、アルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成する担体を得る。
(2) Method for Producing Catalyst Using Coprecipitation Method When the coprecipitation method is used, the above catalysts [3] and [6] can be produced. As a method for producing the catalyst of [3] using the coprecipitation method, for example, ammonia water is dropped into an aqueous solution containing aluminum and magnesium nitrate to neutralize and precipitate, and if necessary, left to age and washed with filtered water. Check that the water has been thoroughly washed with the conductivity of the washing water. Next, after drying for about 10 to 12 hours under the same conditions as in the impregnation method, the obtained dried body is pulverized and molded with uniform particle sizes. Further, a carrier in which at least a part of aluminum forms a spinel-type crystalline composite oxide with magnesium is obtained by baking in a nitrogen or air atmosphere under the same conditions as in the impregnation method.
 アルミニウムとマグネシウムの量としては、アルミニウムがマグネシウムに対する原子比で2以上となるようにすることが好ましく、マグネシウムは、金属原子換算で触媒全体の0.1~20.0質量%含まれることが好ましい。こうして得られたアルミニウムの少なくとも一部が、マグネシウムとスピネル型結晶性複合酸化物を形成する担体にロジウム塩を担持するが、その方法、担持量及びその後の処理方法としては前記の含浸法と同様に行うことができる。 The amount of aluminum and magnesium is preferably such that aluminum has an atomic ratio of 2 or more with respect to magnesium, and magnesium is preferably contained in an amount of 0.1 to 20.0% by mass of the total catalyst in terms of metal atoms. . At least a part of the aluminum thus obtained carries a rhodium salt on a carrier that forms a spinel-type crystalline composite oxide with magnesium. The method, the amount supported, and the subsequent treatment method are the same as the above impregnation method. Can be done.
 また、共沈法を用いて〔6〕の触媒を製造する方法としては、例えばアルミニウムの硝酸塩と、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の硝酸塩を含む水溶液にアンモニア水を滴下して中和沈殿させ、必要に応じて熟成放置し、ろ過水洗し、洗浄水の電導度などで十分に水洗したことを確認する。次に、含浸法と同様の条件で10~12時間程度乾燥後、得られた乾燥体を粉砕し、粒度を揃えて成型する。さらに窒素または空気雰囲気において、含浸法と同様の条件で焼成処理することにより、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成する担体を得る。 Further, as a method for producing the catalyst of [6] using the coprecipitation method, for example, an aqueous solution containing an aluminum nitrate and at least one metal nitrate selected from the group consisting of zinc, iron, manganese and nickel is used. Aqueous ammonia is added dropwise to neutralize and precipitate, and if necessary, aged as it is, washed with filtered water, and it is confirmed that it has been sufficiently washed with the conductivity of the washing water. Next, after drying for about 10 to 12 hours under the same conditions as in the impregnation method, the obtained dried body is pulverized and molded with uniform particle sizes. Furthermore, by firing in a nitrogen or air atmosphere under the same conditions as the impregnation method, at least a part of aluminum is selected from the group consisting of zinc, iron, manganese and nickel and spinel crystallinity. A carrier forming a complex oxide is obtained.
 アルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の量としては、アルミニウムが、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属に対する原子比で2以上となるようにすることが好ましく、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属は、金属原子換算で触媒全体の0.1~40.0質量%含まれることが好ましい。こうして得られた、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成する担体にロジウム塩を担持するが、その方法、担持量及びその後の処理方法としては前記の含浸法と同様に行うことができる。 The amount of at least one metal selected from the group consisting of aluminum and zinc, iron, manganese and nickel is an atomic ratio of aluminum to at least one metal selected from the group consisting of zinc, iron, manganese and nickel. Preferably, at least one metal selected from the group consisting of zinc, iron, manganese and nickel is contained in an amount of 0.1 to 40.0% by mass in terms of metal atoms. It is preferable. At least a portion of the aluminum thus obtained carries a rhodium salt on a carrier that forms a spinel crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese and nickel. The method, the loading amount and the subsequent treatment method can be carried out in the same manner as the above impregnation method.
 (3)混練法を用いる触媒の製造方法
 混練法を用いると、〔3〕及び〔6〕の触媒を製造することができる。混練法を用いて〔3〕の触媒を製造する方法としては、例えば、アルミナ及び/または水酸化アルミニウムと、酸化マグネシウム、水酸化マグネシウム及び/またはマグネシウム塩に、例えば必要に応じて水を加え、機械的に混合して得られる混合物を乾燥し、さらに含浸法と同様の条件で焼成処理を行い、前記のスピネル型結晶性複合酸化物を得ることができる。アルミニウムとマグネシウムの量としては、アルミニウムがマグネシウムに対する原子比で2以上となるようにすることが好ましく、マグネシウムは、金属原子換算で触媒全体の0.1~20.0質量%含まれることが好ましい。
(3) Catalyst production method using a kneading method [3] and [6] catalysts can be produced using a kneading method. As a method for producing the catalyst of [3] using the kneading method, for example, water is added to alumina and / or aluminum hydroxide and magnesium oxide, magnesium hydroxide and / or magnesium salt, for example, if necessary, The mixture obtained by mechanical mixing can be dried, and further subjected to a firing treatment under the same conditions as in the impregnation method to obtain the spinel crystalline composite oxide. The amount of aluminum and magnesium is preferably such that aluminum has an atomic ratio of 2 or more with respect to magnesium, and magnesium is preferably contained in an amount of 0.1 to 20.0% by mass of the total catalyst in terms of metal atoms. .
 こうして得られたアルミニウムの少なくとも一部がマグネシウムとスピネル型結晶性複合酸化物を形成する焼成体にロジウム塩を担持するが、その方法、担持量及びその後の処理方法としては前記の含浸法と同様の方法を用いることができる。また、ロジウム塩はアルミナ等を機械的に混合する際にあらかじめ加えてもよい。 At least a portion of the aluminum thus obtained carries a rhodium salt on a fired body that forms a spinel-type crystalline composite oxide with magnesium. The method, the amount supported, and the subsequent treatment method are the same as the above impregnation method. This method can be used. The rhodium salt may be added in advance when alumina or the like is mechanically mixed.
 混練法を用いて〔6〕の触媒を製造する方法としては、例えば、アルミナ及び/または水酸化アルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の酸化物、水酸化物及び/または金属塩に、例えば必要に応じて水を加え、機械的に混合して得られる混合物を乾燥し、さらに含浸法と同様の条件で焼成処理を行い、前記のスピネル型結晶性複合酸化物を得ることができる。また、アルミニウムと、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属の量としては、アルミニウムが、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属に対する原子比で2以上となるようにすることが好ましく、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属は、金属原子換算で触媒全体の0.1~40.0質量%含まれることが好ましい。 Examples of the method for producing the catalyst of [6] using the kneading method include at least one oxide selected from the group consisting of alumina and / or aluminum hydroxide and zinc, iron, manganese and nickel, and hydroxylation. For example, water is added to the product and / or metal salt, if necessary, and the mixture obtained by mechanical mixing is dried, and further subjected to a firing treatment under the same conditions as in the impregnation method. An oxide can be obtained. Further, the amount of at least one metal selected from the group consisting of aluminum and zinc, iron, manganese and nickel is such that aluminum is based on at least one metal selected from the group consisting of zinc, iron, manganese and nickel. The atomic ratio is preferably 2 or more, and at least one metal selected from the group consisting of zinc, iron, manganese and nickel is 0.1 to 40.0% by mass of the total catalyst in terms of metal atoms. It is preferably included.
 こうして得られた、アルミニウムの少なくとも一部が、亜鉛、鉄、マンガン及びニッケルからなる群から選ばれる少なくとも1種の金属とスピネル型結晶性複合酸化物を形成する焼成体にロジウム塩を担持するが、その方法、担持量及びその後の処理方法としては前記の含浸法と同様の方法を用いることができる。また、ロジウム塩はアルミナ等を機械的に混合する際にあらかじめ加えてもよい。 At least a portion of the aluminum thus obtained carries a rhodium salt on a fired body that forms a spinel-type crystalline composite oxide with at least one metal selected from the group consisting of zinc, iron, manganese, and nickel. As the method, the loading amount and the subsequent treatment method, the same method as the above impregnation method can be used. The rhodium salt may be added in advance when alumina or the like is mechanically mixed.
 次に本発明の分解触媒を用いた亜酸化窒素の分解方法について説明する。本発明の分解触媒を用いて亜酸化窒素の分解反応を行う場合、200~600℃の温度範囲で行うことができる。好ましくは300~500℃の温度範囲、さらに好ましくは350~450℃の温度範囲で、本発明の分解触媒と亜酸化窒素を気相で接触させればよい。200℃より温度が低いと亜酸化窒素の分解が十分ではなく、また、600℃以上では触媒寿命が短くなる傾向があるので好ましくない。触媒床の方式としては、特に制限されるものはないが、固定床が一般的に好ましく用いられる。 Next, a method for decomposing nitrous oxide using the decomposition catalyst of the present invention will be described. When the decomposition reaction of nitrous oxide is performed using the decomposition catalyst of the present invention, it can be performed in a temperature range of 200 to 600 ° C. The decomposition catalyst of the present invention and nitrous oxide may be contacted in the gas phase, preferably in the temperature range of 300 to 500 ° C, more preferably in the temperature range of 350 to 450 ° C. If the temperature is lower than 200 ° C., decomposition of nitrous oxide is not sufficient, and if it is 600 ° C. or higher, the catalyst life tends to be short, which is not preferable. The catalyst bed system is not particularly limited, but a fixed bed is generally preferably used.
