JPH0539957A - Hot water feeding, cooling and heating device - Google Patents

Hot water feeding, cooling and heating device

Info

Publication number
JPH0539957A
JPH0539957A JP28426491A JP28426491A JPH0539957A JP H0539957 A JPH0539957 A JP H0539957A JP 28426491 A JP28426491 A JP 28426491A JP 28426491 A JP28426491 A JP 28426491A JP H0539957 A JPH0539957 A JP H0539957A
Authority
JP
Japan
Prior art keywords
hot water
pipe
water supply
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28426491A
Other languages
Japanese (ja)
Inventor
Katsutoshi Rikihisa
勝利 力久
Yasunori Yoshida
泰憲 吉田
Toshifumi Masuda
敏文 増田
Akira Tabata
顕 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Sun Wave Corp
Original Assignee
Kyushu Electric Power Co Inc
Sun Wave Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Sun Wave Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP28426491A priority Critical patent/JPH0539957A/en
Publication of JPH0539957A publication Critical patent/JPH0539957A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To provide a substantial reduction of a manufacturing cost or an installing cost, set a substantial small-sized device and reduce a running cost as much as possible by a method wherein a triple-layered pipe type heat exchanging coil of a water heat exchanger is wound around a heat accumulating hot water storing tank. CONSTITUTION:A plurality of turns of triple-layered heat exchanging coil Z for a water heat exchanger are wound around an upper outer circumference of a hot water storing tank 7 and installed there. The triple-layered heat exchanging coil Z is constructed such that water heat exchangers and heat transfer pipes are arranged outside and inside a refrigerant pipe disposed at the water heat exchangers, and a hot water feeding and circulating circuit and a bath circulation circuit are completely independent with a refrigerant flow passage of one system being held therebetween. One heat pump device provides main seven functions of a hot water feeding, a cooling and hot water feeding, an air heating and hot water feeding, a cooling and a bath additional boiling, a heating and a bath additional boiling, (a temperature keeping), a cooling and a heating. Heat radiation while the hot water fed out of an outlet of the water heat exchanger is returned back to an upper part of a hot water storing tank for accumulating heat can be restricted as much as possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ヒートポンプ式給湯
冷暖房装置に係り、特に、水熱交換器の出口から出湯さ
れる高温水を蓄熱用貯湯槽上部まで戻す間の放熱を最小
限に抑えることができる給湯冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type hot water supply / cooling system, and more particularly to minimizing heat radiation while returning high temperature water discharged from the outlet of a water heat exchanger to the upper part of a hot water storage tank. The present invention relates to a hot water supply / cooling system.

【0002】[0002]

【従来技術とその課題】従来より、ヒートポンプ式給湯
冷暖房装置の冷房排熱を利用して貯湯したり、給湯回路
に接続された貯湯槽内部の加熱ヒータを補助熱源とし
て、暖房と給湯の運転要求を一通り行なうように構成さ
れた給湯冷暖房装置が公知であるが、この従来のヒート
ポンプ式給湯冷暖房装置にあっては、次のような多くの
問題を有していた。
2. Description of the Related Art Conventionally, it is necessary to store hot water by utilizing cooling and exhausting heat of a heat pump type hot water supply / cooling system, and to request operation of heating and hot water supply by using a heater inside a hot water storage tank connected to a hot water supply circuit as an auxiliary heat source. A hot water supply air conditioner configured to perform all of the above is known, but this conventional heat pump hot water supply air conditioner has many problems as described below.

【0003】即ち、上記従来のヒートポンプ式給湯冷暖
房装置にあっては、加熱ヒータを貯湯槽内に内蔵し、こ
の加熱ヒータで給湯を行なうと同時にヒートポンプ暖房
運転を行なう場合、給湯に適した温度まで加熱すると、
ヒートポンプ給湯運転は、過負荷状態(入水温度が高温
になる。)となり、その結果、冬期には、効率の良いヒ
ートポンプ給湯を行なうことができない、という問題を
有していた。
That is, in the above-mentioned conventional heat pump hot water supply / cooling system, when a heating heater is built in the hot water storage tank and the heating heater is used to supply hot water at the same time as the heat pump heating operation, a temperature suitable for hot water supply is reached. When heated,
The heat pump hot water supply operation is overloaded (the water entering temperature becomes high), and as a result, there is a problem that the heat pump hot water supply cannot be performed efficiently in the winter.

【0004】このため、冬期の暖房と給湯の同時運転要
求に対しては、従来、貯湯槽内に日昼用ヒータと深夜電
力用ヒータを内蔵させ、ヒートポンプはあくまでも暖房
優先とし、給湯沸き上げに対しては補助熱源を利用して
暖房給湯を実行させているのが現状であるが、かかる手
段にあっては、エネルギー効率が低下する、という問題
を有していた。
Therefore, in response to a request for simultaneous heating and hot water supply in winter, a heater for daytime and daytime and a heater for late-night power are conventionally built in the hot water storage tank, and the heat pump is given priority to heating only to raise hot water. On the other hand, it is the current situation that heating and hot water supply are executed by using an auxiliary heat source, but such a method has a problem that energy efficiency is lowered.