 また、従来のパラジウムを用いた触媒では水分の影響によって触媒の活性が低下し、水分を除いても元の活性に戻らないのに対し、本発明の分解触媒は、1~3%の水分共存によって活性は僅かに低下する場合があるものの、水分を除くと再び元の活性に戻るという特徴を有する。 In addition, the catalytic activity of the conventional palladium catalyst decreases due to the influence of moisture and does not return to the original activity even when the moisture is removed, whereas the cracking catalyst of the present invention has 1 to 3% moisture coexistence. Although the activity may slightly decrease depending on the condition, it has a characteristic of returning to the original activity again when moisture is removed.
 次に本発明の分解触媒を用いて分解することができるガスの組成について説明する。工場や焼却設備から排出される排ガス中に含まれる亜酸化窒素の濃度は、10%以下であり、本発明の分解触媒を用いることにより、排ガス中に含まれる1ppm~10%の濃度の亜酸化窒素を分解することができる。一方、手術室から余剰麻酔ガス排除装置によって排出される亜酸化窒素の濃度は3~70%と非常に高濃度の場合がある。また、麻酔ガス中に含まれる亜酸化窒素を分解する場合には、通常酸素が13~20%存在する反応となり、分解触媒にとって過酷な条件下での反応となる。従って、除熱が可能であり、温度コントロールが十分にできれば、分解処理する亜酸化窒素の濃度に特に制限はないが、亜酸化窒素が窒素と酸素に分解する反応は発熱反応であるため、亜酸化窒素の濃度は3~50%がよく、好ましくは3~25%、さらに好ましくは3~10%であることがよい。 Next, the composition of the gas that can be decomposed using the decomposition catalyst of the present invention will be described. The concentration of nitrous oxide contained in exhaust gas discharged from factories and incineration facilities is 10% or less. By using the decomposition catalyst of the present invention, nitrous oxide having a concentration of 1 ppm to 10% contained in exhaust gas. Nitrogen can be decomposed. On the other hand, the concentration of nitrous oxide discharged from the operating room by the surplus anesthetic gas exclusion device may be as high as 3 to 70%. Further, when decomposing nitrous oxide contained in the anesthetic gas, the reaction usually involves 13 to 20% oxygen, and the reaction is performed under conditions that are severe for the decomposition catalyst. Therefore, if heat removal is possible and the temperature can be controlled sufficiently, the concentration of nitrous oxide to be decomposed is not particularly limited, but the reaction in which nitrous oxide decomposes into nitrogen and oxygen is an exothermic reaction. The concentration of nitric oxide is preferably 3 to 50%, preferably 3 to 25%, more preferably 3 to 10%.
 単位触媒当たりの供給ガス量である空間速度(SV:Space Velocity)は、10hr-1~20000hr-1の範囲であることがよく、好ましくは100hr-1~10000hr-1の範囲である。 Space velocity is the amount of gas supplied per unit catalyst (SV: Space Velocity) may be in the range of 10hr -1 ~ 20000hr -1, preferably in the range of 100hr -1 ~ 10000hr -1.
 以下、「特開2002-253967号公報」に記載の亜酸化窒素分解用触媒について説明する。
 本発明の亜酸化窒素の分解触媒は、低濃度から高濃度の亜酸化窒素を分解することができる触媒である。手術室から排出される余剰麻酔ガス中に含まれる亜酸化窒素の濃度は、圧縮空気によって多少は希釈されているとはいえ70%以下であり、非常に高濃度であるが、本発明の亜酸化窒素の分解触媒を用いれば対応することができる。
Hereinafter, the nitrous oxide decomposition catalyst described in “Japanese Patent Application Laid-Open No. 2002-253967” will be described.
The nitrous oxide decomposition catalyst of the present invention is a catalyst capable of decomposing a low concentration to a high concentration nitrous oxide. The concentration of nitrous oxide contained in the surplus anesthetic gas discharged from the operating room is 70% or less, although it is somewhat diluted with compressed air, and is very high. This can be achieved by using a decomposition catalyst for nitrogen oxides.
 また、本発明の亜酸化窒素の分解触媒は、余剰麻酔ガス中に含まれる揮発性麻酔剤による劣化を受けた場合においても、賦活再生をすることによって活性を回復させることができる。しかも比較的低温で亜酸化窒素を分解することができ、水分が共存する場合においても水分による活性劣化を受けにくく、NOの発生量を許容濃度以下に抑制することができ、従来の分解触媒に対し、約1/10~1/100以下のレベルまでNOの発生量を低減することができる。 In addition, the nitrous oxide decomposition catalyst of the present invention can recover its activity by activating regeneration even when it is deteriorated by the volatile anesthetic contained in the excess anesthetic gas. Moreover at a relatively low temperature can decompose nitrous oxide, less subject to deactivation due to water even when water coexists, it is possible to suppress the generation amount of the NO x to less than the allowable concentration, conventional cracking catalysts respect, it is possible to reduce the generation amount of the NO x to about 1 / 10-1 / 100 following levels.
 本発明の亜酸化窒素の分解触媒は、ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属を必須成分として含有することを特徴とし、次の(1)~(3)のいずれかの触媒を用いることができる。
(1) シリカまたはシリカアルミナから選ばれる担体に、(a)ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属を担持してなる触媒。
(2) シリカ担体に、(a)ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属、(b)アルミニウム、および(c)亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属、を担持してなる触媒。
(3) シリカアルミナ担体に、(a)ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属、および(d)マグネシウム、亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属、を担持してなる触媒。
The nitrous oxide decomposition catalyst of the present invention contains at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium as an essential component, and is any one of the following (1) to (3) A catalyst can be used.
(1) A catalyst comprising (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium on a carrier selected from silica or silica alumina.
(2) The silica support includes (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, (b) aluminum, and (c) at least one metal selected from the group consisting of zinc, iron and manganese. And a catalyst.
(3) (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, and (d) at least one metal selected from the group consisting of magnesium, zinc, iron and manganese on the silica alumina support. A supported catalyst.
 (1)の触媒に用いられる担体は、シリカまたはシリカアルミナであり、これらの担体に特に制限はないが、表面積が50~300m/g程度のものを用いることができる。形状については特に制限はなく、反応器あるいは反応方法によって、粒状、粉末状、ハニカム状など、それぞれに適した形状を選ぶことができる。 The support used for the catalyst of (1) is silica or silica alumina, and these supports are not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used. There is no particular limitation on the shape, and a shape suitable for each of a granular shape, a powder shape, a honeycomb shape, and the like can be selected depending on the reactor or the reaction method.
 (2)の触媒に用いられる担体は、シリカであり特に制限はないが、表面積が50~300m/g程度のものを用いることができる。形状については特に制限はないが、反応器あるいは反応方法によって、粒状、粉末状、ハニカム状など、それぞれに適した形状を選ぶことができる。 The carrier used for the catalyst of (2) is silica and is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used. Although there is no restriction | limiting in particular about a shape, A shape suitable for each, such as a granular form, a powder form, and a honeycomb form, can be selected with a reactor or reaction method.
 シリカ担体に担持する成分のうち、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属は、触媒質量全体の0.1~5.0質量%含有することが好ましく、さらに好ましくは0.2~1.0質量%含有することが望ましい。群(c)から選ばれる金属が触媒質量全体の5.0質量%以上含まれていても効果が飽和することがある。 Of the components supported on the silica support, at least one metal selected from the group (c) consisting of zinc, iron and manganese is preferably contained in an amount of 0.1 to 5.0% by mass of the total catalyst mass, more preferably Is preferably contained in an amount of 0.2 to 1.0% by mass. Even if the metal selected from the group (c) is contained in an amount of 5.0% by mass or more based on the total mass of the catalyst, the effect may be saturated.
 シリカ担体に担持するアルミニウムは、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属に対する原子比で、少なくとも2以上含有することが好ましい。また、アルミニウムの少なくとも一部が、群(c)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成することが好ましく、スピネル型結晶性複合酸化物は、例えばアルミニウムと亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属を担持させた担体を焼成することによって生成することができる。 The aluminum supported on the silica support is preferably contained in an atomic ratio of at least 2 to at least one metal selected from the group (c) consisting of zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (c), and the spinel crystalline composite oxide includes, for example, aluminum, zinc, iron And can be produced by firing a support on which at least one metal selected from the group consisting of manganese is supported.
 スピネル構造とはXYの化学式を持つ酸化物に見られる構造で、立方晶系に属し、AlとZn、Fe、Mnは、それぞれ、ZnAl、FeAl、MnAlのスピネル構造を形成することが知られている。本発明の亜酸化窒素の分解触媒は、その理由は定かではないが、アルミニウムの少なくとも一部が、群(c)から選ばれる少なくとも1つの金属の一部もしくは全部とスピネル型結晶性複合酸化物を形成することによって、亜酸化窒素の分解能を向上させると共に、NOの発生量を低減させる効果を発揮すると考えられる。 A spinel structure is a structure found in an oxide having a chemical formula of XY 2 O 4 , belongs to a cubic system, and Al, Zn, Fe, and Mn are ZnAl 2 O 4 , FeAl 2 O 4 , and MnAl 2 O, respectively. It is known to form four spinel structures. Although the reason for the nitrous oxide decomposition catalyst of the present invention is not clear, at least a part of aluminum is a part or all of at least one metal selected from the group (c) and a spinel-type crystalline composite oxide. It is considered that by forming, the effect of improving the resolution of nitrous oxide and reducing the amount of NO x generated is exhibited.
 (3)の触媒に用いられる担体はシリカアルミナであり特に制限はないが、表面積が50~300m/g程度のものを用いることができる。シリカアルミナ担体に担持する、マグネシウム、亜鉛、鉄およびマンガンからなる群(d)から選ばれる少なくとも1つの金属は、触媒質量全体の0.1~5.0質量%含有することが好ましく、さらに好ましくは0.2~1.0質量%含有することが望ましい。群(d)から選ばれる金属が触媒質量全体の5.0質量%以上含まれていても効果が飽和することがある。 The carrier used for the catalyst of (3) is silica alumina and is not particularly limited, but those having a surface area of about 50 to 300 m 2 / g can be used. The at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese supported on the silica-alumina carrier is preferably contained in an amount of 0.1 to 5.0% by mass of the total catalyst mass, and more preferably Is preferably contained in an amount of 0.2 to 1.0% by mass. Even if the metal selected from the group (d) is contained in an amount of 5.0% by mass or more of the entire catalyst mass, the effect may be saturated.
 (3)の触媒に含まれるアルミニウムは、マグネシウム、亜鉛、鉄およびマンガンからなる群(d)から選ばれる少なくとも1つの金属に対する原子比で、少なくとも2以上含有することが好ましい。また、アルミニウムの少なくとも一部が、群(d)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成することが好ましい。スピネル型結晶性複合酸化物は、シリカアルミナ担体に、群(d)から選ばれる少なくとも1つの金属を担持させ、担体を焼成することによって生成することができる。 (3) The aluminum contained in the catalyst is preferably contained in an atomic ratio of at least 2 to at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (d). The spinel type crystalline composite oxide can be produced by supporting at least one metal selected from the group (d) on a silica alumina support and firing the support.
 本発明の亜酸化窒素の分解触媒に含まれる、ロジウム、ルテニウムおよびパラジウムからなる群(a)から選ばれる少なくとも1つの貴金属は、前記の(1)~(3)のいずれの触媒を用いる場合も、触媒質量全体の0.05~10質量%含有することが好ましく、さらに好ましくは、0.1~6.0質量%含有することが望ましい。群(a)から選ばれる少なくとも1つの貴金属の担持量を増加させることによって低温における触媒活性を向上させることは可能であるが、10質量%以上担持させることは触媒のコストを考えると好ましくなく、また0.05質量%以下であると十分な亜酸化窒素の分解活性が得られない場合がある。 The at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium contained in the nitrous oxide decomposition catalyst of the present invention may be any of the above-mentioned catalysts (1) to (3). The content is preferably 0.05 to 10% by mass, more preferably 0.1 to 6.0% by mass based on the total mass of the catalyst. Although it is possible to improve the catalytic activity at low temperature by increasing the amount of at least one noble metal selected from the group (a), it is not preferable to support 10% by mass or more in view of the cost of the catalyst, Further, if it is 0.05% by mass or less, sufficient nitrous oxide decomposition activity may not be obtained.
 次に本発明の亜酸化窒素分解触媒の製造方法について説明する。
 本発明の亜酸化窒素分解触媒は各種の製造方法を用いることができ、例えば(1)含浸法、(2)共沈法、(3)混練法、等の方法を用いることができる。以下に含浸法を用いて前記の(2)の触媒を製造する方法について説明するが、本発明はこれに限定されないことはいうまでもない。
Next, the manufacturing method of the nitrous oxide decomposition catalyst of this invention is demonstrated.
Various production methods can be used for the nitrous oxide decomposition catalyst of the present invention. For example, methods such as (1) impregnation method, (2) coprecipitation method, and (3) kneading method can be used. Hereinafter, a method for producing the catalyst (2) using the impregnation method will be described, but it is needless to say that the present invention is not limited thereto.
 含浸法を用いて(2)の触媒を製造する方法は以下の3工程を含むことができる。
〔1〕シリカ担体に、(b)アルミニウム、および(c)亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属を担持する工程。
〔2〕工程〔1〕から得られる担体を400~900℃で焼成する工程。
〔3〕工程〔2〕から得られる焼成された担体に、(a)ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属を担持する工程。
The method of producing the catalyst of (2) using the impregnation method can include the following three steps.
[1] A step of supporting (b) aluminum and (c) at least one metal selected from the group consisting of zinc, iron and manganese on a silica support.
[2] A step of calcining the carrier obtained from step [1] at 400 to 900 ° C.
[3] A step of (a) supporting at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium on the calcined carrier obtained from the step [2].
 工程〔1〕では、シリカ担体に、アルミニウムの無機酸塩、および、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属の無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を含浸させる。好ましくは、アルミニウムと群(c)から選ばれる少なくとも1つの金属の塩は、どちらも硝酸塩を用いるのがよい。 In step [1], an inorganic acid salt of aluminum and at least one metal inorganic acid salt selected from the group (c) consisting of zinc, iron and manganese (nitrate, hydrochloride, sulfate, etc.) Alternatively, impregnation with an organic acid salt (oxalate, acetate, etc.). Preferably, both the aluminum and the salt of at least one metal selected from the group (c) are nitrates.
 アルミニウムと群(c)から選ばれる少なくとも1つの金属を担体に担持する量としては、アルミニウムを群(c)から選ばれる少なくとも1つの金属に対する原子比で2以上となるように担持することが好ましく、また群(c)から選ばれる少なくとも1つの金属の担持量が、触媒質量全体の0.1~5.0質量%となるようにすることが好ましい。 The amount of aluminum and at least one metal selected from group (c) supported on the carrier is preferably such that aluminum is supported at an atomic ratio of at least 2 with respect to at least one metal selected from group (c). In addition, it is preferable that the supported amount of at least one metal selected from the group (c) is 0.1 to 5.0% by mass of the entire catalyst mass.
 工程〔1〕を行った後、好ましくは担体を乾燥し、さらに焼成工程〔2〕を行うことによって、アルミニウムおよび群(c)から選ばれる少なくとも1つの金属を含有し、担持したアルミニウムの少なくとも一部が、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成した担体を得ることができる。工程〔1〕を行った後の乾燥温度は特に制限はないが、好ましくは80~150℃の温度範囲がよく、さらに好ましくは100~130℃の温度範囲がよい。また、乾燥雰囲気は特に制限はないが、空気を用いることが好ましい。乾燥時間は特に制限はないが、含浸法を用いた場合、通常2~4時間程度でよい。 After carrying out step [1], preferably the support is dried and further subjected to calcination step [2] to contain at least one metal selected from the group consisting of aluminum and group (c). A carrier in which a part forms a spinel crystalline composite oxide with at least one metal selected from the group (c) consisting of zinc, iron and manganese can be obtained. The drying temperature after step [1] is not particularly limited, but is preferably in the temperature range of 80 to 150 ° C, more preferably in the temperature range of 100 to 130 ° C. The drying atmosphere is not particularly limited, but air is preferably used. The drying time is not particularly limited, but when using the impregnation method, it may usually be about 2 to 4 hours.
 焼成工程〔2〕は、400~900℃の温度範囲で行うことができ、好ましくは、500~700℃が望ましい。焼成温度が400℃より低い場合は、結晶化が十分ではない場合があり、900℃以上では担体の比表面積が減少する傾向があり好ましくない。焼成時間は特に限定されないが、1~10時間程度がよく、好ましくは2~4時間程度がよく、段階的に焼成温度を変化させてもよい。長時間の焼成は、その効果が飽和する場合があり経済的に好ましくなく、短時間の焼成ではその効果が少ないことがある。また、焼成は焼成炉やマッフル炉等を用いて行うことができ、この時の流通ガスとしては、窒素または空気のいずれを使用してもよい。 The firing step [2] can be performed in a temperature range of 400 to 900 ° C., preferably 500 to 700 ° C. When the firing temperature is lower than 400 ° C., crystallization may not be sufficient, and when it is 900 ° C. or higher, the specific surface area of the carrier tends to decrease, which is not preferable. The firing time is not particularly limited, but may be about 1 to 10 hours, preferably about 2 to 4 hours, and the firing temperature may be changed stepwise. Long-time firing may be saturated economically because the effect may be saturated, and short-time firing may be less effective. Moreover, baking can be performed using a baking furnace, a muffle furnace, etc., and any of nitrogen or air may be used as a distribution gas at this time.