【0005】また、上記従来のヒートポンプ式給湯冷暖
房装置にあっては、風呂シャワー・キッチン給湯・風呂
給湯が中心となる夏期シーズンは別として、外気温度低
下に伴ない入水温度が低下することから、風呂給湯を含
めて大量の熱負荷を必要とする冬期においては、従来の
通常の電気温水器やボイラー給湯器のように85℃付近
までの高温蓄熱が必要となる。また、設置スペースの省
スペース化とともに、従来のような370〜470lク
ラスの大量蓄熱方式のもので冬場の最大給湯負荷を賄う
ことはきわめて困難となってきているのが現状である。
Further, in the above-mentioned conventional heat pump hot water supply air conditioner, apart from the summer season when bath shower / kitchen hot water / bath hot water is the main, the temperature of the incoming water decreases as the outside air temperature decreases. In the winter when a large amount of heat load is required, including hot water supply for baths, high-temperature heat storage up to around 85 ° C. is required as in the conventional ordinary electric water heater and boiler water heater. In addition, it is becoming very difficult to cover the maximum hot water supply load in winter with a conventional 370 to 470l class large amount heat storage system as well as to save the installation space.

【0006】例えば、小型(200〜250l程度)の
蓄熱量で標準世帯(4〜5人家族)の一日単位の給湯負
荷に見合うトータル給湯負荷を賄うためには、冬場の暖
房給湯運転と従来の給湯冷暖房装置にはなかった暖房風
呂追焚き運転(保温)が特に要求され、更に、深夜電力
時間帯・時間帯別電灯料金時間帯における補助加熱装置
(ヒーター等)による85℃程度の高温蓄熱が要求され
る。
For example, in order to cover the total hot water supply load corresponding to the daily hot water supply load of a standard household (family of 4 to 5 people) with a small (about 200 to 250 l) heat storage amount, heating and hot water supply operation in winter and conventional The hot-water reheating operation (heat retention), which was not found in the hot-water supply / cooling system of the above, is especially required, and high-temperature heat storage of about 85 ° C by the auxiliary heating device (heater, etc.) during the midnight power time zone and the hourly light charge time zone Is required.

【0007】ところが、従来の上記補助ヒーターの選択
タイミングは、手動によるか外気温度検知によって制御
されていたため、貯湯槽下部の補助ヒーターを不必要に
作動させて運転効率が低下し、または、低い外気温の場
合に湯量不足を生じたりする問題を有していた。一方、
外気温度や規定時間(深夜電力時間・時間帯別時間)或
は残湯量検知による選択の場合、湯量保証は確実である
が、ヒートポンプ給湯運転が時間的に充分可能であって
も不必要に補助ヒーターが運転される。即ち、ヒートポ
ンプ運転か補助ヒーター運転かの選択のタイミングが効
率の面から制御されていない、という問題を有してい
た。
However, since the conventional selection timing of the auxiliary heater is controlled manually or by detecting the outside air temperature, the auxiliary heater in the lower part of the hot water tank is unnecessarily operated to lower the operation efficiency, or the outside efficiency is low. There was a problem that the amount of hot water was insufficient when the temperature was high. on the other hand,
When selecting by outside air temperature, specified time (midnight power time, time by time zone), or remaining hot water amount detection, the hot water amount is guaranteed, but even if the heat pump hot water supply operation is possible in time, it will be unnecessarily assisted. The heater is operated. That is, there is a problem that the timing of selecting the heat pump operation or the auxiliary heater operation is not controlled in terms of efficiency.

【0008】さらに、上記従来のヒートポンプ式給湯冷
暖房装置において、夏期を中心としてヒートポンプ運転
加熱のみで全ての給湯負荷を満たすことができるとすれ
ば、多大な省エネルギーとなることは従来からも云われ
ており、これは、冷房運転による排熱を利用すれば理論
的には十分可能であるが、実際には、冷房運転のタイミ
ングと給湯負荷に見合う貯湯タイミングがうまくかみ合
わず、夏期シーズンといえども冷房運転停止中の給湯単
独運転(排熱利用をしない冷凍サイクル運転)もしくは
補助ヒータ運転が頻繁に行われることから、それほど省
エネルギーになっていない、という問題を有していた。
Further, in the conventional heat pump hot water supply / cooling system described above, if it is possible to satisfy all the hot water supply load only by the heat pump operation heating mainly in summer, it has been conventionally said that a great energy saving is achieved. This is theoretically sufficient if exhaust heat from the cooling operation is used, but in reality, the timing of the cooling operation and the hot water storage timing that matches the hot water supply load do not mesh well, and even during the summer season The hot water supply alone operation (refrigeration cycle operation that does not use exhaust heat) or the auxiliary heater operation during the operation stop is frequently performed, so that there is a problem that energy saving is not so much.