 次に、工程〔2〕で得られた、アルミニウムの少なくとも一部が、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成する担体に、ロジウム、ルテニウムおよびパラジウムからなる群(a)から選ばれる少なくとも1つの貴金属の塩を担持する工程〔3〕を行う。群(a)から選ばれる少なくとも1つの貴金属の塩としては、無機酸塩(硝酸塩、塩酸塩、硫酸塩等)または有機酸塩(シュウ酸塩、酢酸塩等)を用いることができ、無機酸塩の硝酸塩を用いることが好ましい。 Next, in the carrier obtained by the step [2], at least a part of the aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (c) consisting of zinc, iron and manganese. And [3] carrying a salt of at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium. As the salt of at least one noble metal selected from the group (a), an inorganic acid salt (nitrate, hydrochloride, sulfate, etc.) or an organic acid salt (oxalate, acetate, etc.) can be used. Preference is given to using the nitrate salt.
 工程〔3〕は、アルミニウムの少なくとも一部が、群(c)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成する工程〔2〕で得られた担体に対して行うことが好ましいが、工程〔1〕と同時に行ってもよい。その場合には、工程〔1〕と工程〔3〕を同時に行った後に工程〔2〕を行い、アルミニウムの少なくとも一部が、群(c)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成することが好ましい。いずれの場合であっても、ロジウム、ルテニウムおよびパラジウムからなる群(a)から選ばれる少なくとも1つの貴金属の担持量は、触媒質量全体の0.05~10質量%となるようにすることが好ましい。 The step [3] is performed on the support obtained in the step [2] in which at least a part of aluminum forms a spinel crystalline complex oxide with at least one metal selected from the group (c). Although it is preferable, it may be performed simultaneously with the step [1]. In that case, the process [1] and the process [3] are performed at the same time, and then the process [2] is performed. At least a part of the aluminum is at least one metal selected from the group (c) and the spinel crystalline composite. It is preferable to form an oxide. In any case, it is preferable that the supported amount of at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium is 0.05 to 10% by mass based on the total mass of the catalyst. .
 次に、工程〔3〕を行った触媒前駆体を、前記と同様の乾燥条件で乾燥する。乾燥した触媒前駆体は還元処理をすることが好ましく、還元処理をすることにより、活性の高い、群(a)から選ばれる少なくとも1つの貴金属を含有する触媒を得ることができる。還元処理は、例えば、(1)ヒドラジンで還元後に再乾燥し、焼成する方法、または(2)水素還元する方法、によって行うことができ、水素還元する方法を用いることが好ましい。水素還元する方法を用いる場合は、還元温度は200~500℃であることが好ましく、より好ましくは300~400℃がよい。還元時間は特に限定されないが、1~10時間程度で処理することができ、好ましくは2~4時間程度がよい。また、前記の乾燥した触媒前駆体は(1)または(2)の還元処理をせず、窒素または空気中で焼成してもよい。この時の焼成温度としては、200~500℃であることが好ましく、より好ましくは300~400℃がよい。 Next, the catalyst precursor subjected to step [3] is dried under the same drying conditions as described above. The dried catalyst precursor is preferably subjected to a reduction treatment, and a catalyst containing at least one noble metal selected from the group (a) having high activity can be obtained by the reduction treatment. The reduction treatment can be performed by, for example, (1) a method of re-drying after hydrazine reduction and firing, or (2) a method of hydrogen reduction, and a method of hydrogen reduction is preferably used. When using the hydrogen reduction method, the reduction temperature is preferably 200 to 500 ° C., more preferably 300 to 400 ° C. Although the reduction time is not particularly limited, the treatment can be performed in about 1 to 10 hours, preferably about 2 to 4 hours. The dried catalyst precursor may be calcined in nitrogen or air without the reduction treatment (1) or (2). The firing temperature at this time is preferably 200 to 500 ° C., more preferably 300 to 400 ° C.
 次に前記の亜酸化窒素分解触媒を用いる亜酸化窒素の分解方法について説明する。
 本発明の亜酸化窒素の分解方法は次の4つの方法がある。本発明の亜酸化窒素の分解方法(1)は、亜酸化窒素を含有するガスを、前記の触媒と、200~600℃で接触させることを特徴とする。また、本発明の亜酸化窒素の分解方法(2)は、触媒が、シリカまたはシリカアルミナからなる担体に、ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属を担持してなる触媒であり、亜酸化窒素を含有するガスと該触媒を200~600℃で接触させ、分解過程で触媒の活性低下が認められた時点で、亜酸化窒素を含有するガスの供給を停止して500℃~900℃に加熱し、触媒を賦活再生した後、亜酸化窒素を含有するガスの供給を再開することを特徴とする。
Next, a method for decomposing nitrous oxide using the above nitrous oxide decomposition catalyst will be described.
The nitrous oxide decomposition method of the present invention includes the following four methods. The nitrous oxide decomposition method (1) of the present invention is characterized in that a gas containing nitrous oxide is brought into contact with the catalyst at 200 to 600 ° C. Further, the nitrous oxide decomposition method (2) of the present invention is a catalyst in which at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium is supported on a support made of silica or silica alumina. Yes, the gas containing nitrous oxide and the catalyst are brought into contact with each other at 200 to 600 ° C. When a decrease in the activity of the catalyst is observed in the decomposition process, the supply of the gas containing nitrous oxide is stopped and 500 ° C. It is characterized by restarting the supply of gas containing nitrous oxide after heating to ˜900 ° C. to activate and regenerate the catalyst.
 本発明の亜酸化窒素の分解方法(3)は、触媒が、担体がシリカであり、該担体に、(a)ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属、(b)アルミニウム、および(c)亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属、を担持してなる触媒であり、亜酸化窒素を含有するガスと該触媒を200~600℃で接触させ、分解過程で触媒の活性低下が認められた時点で、亜酸化窒素を含有するガスの供給を停止して500℃~900℃に加熱し、触媒を賦活再生した後、亜酸化窒素を含有するガスの供給を再開することを特徴とする。 In the method for decomposing nitrous oxide (3) of the present invention, the catalyst is silica and the support includes (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, and (b) aluminum. And (c) a catalyst carrying at least one metal selected from the group consisting of zinc, iron and manganese, contacting the gas containing nitrous oxide with the catalyst at 200 to 600 ° C. for decomposition When a decrease in the activity of the catalyst is observed in the process, the supply of the gas containing nitrous oxide is stopped and heated to 500 ° C. to 900 ° C., and the catalyst is activated and regenerated. The supply is resumed.
 また、本発明の亜酸化窒素の分解方法(4)は、触媒が、担体がシリカアルミナであり、該担体に、(a)ロジウム、ルテニウムおよびパラジウムからなる群から選ばれる少なくとも1つの貴金属、および(d)マグネシウム、亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属、を担持してなる触媒であり、亜酸化窒素を含有するガスと該触媒を200~600℃で接触させ、分解過程で触媒の活性低下が認められた時点で、亜酸化窒素を含有するガスの供給を停止して500℃~900℃に加熱し、触媒を賦活再生した後、亜酸化窒素を含有するガスの供給を再開することを特徴とする。 In the nitrous oxide decomposition method (4) of the present invention, the catalyst is a silica alumina carrier, and (a) at least one noble metal selected from the group consisting of rhodium, ruthenium and palladium, and (D) A catalyst which carries at least one metal selected from the group consisting of magnesium, zinc, iron and manganese, which is brought into contact with the gas containing nitrous oxide at 200 to 600 ° C. for decomposition. When a decrease in the activity of the catalyst is observed in the process, the supply of the gas containing nitrous oxide is stopped and heated to 500 ° C. to 900 ° C., and the catalyst is activated and regenerated. The supply is resumed.
 本発明の亜酸化窒素の分解方法において、亜酸化窒素を含有するガスと分解触媒との接触温度は、200~600℃、好ましくは、300~500℃、さらに好ましくは、350℃~450℃とすることが望ましい。接触温度が200℃より低い場合、亜酸化窒素の分解が十分ではない場合があり、また、600℃以上では触媒寿命が短くなる傾向がある。また触媒床の方式としては、特に制限されないが、固定床を採用することができる。 In the nitrous oxide decomposition method of the present invention, the contact temperature between the nitrous oxide-containing gas and the decomposition catalyst is 200 to 600 ° C., preferably 300 to 500 ° C., more preferably 350 ° C. to 450 ° C. It is desirable to do. When the contact temperature is lower than 200 ° C., decomposition of nitrous oxide may not be sufficient, and when it is 600 ° C. or higher, the catalyst life tends to be short. The catalyst bed system is not particularly limited, but a fixed bed can be employed.