【0009】さらにまた、上記従来のヒートポンプ式給
湯冷暖房装置における蓄熱方式にあっては、貯湯槽内に
直接挿入された熱交換器による均一な温度で漸次加熱す
る方式と強制循環対交流によって加熱交換器を貯湯槽内
缶体外に設置する方式のものがあり、前者は凝縮温度よ
りも高い湯温を得ることできず、後者は加熱熱交換器の
出湯温度が規定温度になる様に循環流水量を調整する必
要があった。
Further, in the heat storage method in the above-mentioned conventional heat pump hot water supply / cooling system, a heat exchanger directly inserted in the hot water storage tank is used to gradually heat at a uniform temperature, and heat exchange is performed by forced circulation vs. alternating current. There is a system in which the water heater is installed outside the can in the hot water storage tank, the former cannot obtain a hot water temperature higher than the condensation temperature, and the latter has a circulating water flow rate so that the hot water outlet temperature of the heating heat exchanger reaches the specified temperature. Had to be adjusted.

【0010】即ち、上記後者の方式には、従来からある
機械式の凝縮圧力調整弁・パラフィン系ワックスペレッ
トを利用したワックスエレメント型のものや、熱交換出
口部にサーミスターエレメントを用いてポンプ吐出容量
制御するもの、または、熱交換出口部にサーミスターエ
レメントを用いて比例弁開度制御するものなどがある
が、これらのものはいずれの方式のものにあっても、出
湯温度が可変できなかったり、可変流量精度が良くなか
ったり、出湯温度と比例弁動作のタイムラグ或は熱交換
凝縮側(水熱交側)の状態変化への追随性が悪い等、多
くの問題を有し、特に、出湯温度による比例弁制御の場
合、ホットキープ(熱交換器プレヒート運転)や温度検
出遅れのため、特に、外気温度や入水温度が低い季節に
は、規定の温度到達までにハンチングをともなう場合も
多い、という問題を有していた。
That is, in the latter method, the conventional mechanical type condensing pressure adjusting valve / wax element type utilizing paraffin wax pellets, or the thermistor element at the heat exchange outlet is used for pump discharge. There are those that control the capacity, or those that control the proportional valve opening by using a thermistor element at the heat exchange outlet, but in any of these methods, the hot water temperature cannot be changed. There are many problems such as that the accuracy of variable flow rate is not good, the time lag of tapping temperature and proportional valve operation, or the ability to follow the state change on the heat exchange condensation side (water heat exchange side) are poor. In the case of proportional valve control by hot water temperature, due to hot keeping (heat exchanger preheat operation) and temperature detection delay, the specified temperature is reached especially in the season when the outside air temperature and the incoming water temperature are low. In many cases accompanied by hunting on in, we had a problem.

【0011】この発明は、かかる現状に鑑み創案された
ものであって、その目的とするところは、1台のヒート
ポンプ装置によって給湯・冷房給湯・暖房給湯・冷房風
呂追焚き・暖房風呂追焚き(保温)・冷房・暖房の7つ
の主機能を備え、しかも、機器の諸費用を大幅にコスト
ダウンさせることができると共に、機器を小型化するこ
とができるエネルギー変換効率に優れた給湯冷暖房装置
を提供しようとするものである。
The present invention was devised in view of the present situation, and the purpose thereof is to provide hot water supply / cooling hot water supply / heating hot water supply / cooling bath reheating / heating bath reheating by one heat pump device ( Provides hot water supply cooling / heating equipment that has seven main functions of heat retention / cooling / heating, and can greatly reduce various equipment costs, as well as reduce equipment size and energy conversion efficiency. Is what you are trying to do.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、この発明にあっては、圧縮機、蒸発器、負荷空気側
凝縮器、熱源側水熱交換器および膨張機構を冷媒用配管
路で連通接続してなるヒートポンプサイクル加熱装置
と、上記水熱交換器が接続された蓄熱用貯湯槽と、該貯
湯槽内の水を加熱する補助加熱装置と、を備えてなる給
湯冷暖房装置において、上記水熱交換器の三重管熱交換
コイルを上記蓄熱用貯湯槽に巻装して取り付けたことを
特徴とするものである。
In order to achieve the above object, in the present invention, a compressor, an evaporator, a load air side condenser, a heat source side water heat exchanger and an expansion mechanism are provided in a refrigerant pipeline. A hot water supply / cooling device comprising: a heat pump cycle heating device connected in communication; a heat storage hot water storage tank to which the water heat exchanger is connected; and an auxiliary heating device that heats the water in the hot water storage tank. A triple-tube heat exchange coil of a water heat exchanger is wound around and attached to the hot water storage tank for heat storage.

【0013】[0013]

【実施例】以下、添付図面に示す一実施例に基き、この
発明を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on an embodiment shown in the accompanying drawings.