 亜酸化窒素を含有するガスの組成としては、工場や焼却設備から排出される排ガス中に含まれる亜酸化窒素の濃度は通常1000ppm以下であるが、手術室の余剰麻酔ガス排除装置によって排出される亜酸化窒素の濃度は約8~50%と非常に高濃度である。また、余剰麻酔ガス中には通常酸素が13~20%存在するため、分解触媒にとっては過酷な条件となる。除熱が可能であり、また温度コントロールができれば、分解触媒と接触させる亜酸化窒素濃度に特に制限はないが、亜酸化窒素が窒素と酸素に分解する反応は発熱反応であるため、亜酸化窒素濃度は50%以下がよく、好ましくは25%以下であり、さらに好ましくは5%程度であることが望ましい。単位触媒当たりの供給ガス量である空間速度(Space Velocity)は、10hr-1~20000hr-1の範囲が好ましく、より好ましくは100hr-1~10000hr-1の範囲が望ましい。 As the composition of the gas containing nitrous oxide, the concentration of nitrous oxide contained in the exhaust gas discharged from factories and incineration facilities is usually 1000 ppm or less, but it is discharged by the surplus anesthetic gas exclusion device in the operating room. The concentration of nitrous oxide is very high, about 8-50%. Moreover, since 13 to 20% of oxygen is usually present in the excess anesthetic gas, it is a severe condition for the decomposition catalyst. If heat removal is possible and the temperature can be controlled, the concentration of nitrous oxide contacted with the cracking catalyst is not particularly limited. However, since the reaction that decomposes nitrous oxide into nitrogen and oxygen is an exothermic reaction, nitrous oxide The concentration is preferably 50% or less, preferably 25% or less, and more preferably about 5%. Space velocity is the amount of gas supplied per unit catalyst (Space Velocity) is preferably in the range of 10hr -1 ~ 20000hr -1, more preferably from 100 hr -1 ~ 10000 hr -1 is preferred.
 また亜酸化窒素を含有するガスは、揮発性麻酔剤を含有することがあるが、本発明の亜酸化窒素分解触媒は揮発性麻酔剤による被毒を受けにくく、しかも揮発性麻酔剤による被毒を受けて触媒活性が低下した場合であっても、本発明の分解方法を用いることにより、触媒活性を回復させ、長期間にわたって亜酸化窒素の分解を行うことができる。従って、亜酸化窒素分解触媒の活性低下が認められた場合には、一旦亜酸化窒素を含有するガスの供給を停止し、焼成処理を行って触媒を賦活再生した後に、亜酸化窒素を含有するガスの供給を再開することができる。 In addition, the gas containing nitrous oxide may contain a volatile anesthetic, but the nitrous oxide decomposition catalyst of the present invention is not easily poisoned by the volatile anesthetic and is also poisoned by the volatile anesthetic. Even when the catalytic activity is reduced due to the above, by using the decomposition method of the present invention, the catalytic activity can be recovered and nitrous oxide can be decomposed over a long period of time. Therefore, when a decrease in the activity of the nitrous oxide decomposition catalyst is observed, the supply of the gas containing nitrous oxide is once stopped, the catalyst is activated to regenerate by calcination, and then the nitrous oxide is contained. The supply of gas can be resumed.
 触媒を賦活再生する焼成処理は、500~900℃の温度で行うことができ、好ましくは600~800℃、さらに好ましくは650~750℃の温度で活性が低下した分解触媒を焼成処理すればよい。焼成処理を行う間は、ヘリウムや窒素などの不活性ガスや空気を触媒層に流通させることができ、不活性ガス中に酸素が含まれていてもよい。空気を用いることが簡便で好ましい。焼成処理時間としては10分~12時間、好ましくは20分~6時間、さらに好ましくは30分~2時間程度が望ましい。前記の、ロジウム、ルテニウムおよびパラジウムからなる群(a)から選ばれる少なくとも1つの貴金属を担持した触媒のうち、揮発性麻酔剤による被毒を受けにくく、しかも触媒の活性が回復しやすいのは、ルテニウムを含有する触媒であり、以下ロジウム、パラジウムの順に活性が低下する傾向が見られる。従って、群(a)から選ばれる貴金属成分としては少なくともルテニウムを用いることが望ましい。また、焼成処理を行った後に、水素による還元処理を行ってもよい。 The calcination treatment for activating and regenerating the catalyst can be performed at a temperature of 500 to 900 ° C., preferably a decomposition catalyst whose activity is reduced at a temperature of 600 to 800 ° C., more preferably 650 to 750 ° C. . During the firing treatment, an inert gas such as helium or nitrogen or air can be circulated through the catalyst layer, and oxygen may be contained in the inert gas. It is convenient and preferable to use air. The firing treatment time is 10 minutes to 12 hours, preferably 20 minutes to 6 hours, more preferably about 30 minutes to 2 hours. Of the catalysts supporting at least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium, the catalyst is less susceptible to poisoning by volatile anesthetics and the activity of the catalyst is easily recovered. It is a catalyst containing ruthenium, and there is a tendency that the activity decreases in the order of rhodium and palladium. Therefore, it is desirable to use at least ruthenium as the noble metal component selected from the group (a). Further, after the baking treatment, a reduction treatment with hydrogen may be performed.
 本発明の分解方法(3)に用いられる触媒は、シリカ担体に担持する成分のうち、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属を、触媒質量全体の0.1~5.0質量%含有することが好ましく、さらに好ましくは0.2~1.0質量%含有することが望ましい。群(c)から選ばれる金属が触媒質量全体の5.0質量%以上含まれていても効果が飽和することがある。 The catalyst used in the decomposition method (3) of the present invention comprises at least one metal selected from the group (c) consisting of zinc, iron, and manganese among the components supported on the silica support, in an amount of 0.1% of the total catalyst mass. It is preferably contained in an amount of ˜5.0% by mass, more preferably 0.2-1.0% by mass. Even if the metal selected from the group (c) is contained in an amount of 5.0% by mass or more based on the total mass of the catalyst, the effect may be saturated.
 シリカ担体に担持するアルミニウムは、亜鉛、鉄およびマンガンからなる群(c)から選ばれる少なくとも1つの金属に対する原子比で、少なくとも2以上含有することが好ましい。また、アルミニウムの少なくとも一部が、群(c)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成することが好ましく、スピネル型結晶性複合酸化物は、例えばアルミニウムと亜鉛、鉄およびマンガンからなる群から選ばれる少なくとも1つの金属を担持させた担体を焼成することによって生成することができる。 The aluminum supported on the silica support is preferably contained in an atomic ratio of at least 2 to at least one metal selected from the group (c) consisting of zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (c), and the spinel crystalline composite oxide includes, for example, aluminum, zinc, iron And can be produced by firing a support on which at least one metal selected from the group consisting of manganese is supported.
 前記の分解方法(4)に用いられる触媒は、シリカアルミナ担体に担持する、マグネシウム、亜鉛、鉄およびマンガンからなる群(d)から選ばれる少なくとも1つの金属を、触媒質量全体の0.1~5.0質量%含有することが好ましく、さらに好ましくは0.2~1.0質量%含有することが望ましい。群(d)から選ばれる金属が触媒質量全体の5.0質量%以上含まれていても効果が飽和することがある。 The catalyst used in the decomposition method (4) is a catalyst comprising at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese supported on a silica-alumina carrier in an amount of 0.1 to The content is preferably 5.0% by mass, more preferably 0.2 to 1.0% by mass. Even if the metal selected from the group (d) is contained in an amount of 5.0% by mass or more of the entire catalyst mass, the effect may be saturated.
 また、アルミニウムは、マグネシウム、亜鉛、鉄およびマンガンからなる群(d)から選ばれる少なくとも1つの金属に対する原子比で、少なくとも2以上含有することが好ましい。また、アルミニウムの少なくとも一部が、群(d)から選ばれる少なくとも1つの金属とスピネル型結晶性複合酸化物を形成することが好ましい。スピネル型結晶性複合酸化物は、シリカアルミナ担体に、群(d)から選ばれる少なくとも1つの金属を担持させ、担体を焼成することによって生成することができる。 Further, it is preferable that aluminum is contained in an atomic ratio of at least 2 with respect to at least one metal selected from the group (d) consisting of magnesium, zinc, iron and manganese. Further, it is preferable that at least a part of aluminum forms a spinel crystalline composite oxide with at least one metal selected from the group (d). The spinel type crystalline composite oxide can be produced by supporting at least one metal selected from the group (d) on a silica alumina support and firing the support.
 本発明の亜酸化窒素の分解方法において用いられる触媒に含まれる、ロジウム、ルテニウムおよびパラジウムからなる群(a)から選ばれる少なくとも1つの貴金属は、前記の(1)~(4)のいずれの分解方法を用いる場合も、触媒質量全体の0.05~10質量%含有することが好ましく、さらに好ましくは、0.1~6.0質量%含有することが望ましい。群(a)から選ばれる少なくとも1つの貴金属の担持量を増加させることによって低温における触媒活性を向上させることは可能であるが、10質量%以上担持させることは触媒のコストを考えると好ましくなく、また0.05質量%以下であると十分な亜酸化窒素の分解活性が得られない場合がある。 At least one noble metal selected from the group (a) consisting of rhodium, ruthenium and palladium contained in the catalyst used in the nitrous oxide decomposition method of the present invention is any of the decompositions (1) to (4) above Even when the method is used, it is preferably contained in an amount of 0.05 to 10% by mass, more preferably 0.1 to 6.0% by mass based on the total mass of the catalyst. Although it is possible to improve the catalytic activity at low temperature by increasing the amount of at least one noble metal selected from the group (a), it is not preferable to support 10% by mass or more in view of the cost of the catalyst, Further, if it is 0.05% by mass or less, sufficient nitrous oxide decomposition activity may not be obtained.
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.