【0014】図1と図2において、Bはバスタブを、I
は室内機ユニットを、Kは給湯キットを、Oは室外機ユ
ニットを、Qは貯給湯ユニットを、WV,WV,W
は4方向切換弁を、SV,SV,SVは電磁
弁を、SVは多機能膨張弁を、P乃至P22は冷媒
配管を、Y乃至Yは風呂循環配管を、1は室外熱交
換器を、2は室内熱交換器を、3はコンプレッサを、4
は水熱交換器を、5はレシーバを、6は逆止弁を、7は
貯湯槽を、8は膨張機構を、9は給湯ポンプを、10は
風呂循環ポンプを夫々示している。尚、図1中におい
て、符号Cは室内機ユニット用ワイヤレスリモコンを、
Dは給湯リモコンを、Eは風呂リモコンを示している。
また、各図において、弁部分の白抜き表示は、各弁が開
放されている状態を示しており、また、黒塗り表示は、
各弁が閉じらた状態にセットされていることを意味すも
のとする
In FIGS. 1 and 2, B is a bathtub and I is
Is an indoor unit, K is a hot water supply kit, O is an outdoor unit, Q is a hot water storage unit, WV 1 , WV 2 , W
V 3 is a 4-way switching valve, SV 1 , SV 2 and SV 3 are solenoid valves, SV 4 is a multifunctional expansion valve, P 1 to P 22 are refrigerant pipes, Y 1 to Y 4 are bath circulation pipes. 1, 1 is an outdoor heat exchanger, 2 is an indoor heat exchanger, 3 is a compressor, 4
Is a water heat exchanger, 5 is a receiver, 6 is a check valve, 7 is a hot water storage tank, 8 is an expansion mechanism, 9 is a hot water supply pump, and 10 is a bath circulation pump. Incidentally, in FIG. 1, reference numeral C indicates a wireless remote controller for an indoor unit,
D is a hot water supply remote control, and E is a bath remote control.
Further, in each figure, the white part of the valve indicates that each valve is open, and the black part indicates that
It means that each valve is set to the closed state

【0015】また、上記貯湯槽7の上部外周には、水熱
交換器4の三重管熱交換用コイルZが複数回巻装されて
装着されている。この三重管熱交換用コイルZは、上記
水熱交換器4に配設された冷媒配管の外側と内側に水熱
交換・伝熱管を設け、給湯循環回路と風呂循環回路を1
系統の冷媒流路を挟んで完全に独立させたものであっ
て、その詳細な構成・作用等は公知であるので、その詳
細な説明をここでは省略する。
Further, a triple pipe heat exchange coil Z of the water heat exchanger 4 is wound around and mounted on the outer periphery of the upper portion of the hot water storage tank 7. This triple-tube heat exchange coil Z is provided with water heat exchange / heat transfer tubes on the outside and inside of the refrigerant pipe arranged in the water heat exchanger 4, and has a hot water supply circulation circuit and a bath circulation circuit.
The system is completely independent with the system coolant passage interposed therebetween, and its detailed configuration, action, and the like are known, and therefore detailed description thereof is omitted here.

【0016】次に、以上のように構成されてなる給湯冷
暖房装置の作動状態を説明する。
Next, the operating state of the hot water supply / cooling system constructed as above will be described.

【0017】この実施例に係る給湯冷暖房装置で「冷房
運転モード」を選択すると、図3において太線で示すよ
うに、コンプレッサ3で高圧となった冷媒が配管P
4方向切換弁WV→配管P→室外熱交換器1→配管
12を経て上記多機能膨張弁SVへと入り、この多
機能膨張弁SVで低圧とされた後、該冷媒は配管P
→配管P→室内熱交換器2→配管P→配管P→4
方向切換弁WV→配管P13→4方向切換弁WV
配管P17→配管P11を経てコンプレッサ3へと戻さ
れ、室内熱交換器2からは冷気が送出される。
[0017] Selecting "cooling operation mode" in the hot water supply air conditioner according to this embodiment, as shown by thick lines in FIG. 3, the refrigerant pipe becomes high pressure compressor 3 P 1
The four-way switching valve WV 1 → Piping P 2 → Outdoor heat exchanger 1 → Piping P 12 enters the multifunctional expansion valve SV 4 , and after the multifunctional expansion valve SV 4 is reduced in pressure, the refrigerant is cooled. Piping P 5
→ Piping P 6 → Indoor heat exchanger 2 → Piping P 7 → Piping P 8 → 4
Direction switching valve WV 2 → Piping P 13 → 4 direction switching valve WV 1
The cold air is sent out from the indoor heat exchanger 2 by returning to the compressor 3 through the pipe P 17 → the pipe P 11 .

【0018】一方、給湯冷暖房装置で「暖房運転モー
ド」を選択すると、図4において太線で示すように、コ
ンプレッサ3で高圧となった冷媒が、配管P→4方向
切換弁WV→配管P13→4方向切換弁WV→配管
14→配管P→室内熱交換器2→配管P→配管P
15→レシーバ5→配管P16を経て多機能膨張弁SV
へと入り、この膨張弁SVで低圧とされた後、該冷
媒は配管P→電磁弁SV→配管P→室外熱交換器
1→配管P→4方向切換弁WV→配管P17→配管
11を経てコンプレッサ3へと戻され、室内熱交換器
2からは暖気が送出される。
On the other hand, when the "heating operation mode" is selected in the hot water supply / cooling system, the refrigerant having a high pressure in the compressor 3 is pipe P 1 → four-way switching valve WV 1 → pipe P, as indicated by the thick line in FIG. 13 → 4 direction switching valve WV 2 → Piping P 14 → Piping P 7 → Indoor heat exchanger 2 → Piping P 6 → Piping P
15 → Receiver 5 → Multi-function expansion valve SV via piping P 16
4 and after being made a low pressure by this expansion valve SV 4 , the refrigerant is pipe P 4 → solenoid valve SV 1 → pipe P 3 → outdoor heat exchanger 1 → pipe P 2 → four-way switching valve WV 1 → The warm air is sent out from the indoor heat exchanger 2 by being returned to the compressor 3 via the pipe P 17 → the pipe P 11 .