 本実施例では、亜酸化窒素分解用触媒(昭和電工(株)製、アルミナ担体(日揮ユニバーサル(株)製)にロジウム5%及び亜鉛1%を担持させたもの、粒状、平均粒径:3.2mm)を2.12g(4ml)充填した分解反応器(ニッケル製反応管、1/2インチ径、触媒の層高57mm)を、ヒータ(セラミックス電気管状炉、100V、500W)で約350℃まで加熱し、この分解反応器に濃度100%の亜酸化窒素(NO)ガスをダウンフローにより供給しながら、亜酸化窒素ガスの分解を行った。 In this example, a catalyst for decomposing nitrous oxide (made by Showa Denko KK, alumina carrier (manufactured by JGC Universal Co., Ltd.) with 5% rhodium and 1% zinc, granular, average particle size: 3 .2 mm) packed in 2.12 g (4 ml) decomposition reactor (nickel reaction tube, 1/2 inch diameter, catalyst layer height 57 mm) at about 350 ° C. with a heater (ceramic electric tubular furnace, 100 V, 500 W) The nitrous oxide gas was decomposed while supplying a nitrous oxide (N 2 O) gas having a concentration of 100% by downflow to the decomposition reactor.
 また、亜酸化窒素ガスを分解反応器に供給する際は、流量調整弁により20~2422cc/minの範囲で流量調整を行った。そして、そのとき分解反応器に供給される亜酸化窒素ガスの線速度(LV:Linear Velocity)[m/min]と、空間速度(SV:Space Velocity)[hr-1]を測定すると共に、亜酸化窒素ガスを分解した後の反応容器内の発熱温度(触媒の温度)の最大値max[℃]を温度測定器で測定した。また、亜酸化窒素ガスを分解した後のNOの発生量[ppm]を測定し、その亜酸化窒素ガスの分解率[%]を求めた。その測定結果をまとめたものを表1に示す。また、表1の測定結果から、亜酸化窒素ガスの線速度(LV)と反応容器内の発熱温度及び亜酸化窒素ガスの分解率との関係をまとめたグラフを図8に示す。 Further, when supplying the nitrous oxide gas to the decomposition reactor, the flow rate was adjusted in a range of 20 to 2422 cc / min by a flow rate adjusting valve. Then, the linear velocity (LV: Linear Velocity) [m / min] and the space velocity (SV) [hr −1 ] of the nitrous oxide gas supplied to the decomposition reactor at that time are measured, and The maximum value max [° C.] of the exothermic temperature (catalyst temperature) in the reaction vessel after decomposing the nitrogen oxide gas was measured with a temperature measuring device. Further, the amount of the NO X after decomposing nitrous oxide gas [ppm] was measured to determine the degradation rate of the nitrous oxide gas [%]. Table 1 shows a summary of the measurement results. Moreover, the graph which put together the relationship between the linear velocity (LV) of nitrous oxide gas, the exothermic temperature in reaction container, and the decomposition rate of nitrous oxide gas from the measurement result of Table 1 is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び図8に示すように、上述した分解反応器に供給される亜酸化窒素ガスの流量調整を行うことによって、濃度100%の亜酸化窒素ガスであっても高い分解率(99%以上)で亜酸化窒素ガスを分解できることがわかった。 As shown in Table 1 and FIG. 8, by adjusting the flow rate of the nitrous oxide gas supplied to the above-described decomposition reactor, a high decomposition rate (99% or more) even with a nitrous oxide gas having a concentration of 100% ) Was able to decompose nitrous oxide gas.
 また、上記表1中に示すLV=12.75m/min、SV=17190hr-1の条件下で、ヒータによる加熱を停止し、その1時間(hr)後の反応容器内の発熱温度及び亜酸化窒素ガスの分解率とを測定した。 In addition, heating by the heater was stopped under the conditions of LV = 12.75 m / min and SV = 17190 hr −1 shown in Table 1 above, and the exothermic temperature and sub-oxidation in the reaction vessel after 1 hour (hr) The decomposition rate of nitrogen gas was measured.
 その結果、ヒータの停止後も亜酸化窒素ガスの分解により発生する分解熱によって、反応容器内の発熱温度を維持しながら、加熱時と同レベルの分解率(98.7%)で亜酸化窒素ガスの分解を継続できることがわかった。このため、ヒータの停止後から約1時間(hr)経ったところで、亜酸化窒素ガスの供給を停止し、亜酸化窒素ガスの分解を強制終了した。このことからも、亜酸化窒素ガスの分解により発生する分解熱によって、その後に供給される亜酸化窒素ガスの分解をヒータによる加熱を行わずに継続できることがわかった。 As a result, nitrous oxide has the same decomposition rate (98.7%) as that during heating while maintaining the heat generation temperature in the reaction vessel by the decomposition heat generated by the decomposition of nitrous oxide gas even after the heater is stopped. It turns out that the decomposition of the gas can be continued. For this reason, about 1 hour (hr) after the heater stopped, the supply of the nitrous oxide gas was stopped and the decomposition of the nitrous oxide gas was forcibly terminated. From this, it was found that the decomposition heat generated by the decomposition of the nitrous oxide gas can continue the decomposition of the nitrous oxide gas supplied thereafter without heating by the heater.
 本発明によれば、亜酸化窒素の分解により発生するエネルギーを利用することによって、地球環境に優しいエネルギーとしての亜酸化窒素の利用が可能である。また、亜酸化窒素は、分解ガスとして最終的に窒素と酸素に分解されるため、この分解ガスを新たな資源として活用することも可能である。さらに、亜酸化窒素は、工業生産も可能なことから、本発明において、その産業上の利用価値は非常に高い。 According to the present invention, by using energy generated by decomposition of nitrous oxide, it is possible to use nitrous oxide as energy friendly to the global environment. Further, since nitrous oxide is finally decomposed into nitrogen and oxygen as a decomposition gas, this decomposition gas can be utilized as a new resource. Furthermore, since nitrous oxide can also be industrially produced, its industrial utility value is very high in the present invention.
 上述したように、亜酸化窒素は、常温、大気圧下で安定したガスであり、毒性が低いため安全性が高く取り扱いが容易である。また、高圧ガス容器に充填された液化高圧ガスとして、分解前に容易に輸送や貯蔵等を行うことが可能である。 As described above, nitrous oxide is a stable gas at normal temperature and atmospheric pressure, and since it has low toxicity, it is highly safe and easy to handle. In addition, as a liquefied high-pressure gas filled in a high-pressure gas container, it can be easily transported and stored before decomposition.
 また、亜酸化窒素は、融点が低く(約-90℃)、宇宙空間でも凍結しないため、地球上での利用に止まらず、地球以外の天体(例えば月や火星等)や、宇宙空間(例えば宇宙ステーションや宇宙船等)での利用も可能である。 In addition, nitrous oxide has a low melting point (about −90 ° C.) and does not freeze in outer space. Therefore, nitrous oxide does not stop its use on the earth, and other celestial bodies (such as the moon and Mars) and outer space (for example, It can also be used on a space station or spaceship.
 さらに、本発明では、亜酸化窒素を窒素と酸素に分解できるため、例えば宇宙ステーションや宇宙船などの宇宙環境や、海中ステーションや潜水艦などの海中環境において、宇宙活動や海中活動に必要なエネルギーの供給源としてだけでなく、生命維持に必要な呼吸気ガスの供給源として、大いに活用することが可能である。 Furthermore, in the present invention, since nitrous oxide can be decomposed into nitrogen and oxygen, for example, in the space environment such as a space station and a spacecraft, and in the sea environment such as a submarine station and a submarine, energy required for space activities and underwater activities is obtained. It can be used not only as a supply source, but also as a supply source of respiratory gas necessary for life support.
 また、本発明では、亜酸化窒素の分解によって得られた酸素を水素やメタノールなどの適当な燃料と合わせることによって、例えば燃料電池(一次電池)等に利用することも可能である。更に、バッテリ(二次電池)等と組み合わせることも可能である。 In the present invention, oxygen obtained by decomposing nitrous oxide can be combined with an appropriate fuel such as hydrogen or methanol to be used for a fuel cell (primary cell), for example. Further, it can be combined with a battery (secondary battery) or the like.