【0019】上記給湯冷暖房装置で「給湯運転モード」
を選択すると、図5において太線で示すように、コンプ
レッサ3で高圧となった冷媒が、配管P→4方向切換
弁WV1→配管P13→4方向切換弁WV→配管P
18→配管P19を経て水熱交換器4へ入り、該水熱交
換器4で給湯循環配管Y内を循環する給湯水を加熱し
た後、該冷媒は配管P20→配管P21→4方向切換弁
WV→配管P22を経て多機能膨張弁SVへと入
り、この膨張弁SVで低圧とされた後、該冷媒は配管
→電磁弁SV→配管P→室外熱交換器1→配管
→4方向切換弁WV→配管P17→配管P11
経てコンプレッサ3へと戻される。また、上記冷媒によ
って水熱交換器4で給湯循環配管Y内を循環する給湯
水が加熱されると、この加熱された高温の湯は貯湯槽7
ヘと送られて蓄熱されて、湯がバス・キッチン・サニタ
リー等へ供給可能となる一方、貯湯槽7への給水によっ
て冷えた水は、貯湯槽7の下部から給湯循環配管Y
経て水熱交換器4へと戻され再加熱される。
[Hot water supply operation mode] in the hot water supply cooling and heating device
5 is selected, the refrigerant having a high pressure in the compressor 3, as shown by the thick line in FIG. 5, is converted into the pipe P 1 → the four-way switching valve WV 1 → the pipe P 13 → the four-way switching valve WV 2 → the pipe P.
18 → After entering the water heat exchanger 4 via the pipe P 19 and heating the hot water supply circulating in the hot water supply circulation pipe Y 3 by the water heat exchanger 4, the refrigerant is piped P 20 → pipe P 21 → 4 After entering the multifunctional expansion valve SV 4 via the direction switching valve WV 3 → pipe P 22 and reducing the pressure to a low pressure by the expansion valve SV 4 , the refrigerant is pipe P 4 → solenoid valve SV 1 → pipe P 3 → outdoor It is returned to the compressor 3 via the heat exchanger 1 → the pipe P 2 → the four-way switching valve WV 1 → the pipe P 17 → the pipe P 11 . Further, when the hot-water supply circulating in the hot-water supply circulation pipe Y 3 is heated by the water heat exchanger 4 by the refrigerant, the heated high-temperature hot water is stored in the hot-water storage tank 7
Heat accumulated is sent f, while the hot water can be supplied to the bus kitchen sanitary etc., water cooled by water supply to the hot water tank 7 through the hot water circulation pipe Y 2 from the lower portion of the hot water tank 7 Water It is returned to the heat exchanger 4 and reheated.

【0020】上記給湯冷暖房装置で「風呂追焚き運転モ
ード」を選択すると、図6において太線で示すように、
コンプレッサ3で高圧となった冷媒が、配管P→4方
向切換弁WV→配管P13→4方向切換弁WV→配
管P18→配管P19を経て水熱交換器4へ入り、該水
熱交換器4で風呂循環配管Y内を循環する浴槽水を加
熱した後、該冷媒は配管P20→配管P21→4方向切
換弁WV→配管P22を経て上記多機能膨張弁SV
へと入り、この膨張弁SVで低圧とされた後、該冷媒
は配管P→電磁弁SV→配管P→室外熱交換器1
→配管P→4方向切換弁WV→配管P17→配管P
11を経てコンプレッサ3へと戻される。また、上記冷
媒によって水熱交換器4で風呂循環配管Y内を循環す
る浴槽水が加熱されると、この加熱された高温の湯はバ
スタブBへと送られて浴槽内の湯水を撹拌しながら全体
的に昇温させる一方、再循環する浴槽水は、上記バスタ
ブBから風呂循環配管Yを経て水熱交換器4へと戻さ
れ再加熱され、所定の浴槽水温になるまで繰り返し運転
される。
When the "bath heating operation mode" is selected in the hot water supply / cooling device, as shown by the thick line in FIG.
The high-pressure refrigerant in the compressor 3 enters the water heat exchanger 4 through the pipe P 1 → 4-way switching valve WV 1 → pipe P 13 → 4-way switching valve WV 2 → pipe P 18 → pipe P 19 and After heating the bath water circulating in the bath circulation pipe Y 1 by the water heat exchanger 4, the refrigerant is passed through the pipe P 20 → the pipe P 21 → the four-way switching valve WV 3 → the pipe P 22 and the multifunctional expansion valve described above. SV 4
After entering into the expansion valve SV 4 and having a low pressure in the expansion valve SV 4 , the refrigerant is pipe P 4 → solenoid valve SV 1 → pipe P 3 → outdoor heat exchanger 1
→ Piping P 2 → 4-way switching valve WV 1 → Piping P 17 → Piping P
It is returned to the compressor 3 via 11 . Further, when the bath water circulating in the bath circulation pipe Y 1 is heated in the water heat exchanger 4 by the refrigerant, the heated hot water is sent to the bath B to stir the bath water. While raising the temperature as a whole, the bath water that is recirculated is returned from the bathtub B to the water heat exchanger 4 via the bath circulation pipe Y 4 and is reheated, and is repeatedly operated until a predetermined bath water temperature is reached. It