 1…分解ガスボイラー 2…蒸気タービン 4…復水器 5…給水ポンプ 6…分解反応部 7…蒸気発生部 
 11…分解ガスタービン 13…分解反応部 14…タービン部 
 21…亜酸化窒素分解用触媒 22…分解反応器(分解反応部) 22a…本体部 22b…ガス導入口 22c…ガス排出口 23…燃料ガス供給ライン(燃料ガス供給手段) 24…窒素ガス供給ライン(窒素ガス供給手段、濃度調整手段) 25…流量調整部(流量調整手段) 26…温度測定器(温度測定手段) 27…制御部(制御手段) 28…ヒータ(予熱手段) 29…電力供給ライン 30…燃料ガス開閉弁 31…燃料ガス供給源 31a…高圧ガス容器 32…窒素ガス開閉弁 33…窒素ガス供給源 33a…高圧ガス容器 
 80,80A…ヒートポンプ 81…冷媒循環系 82…圧縮部 83…凝縮部 84…膨張部 85…蒸発部 86,87…ファン(送風手段) 88…四方弁(切換手段) 89…室内機 90…室外機 R…冷媒
DESCRIPTION OF SYMBOLS 1 ... Cracking gas boiler 2 ... Steam turbine 4 ... Condenser 5 ... Feed water pump 6 ... Decomposition reaction part 7 ... Steam generation part
11 ... Decomposition gas turbine 13 ... Decomposition reaction part 14 ... Turbine part
DESCRIPTION OF SYMBOLS 21 ... Catalyst for nitrous oxide decomposition 22 ... Decomposition reactor (decomposition reaction part) 22a ... Main-body part 22b ... Gas introduction port 22c ... Gas discharge port 23 ... Fuel gas supply line (fuel gas supply means) 24 ... Nitrogen gas supply line (Nitrogen gas supply means, concentration adjustment means) 25 ... Flow rate adjustment part (flow rate adjustment means) 26 ... Temperature measuring device (temperature measurement means) 27 ... Control part (control means) 28 ... Heater (preheating means) 29 ... Power supply line DESCRIPTION OF SYMBOLS 30 ... Fuel gas on-off valve 31 ... Fuel gas supply source 31a ... High pressure gas container 32 ... Nitrogen gas on-off valve 33 ... Nitrogen gas supply source 33a ... High pressure gas container
DESCRIPTION OF SYMBOLS 80, 80A ... Heat pump 81 ... Refrigerant circulation system 82 ... Compression part 83 ... Condensing part 84 ... Expansion part 85 ... Evaporation part 86, 87 ... Fan (air blowing means) 88 ... Four-way valve (switching means) 89 ... Indoor unit 90 ... Outdoor Machine R ... Refrigerant

Claims (21)

  1.  亜酸化窒素の分解により発生した分解ガスからの熱回収により蒸気を発生させる分解ガスボイラーと、
     前記分解ガスボイラーで発生した蒸気により回転駆動される蒸気タービンと、
     前記蒸気タービンの駆動により熱輸送を行うヒートポンプとを備える熱輸送装置。
    A cracked gas boiler that generates steam by recovering heat from the cracked gas generated by the decomposition of nitrous oxide;
    A steam turbine that is rotationally driven by steam generated in the cracked gas boiler;
    A heat transport device comprising: a heat pump that transports heat by driving the steam turbine.
  2.  亜酸化窒素の分解により発生した分解ガスにより回転駆動する分解ガスタービンと、
     前記分解ガスタービンの駆動により熱輸送を行うヒートポンプとを備える熱輸送装置。
    A cracked gas turbine that is rotationally driven by cracked gas generated by the decomposition of nitrous oxide;
    A heat transport device comprising: a heat pump that transports heat by driving the cracked gas turbine.
  3.  前記分解ガスボイラー又は分解ガスタービンは、前記亜酸化窒素を分解する亜酸化窒素分解用触媒が配置された分解反応部と、前記分解反応部に亜酸化窒素を含む燃料ガスを供給する燃料ガス供給手段とを備え、
     前記分解反応部において、前記燃料ガス中に含まれる亜酸化窒素を前記亜酸化窒素分解用触媒を用いて分解した後、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される燃料ガス中の亜酸化窒素の分解が継続されることを特徴とする請求項1又は2に記載の熱輸送装置。
    The cracking gas boiler or cracking gas turbine is provided with a cracking reaction section in which a nitrous oxide cracking catalyst for cracking the nitrous oxide is disposed, and a fuel gas supply for supplying fuel gas containing nitrous oxide to the cracking reaction section Means and
    In the decomposition reaction section, after decomposing nitrous oxide contained in the fuel gas using the nitrous oxide decomposing catalyst, the fuel supplied thereafter by the decomposition heat generated by the decomposition of the nitrous oxide The heat transport apparatus according to claim 1 or 2, wherein the decomposition of nitrous oxide in the gas is continued.
  4.  前記分解ガスボイラー又は分解ガスタービンは、前記分解反応部に供給される燃料ガスの流量を調整する流量調整手段を備え、
     前記分解反応部に供給される燃料ガスの流量を調整することによって、前記分解ガスの温度制御を行うことを特徴とする請求項3に記載の熱輸送装置。
    The cracked gas boiler or cracked gas turbine comprises a flow rate adjusting means for adjusting the flow rate of the fuel gas supplied to the cracking reaction section,
    The heat transport device according to claim 3, wherein the temperature of the cracked gas is controlled by adjusting a flow rate of the fuel gas supplied to the cracking reaction section.
  5.  前記分解ガスボイラー又は分解ガスタービンは、前記燃料ガス中に含まれる亜酸化窒素の濃度を調整する濃度調整手段を備え、
     前記燃料ガス中に含まれる亜酸化窒素の濃度を調整することによって、前記分解ガスの温度制御を行うことを特徴とする請求項3又は4に記載の熱輸送装置。
    The cracked gas boiler or cracked gas turbine comprises a concentration adjusting means for adjusting the concentration of nitrous oxide contained in the fuel gas,
    The heat transport apparatus according to claim 3 or 4, wherein the temperature of the cracked gas is controlled by adjusting a concentration of nitrous oxide contained in the fuel gas.
  6.  前記濃度調整手段は、前記燃料ガス中に窒素を添加することによって、前記燃料ガス中に含まれる亜酸化窒素の濃度調整を行うことを特徴とする請求項5に記載の熱輸送装置。 6. The heat transport apparatus according to claim 5, wherein the concentration adjusting means adjusts the concentration of nitrous oxide contained in the fuel gas by adding nitrogen to the fuel gas.
  7.  前記分解ガスボイラー又は分解ガスタービンは、前記亜酸化窒素分解用触媒又は分解ガスの温度を測定する温度測定手段を備え、
     前記温度測定手段による測定結果に基づいて、前記流量調整手段による流量調整、又は、前記濃度調整手段による濃度調整を行うことを特徴とする請求項4~6の何れか一項に記載の熱輸送装置。
    The cracked gas boiler or cracked gas turbine comprises temperature measuring means for measuring the temperature of the nitrous oxide cracking catalyst or cracked gas,
    The heat transport according to any one of claims 4 to 6, wherein a flow rate adjustment by the flow rate adjustment unit or a concentration adjustment by the concentration adjustment unit is performed based on a measurement result by the temperature measurement unit. apparatus.
  8.  前記分解ガスボイラー又は分解ガスタービンは、前記亜酸化窒素分解用触媒を予熱する予熱手段を備え、
     前記亜酸化窒素の分解を開始する前に、前記亜酸化窒素分解用触媒の予熱を行うことを特徴とする請求項3~7の何れか一項に記載の熱輸送装置。
    The cracked gas boiler or cracked gas turbine comprises preheating means for preheating the nitrous oxide cracking catalyst,
    The heat transport device according to any one of claims 3 to 7, wherein the catalyst for nitrous oxide decomposition is preheated before the decomposition of the nitrous oxide is started.
  9.  前記分解ガスボイラー又は分解ガスタービンは、前記分解反応部に窒素ガスを供給する窒素ガス供給手段を備え、
     前記分解反応部への燃料ガスの供給を停止した後に、前記分解反応部に窒素ガスを供給することを特徴とする請求項3~8の何れか一項に記載の熱輸送装置。
    The cracked gas boiler or cracked gas turbine comprises a nitrogen gas supply means for supplying nitrogen gas to the cracking reaction section,
    The heat transport apparatus according to any one of claims 3 to 8, wherein nitrogen gas is supplied to the decomposition reaction section after supply of fuel gas to the decomposition reaction section is stopped.
  10.  前記ヒートポンプは、冷媒が循環する冷媒循環系と、前記冷媒循環系中の冷媒を圧縮して送り出す圧縮部と、前記圧縮部で圧縮された冷媒を凝縮させながら、この冷媒から熱を放出させる凝縮部と、前記凝縮部で放熱された冷媒を膨張させる膨張部と、前記膨張部で膨張された冷媒を蒸発させながら、この冷媒に熱を吸収させる蒸発部とを備え、前記圧縮部が前記蒸気タービン又は分解ガスタービンにより駆動されることを特徴とする請求項1~9の何れか一項に記載の熱輸送装置。 The heat pump includes a refrigerant circulation system in which a refrigerant circulates, a compression unit that compresses and sends out the refrigerant in the refrigerant circulation system, and a condensation that releases heat from the refrigerant while condensing the refrigerant compressed in the compression unit. And an expansion unit that expands the refrigerant radiated by the condensing unit, and an evaporation unit that absorbs heat while evaporating the refrigerant expanded in the expansion unit, and the compression unit is the vapor The heat transport device according to any one of claims 1 to 9, wherein the heat transport device is driven by a turbine or a cracked gas turbine.
  11.  前記ヒートポンプは、前記冷媒が流れる方向を切り換える切換手段を備えることを特徴とする請求項10に記載の熱輸送装置。 The heat transport device according to claim 10, wherein the heat pump includes switching means for switching a direction in which the refrigerant flows.