【0021】上記給湯冷暖房装置で「冷房給湯運転モー
ド」を選択すると、図7において太線で示すように、コ
ンプレッサ3で高圧となった冷媒が、配管P→4方向
切換弁WV→配管P13→4方向切換弁WV→配管
18→配管P19を経て水熱交換器4へ入り、該水熱
交換器4で給湯循環配管Y内を循環する給湯水を加熱
した後、該冷媒は配管P20→配管P21→4方向切換
弁WV→配管P22を経て多機能膨張弁SVへと入
り、この膨張弁SVで低圧とされた後、該冷媒は配管
→電磁弁SV→配管P→配管P→室内熱交換
器2→配管P→配管P→4方向切換弁WV→配管
→4方向切換弁WV→配管P10→配管P11
経てコンプレッサ3へと戻される。また、上記冷媒によ
って水熱交換器4で給湯循環配管Y内を循環する給湯
水が加熱され、この加熱された高温の湯は貯湯槽7へと
送られて蓄熱されて、湯がバス・キッチン・サニタリー
等へ供給可能となる一方、貯湯槽7への給水によって冷
えた水は、貯湯槽7の下部から給湯循環配管Yを経て
水熱交換器4へと戻され再加熱される。
When the "cooling / hot water supply operation mode" is selected in the hot water supply / cooling system, the refrigerant having a high pressure in the compressor 3 becomes a pipe P 1 → four-way switching valve WV 1 → pipe P, as shown by a thick line in FIG. 13 → 4 directional control valve WV 2 → Piping P 18 → Piping P 19 into the water heat exchanger 4, and after heating the hot water circulating in the hot water circulation pipe Y 3 with the water heat exchanger 4, The refrigerant enters the multi-function expansion valve SV 4 via the pipe P 20 → the pipe P 21 → the four-way switching valve WV 3 → the pipe P 22 , and the refrigerant is reduced in pressure by the expansion valve SV 4 , and then the refrigerant is the pipe P 4. → Solenoid valve SV 2 → Piping P 5 → Piping P 6 → Indoor heat exchanger 2 → Piping P 7 → Piping P 8 → Four-way switching valve WV 2 → Piping P 9 → Four-way switching valve WV 3 → Piping P 10 → It is returned to the compressor 3 via the pipe P 11 . Further, the above-mentioned refrigerant heats the hot-water supply circulating in the hot-water supply circulation pipe Y 3 in the water heat exchanger 4, and the heated high-temperature hot water is sent to the hot-water storage tank 7 for heat storage and the hot water is stored in the bath. While it can be supplied to the kitchen, sanitary, etc., the water cooled by the water supply to the hot water storage tank 7 is returned from the lower part of the hot water storage tank 7 to the water heat exchanger 4 via the hot water supply circulation pipe Y 2 and reheated.

【0022】上記給湯冷暖房装置で「冷房風呂追焚き運
転モード」を選択すると、図8において太線で示すよう
に、コンプレッサ3で高圧となった冷媒が、配管P
4方向切換弁WV→配管P13→4方向切換弁WV
→配管P18→配管P19を経て水熱交換器4へ入り、
該水熱交換器4で風呂循環配管Y内を循環する浴槽水
を加熱した後、該冷媒は配管P20→配管P21→4方
向切換弁WV→配管P22を経て上記多機能膨張弁S
へと入り、この膨張弁SVで低圧とされた後、該
冷媒は配管P→電磁弁SV→配管P→配管P
室内熱交換器2→配管P→配管P→4方向切換弁W
→配管P→4方向切換弁WV→配管P10→配
管P11を経てコンプレッサ3へと戻される。また、上
記冷媒によって水熱交換器4で風呂循環配管Y内を循
環する浴槽水が加熱されると、この加熱された高温の湯
はバスタブBへと送られて浴槽内の湯水を加熱・撹拌し
ながら追焚きする一方、再循環する浴槽水は、バスタブ
Bから風呂循環配管Yを経て水熱交換器4へと戻され
再加熱され、所定の浴槽水温になるまで繰り返し運転さ
れる。
When the "cooling bath reheating operation mode" is selected in the hot water supply / cooling system, the refrigerant having a high pressure in the compressor 3 becomes a pipe P 1
4-way switching valve WV 1 → Piping P 13 → 4-way switching valve WV 2
→ Piping P 18 → Piping P 19 into the water heat exchanger 4,
After the bath water circulating in the bath circulation pipe Y 3 is heated by the water heat exchanger 4, the refrigerant expands through the pipe P 20 → the pipe P 21 → the four-way switching valve WV 3 → the pipe P 22. Valve S
After entering V 4 and reducing the pressure by this expansion valve SV 4 , the refrigerant is pipe P 4 → solenoid valve SV 2 → pipe P 5 → pipe P 6
Indoor heat exchanger 2 → Piping P 7 → Piping P 8 → 4-way switching valve W
It is returned to the compressor 3 via V 2 → pipe P 9 → 4-way switching valve WV 3 → pipe P 10 → pipe P 11 . Further, when the bath water circulating bath circulation pipe Y 1 with water heat exchanger 4 by the refrigerant is heated, and heating the hot water of the heated high-temperature hot water is sent to the bath B by the bathtub While being heated while being stirred, the bath water that is recirculated is returned from the bathtub B to the water heat exchanger 4 via the bath circulation pipe Y 4 and reheated to be repeatedly operated until a predetermined bath water temperature is reached.