  12.  亜酸化窒素の分解により発生した分解ガスからの熱回収により分解ガスボイラーで蒸気を発生させるステップと、
     前記分解ガスボイラーで発生した蒸気により蒸気タービンを回転駆動するステップと、
     前記蒸気タービンの駆動によりヒートポンプで熱輸送を行うステップとを有する熱輸送方法。
    Generating steam in a cracked gas boiler by recovering heat from cracked gas generated by the decomposition of nitrous oxide;
    Rotating the steam turbine with steam generated by the cracked gas boiler;
    A heat transport method including a step of performing heat transport with a heat pump by driving the steam turbine.
  13.  亜酸化窒素の分解により発生した分解ガスにより分解ガスタービンを回転駆動するステップと、
     前記分解ガスタービンの駆動によりヒートポンプで熱輸送を行うステップとを有する熱輸送方法。
    Rotating the cracked gas turbine with cracked gas generated by cracking of nitrous oxide;
    A heat transport method comprising: performing heat transport with a heat pump by driving the cracked gas turbine.
  14.  前記亜酸化窒素を分解する亜酸化窒素分解用触媒が配置された分解反応部に、前記亜酸化窒素を含む燃料ガスを供給し、この分解反応部において、前記燃料ガス中に含まれる亜酸化窒素を前記亜酸化窒素分解用触媒を用いて分解した後、この亜酸化窒素の分解により発生する分解熱によって、その後に供給される燃料ガス中の亜酸化窒素の分解を継続することを特徴とする請求項12又は13に記載の熱輸送方法。 A fuel gas containing nitrous oxide is supplied to a decomposition reaction section in which a nitrous oxide decomposition catalyst for decomposing the nitrous oxide is disposed, and the nitrous oxide contained in the fuel gas is supplied to the decomposition reaction section. Is decomposed using the nitrous oxide decomposition catalyst, and then decomposition of nitrous oxide in the fuel gas supplied thereafter is continued by the decomposition heat generated by the decomposition of the nitrous oxide. The heat transport method according to claim 12 or 13.
  15.  前記分解ガスの温度を制御することによって、前記亜酸化窒素の分解を継続的に行わせることを特徴とする請求項14に記載の熱輸送方法。 The heat transport method according to claim 14, wherein the decomposition of the nitrous oxide is continuously performed by controlling the temperature of the cracked gas.
  16.  前記燃料ガスの流量を調整することによって、前記分解ガスの温度制御を行うことを特徴とする請求項15に記載の熱輸送方法。 The heat transport method according to claim 15, wherein the temperature of the cracked gas is controlled by adjusting the flow rate of the fuel gas.
  17.  前記燃料ガス中に含まれる亜酸化窒素の濃度を調整することによって、前記分解ガスの温度制御を行うことを特徴とする請求項15又は16に記載の熱輸送方法。 The heat transport method according to claim 15 or 16, wherein the temperature of the cracked gas is controlled by adjusting the concentration of nitrous oxide contained in the fuel gas.
  18.  前記燃料ガス中に窒素を添加することによって、前記燃料ガス中に含まれる亜酸化窒素の濃度調整を行うことを特徴とする請求項17に記載の熱輸送方法。 The heat transport method according to claim 17, wherein the concentration of nitrous oxide contained in the fuel gas is adjusted by adding nitrogen to the fuel gas.
  19.  前記亜酸化窒素分解用触媒又は分解ガスの温度を測定し、この測定結果に基づいて前記分解ガスの温度制御を行うことを特徴とする請求項15~18に記載の熱輸送方法。 The heat transport method according to any one of claims 15 to 18, wherein the temperature of the nitrous oxide decomposition catalyst or cracked gas is measured, and the temperature of the cracked gas is controlled based on the measurement result.
  20.  前記亜酸化窒素の分解を開始する前に、前記亜酸化窒素分解用触媒を予熱することを特徴とする請求項14~19の何れか一項に記載の熱輸送方法。 The heat transport method according to any one of claims 14 to 19, wherein the nitrous oxide decomposition catalyst is preheated before the decomposition of the nitrous oxide is started.
  21.  前記分解反応部への燃料ガスの供給を停止した後に、前記分解反応部に窒素ガスを供給することを特徴とする請求項14~20の何れか一項に記載の熱輸送方法。 The heat transport method according to any one of claims 14 to 20, wherein nitrogen gas is supplied to the decomposition reaction section after supply of fuel gas to the decomposition reaction section is stopped.
PCT/JP2012/054353 2012-02-23 2012-02-23 Heat transport apparatus, and heat transport method WO2013124999A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/054353 WO2013124999A1 (en) 2012-02-23 2012-02-23 Heat transport apparatus, and heat transport method
JP2014500809A JP5891293B2 (en) 2012-02-23 2012-02-23 Heat transport method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054353 WO2013124999A1 (en) 2012-02-23 2012-02-23 Heat transport apparatus, and heat transport method

Publications (1)

Publication Number Publication Date
WO2013124999A1 true WO2013124999A1 (en) 2013-08-29

Family

ID=49005221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054353 WO2013124999A1 (en) 2012-02-23 2012-02-23 Heat transport apparatus, and heat transport method

Country Status (2)

Country Link
JP (1) JP5891293B2 (en)
WO (1) WO2013124999A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054027A (en) * 1991-06-28 1993-01-14 Asahi Chem Ind Co Ltd Treatment of exhaust gaseous dinitrogen monoxide
JPH05285344A (en) * 1992-04-06 1993-11-02 Osaka Gas Co Ltd Treatment of gas containing nitrogen oxide
JP2000130877A (en) * 1998-10-27 2000-05-12 Daikin Ind Ltd Air conditioning equipment
JP2002172171A (en) * 2000-09-27 2002-06-18 Showa Denko Kk Treatment method and treatment equipment for excess anesthetic gas
JP2005230795A (en) * 2004-01-21 2005-09-02 Asahi Kasei Chemicals Corp Method for decomposing nitrous oxide and its reactor
JP4232820B2 (en) * 2006-12-06 2009-03-04 独立行政法人 宇宙航空研究開発機構 Thruster device using nitrous oxide
JP2010523933A (en) * 2007-04-05 2010-07-15 ジョンソン コントロールズ テクノロジー カンパニー Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054027A (en) * 1991-06-28 1993-01-14 Asahi Chem Ind Co Ltd Treatment of exhaust gaseous dinitrogen monoxide
JPH05285344A (en) * 1992-04-06 1993-11-02 Osaka Gas Co Ltd Treatment of gas containing nitrogen oxide
JP2000130877A (en) * 1998-10-27 2000-05-12 Daikin Ind Ltd Air conditioning equipment
JP2002172171A (en) * 2000-09-27 2002-06-18 Showa Denko Kk Treatment method and treatment equipment for excess anesthetic gas
JP2005230795A (en) * 2004-01-21 2005-09-02 Asahi Kasei Chemicals Corp Method for decomposing nitrous oxide and its reactor
JP4232820B2 (en) * 2006-12-06 2009-03-04 独立行政法人 宇宙航空研究開発機構 Thruster device using nitrous oxide
JP2010523933A (en) * 2007-04-05 2010-07-15 ジョンソン コントロールズ テクノロジー カンパニー Heat exchanger

Also Published As

Publication number Publication date
JP5891293B2 (en) 2016-03-22
JPWO2013124999A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5908059B2 (en) Power generation device, power generation method, cracked gas boiler, and cracked gas turbine
EP2882521B1 (en) Catalytic reduction of nox with high activity catalysts
JP6706277B2 (en) Ammonia decomposition device
JP6261759B2 (en) CO2 recovery device for internal combustion engine
JP2008546968A (en) Method and apparatus for the safe and controlled delivery of ammonia from a solid ammonia storage medium
US10787367B2 (en) Removal of gaseous NH3 from an NH3 reactor product stream
TW202035932A (en) Heat utilization system, and heat generating device
ES2940288T3 (en) Reduction of nitrogen oxide emissions during the start-up of facilities for the manufacture of nitric acid
Jin et al. Catalytic combustion of methane over Pd/Ce–Zr oxides washcoated monolithic catalysts under oxygen lean conditions
US20050025692A1 (en) Methods and apparatus for small-scale synthesis of ammonia
JP6566662B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus using ammonia oxidative decomposition catalyst
JP2013167421A (en) Heat transport apparatus and heat transport method
JP5891293B2 (en) Heat transport method
JP6076030B2 (en) Energy extraction device
ES2718035T3 (en) Reduction of NOx exhaust gas concentration in the production of nitric acid at the stop and / or start-up of the production process
WO2013125000A1 (en) Heat transport apparatus, and heat transport method
JP2013167420A (en) Heat transport apparatus and heat transport method
WO2013125003A1 (en) Energy extraction apparatus, and energy extraction method
WO2013124998A1 (en) Heat transport apparatus, and heat transport method
KR101902776B1 (en) Apparatus for absorbing ammonia gas
TW201341657A (en) Power generation equipment, power generation method, decomposition gas boiler, decomposition gas turbine, heat transport apparatus and heat transport method
JP2004125329A (en) Gas purifying device, and gas purifying method
KR101985730B1 (en) Apparatus to generate and discharge ammonia
Gorst et al. Removal of nitric oxide from flue gas using mixed oxide sorbents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869149

Country of ref document: EP

Kind code of ref document: A1