【0023】上記給湯冷暖房装置で「暖房・給湯運転モ
ード」を選択すると、図9において太線で示すように、
コンプレッサ3で高圧となった冷媒が、配管P→4方
向切換弁WV→配管P13→4方向切換弁WV→配
管P18→配管P19を経て水熱交換器4へ入り、該水
熱交換器4で給湯循環配管Y内を循環する給湯水を加
熱した後、該冷媒は配管P20→配管P21→4方向切
換弁WVを経た後、配管P23および配管Pへと分
流され、配管P23を流れる冷媒は、膨張機構8で低圧
とされた後、配管P12を経て配管Pへと圧送され、
また、上記配管Pを流れる冷媒は、4方向切換弁WV
→配管P14→配管P→配管P→室内熱交換器2
→配管P→配管P15→レシーバ5→配管P16を経
て多機能膨張弁SVへと入り、この膨張弁SVで低
圧とされた後、該冷媒は、配管P→電磁弁SV→配
管Pへと圧送され、該配管Pで合流した冷媒は、こ
の後、室外熱交換器1→配管P→4方向切換弁WV
→配管P17→配管P11を経てコンプレッサ3へと戻
される。このとき、暖房能力の著しい低下を防ぐため、
コンプレッサー3を出た冷媒を配管P18と配管P24
の分岐点で一部分流して、電磁弁SV→配管P25
配管P→4方向切換弁WV→配管P14→配管P
→配管P→室内熱交換器2への回路へ冷媒循環をバイ
パスさせて、十分な暖房能力を確保するように構成し
た。このようにして、上記冷媒によって水熱交換器4で
給湯循環配管Y内を循環する給湯水が加熱されると、
この加熱された高温の湯は貯湯槽7へと送られて蓄熱さ
れて、湯がバス・キッチン・サニタリー等へ供給可能と
なる一方、貯湯槽7への給水によって冷えた水は、貯湯
槽7から給湯循環配管Yを経て水熱交換器4へと戻さ
れ再加熱される。
When the "heating / hot water supply operation mode" is selected in the hot water supply / cooling system, as shown by the thick line in FIG.
The high-pressure refrigerant in the compressor 3 enters the water heat exchanger 4 through the pipe P 1 → 4-way switching valve WV 1 → pipe P 13 → 4-way switching valve WV 2 → pipe P 18 → pipe P 19 and After heating the hot water which circulates in the hot water circulation pipe Y 3 by the water heat exchanger 4, the refrigerant passes through the pipe P 20 → the pipe P 21 → the four-way switching valve WV 3, and then the pipe P 23 and the pipe P 9. The refrigerant that has been branched to the pipe P 23 is reduced in pressure by the expansion mechanism 8 and then pressure-fed to the pipe P 3 via the pipe P 12 .
The refrigerant flowing through the pipe P 9 is a four-way switching valve WV.
2 → Piping P 14 → Piping P 8 → Piping P 7 → Indoor heat exchanger 2
→ Piping P 6 → Piping P 15 → Receiver 5 → Piping into the multifunctional expansion valve SV 4 via the piping P 16, and after the expansion valve SV 4 has reduced the pressure, the refrigerant is piped P 4 → Solenoid valve SV 1 → is pumped into the pipe P 3, refrigerant merged in the pipe P 3, after this, the outdoor heat exchanger 1 → pipe P 2 → 4 directional valve WV 1
→ Piping P 17 → Returned to the compressor 3 via the piping P 11 . At this time, to prevent a significant decrease in heating capacity,
The refrigerant flowing out of the compressor 3 is connected to the pipe P 18 and the pipe P 24.
Flow partially at the branch point of the solenoid valve SV 3 → Piping P 25
Piping P 9 → 4-way switching valve WV 2 → Piping P 14 → Piping P 8
→ Piping P 7 → By circulating the refrigerant circulation to the circuit to the indoor heat exchanger 2, a sufficient heating capacity is ensured. In this manner, when the hot water supply circulating in the hot water supply circulation pipe Y 3 is heated in the water heat exchanger 4 by the refrigerant,
This heated high-temperature hot water is sent to the hot water storage tank 7 to accumulate heat, and the hot water can be supplied to the bath, kitchen, sanitary, etc., while the water cooled by the water supply to the hot water storage tank 7 is stored in the hot water storage tank 7. Through the hot water supply circulation pipe Y 2 to be returned to the water heat exchanger 4 and reheated.

【0024】上記給湯冷暖房装置で「暖房・風呂保温運
転モード」を選択すると、図10において太線で示すよ
うに、コンプレッサ3で高圧となった冷媒が、配管P
→4方向切換弁WV→配管P13→4方向切換弁WV
→配管P18→配管P19を経て水熱交換器4へ入
り、該水熱交換器4で風呂循環配管Y内を循環する浴
槽水を加熱した後、該冷媒は配管P20→配管P21
4方向切換弁WVを経た後、配管P23および配管P
へと分流され、配管P23を流れる冷媒は、膨張機構
8で低圧とされた後、配管P12を経て配管Pへと圧
送され、また、上記配管Pを流れる冷媒は4方向切換
弁WV→配管P14→配管P→室内熱交換器2→配
管P→配管P15→レシーバ5→配管P16を経て多
機能膨張弁SVへと入り、この膨張弁SVで低圧と
された後、該冷媒は配管P→電磁弁SV→配管P
へと圧送され、該配管Pで合流した冷媒は、この後、
室外熱交換器1→配管P→4方向切換弁WV→配管
17→配管P11を経てコンプレッサ3へと戻され
る。このとき、暖房能力の著しい低下を防ぐため、コン
プレッサー3を出た冷媒を配管P18と配管P24の分
岐点で一部分流して、電磁弁SV→配管P25→配管
→4方向切換弁WV→配管P14→配管P→配
管P→室内熱交換器2への回路へ冷媒循環をバイパス
させて、十分な暖房能力を確保するように構成した。こ
のようにして、上記冷媒によって水熱交換器4で風呂循
環配管Y内を循環する浴槽水が加熱されると、この加
熱された高温の湯はバスタブBへと送られて浴槽内の湯
水を撹拌しながら全体的に昇温させて一定温度に保温す
る一方、再循環する浴槽水は、バスタブBから風呂循環
配管Yを経て水熱交換器4ヘと戻され再加熱され、所
定の浴槽水温で保温運転される。
When the "heating / bath warming operation mode" is selected in the hot water supply / cooling system, the refrigerant having a high pressure in the compressor 3 becomes a pipe P 1 as shown by a thick line in FIG.
→ 4-way switching valve WV 1 → Piping P 13 → 4-way switching valve WV
2 → Piping P 18 → Piping P 19 into the water heat exchanger 4, and after heating the bath water circulating in the bath circulation pipe Y 3 with the water heat exchanger 4, the refrigerant is the pipe P 20 → Piping P 21
After passing through the four-way switching valve WV 3 , the pipe P 23 and the pipe P
The refrigerant that is divided into 9 and flows through the pipe P 23 is reduced in pressure by the expansion mechanism 8 and then is pumped to the pipe P 3 through the pipe P 12 and the refrigerant that flows through the pipe P 9 is switched in four directions. The valve WV 2 → Piping P 14 → Piping P 7 → Indoor heat exchanger 2 → Piping P 6 → Piping P 15 → Receiver 5 → Piping into the multifunctional expansion valve SV 4 via the piping P 16 and at this expansion valve SV 4 After being made to have a low pressure, the refrigerant is piped P 4 → solenoid valve SV 1 → pipe P 3
The refrigerant that has been pumped to and merged in the pipe P 3 is
The heat is returned to the compressor 3 through the outdoor heat exchanger 1 → the pipe P 2 → the four-way switching valve WV 1 → the pipe P 17 → the pipe P 11 . At this time, in order to prevent a significant decrease in the heating capacity, the refrigerant discharged from the compressor 3 is caused to partially flow at the branch point of the pipe P 18 and the pipe P 24 , and the solenoid valve SV 3 → pipe P 25 → pipe P 9 → 4 direction switching. The valve WV 2 → pipe P 14 → pipe P 8 → pipe P 7 → the refrigerant circulation is bypassed to the circuit to the indoor heat exchanger 2 to ensure sufficient heating capacity. In this way, when the bath water circulating in the bath circulation pipe Y 1 is heated in the water heat exchanger 4 by the refrigerant, the heated hot water is sent to the bath B, and the hot water in the bath is heated. The temperature of the bathtub water to be recirculated is returned from the bathtub B to the water heat exchanger 4 through the bath circulation pipe Y 4 to the water heat exchanger 4 and reheated to a predetermined temperature. It is kept warm at the bath water temperature.

【0025】上記給湯冷暖房装置で「給湯デフロスト運
転モード」または「風呂追焚きデフロスト運転モード」
を選択すると、図11において太線で示すように、コン
プレッサ3で高圧となった冷媒が、配管P→4方向切
換弁WV→配管P13→4方向切換弁WV→配管P
18→配管P19を経て水熱交換器4へ入り、該水熱交
換器4では、給湯又は風呂循環ポンプを停止しているの
で、該冷媒は高温のまま配管P20→配管P21→4方
向切換弁WV→配管P22を経て多機能膨張弁SV
へと入る。この膨張弁SVはデフロストモードで全開
状態となり減圧されない為、該冷媒は配管P→電磁弁
SV→配管P→室外熱交換器1→配管P→4方向
切換弁WV→配管P17→配管P11を経てコンプレ
ッサ3へと戻される。このときに、室外熱交換器1に着
霜している霜が高温冷媒の通過によって除かれる。尚、
「給湯デフロスト運転モード」のときには、給湯ポンプ
9および室外熱交換器1のファンは停止しており、ま
た、「風呂追焚きデフロスト運転モード」のときには、
風呂循環ポンプ10および室外熱交換器1のファンは停
止している。
In the hot water supply cooling / heating device, the "hot water supply defrost operation mode" or "bath heating defrost operation mode"
11, when the refrigerant having a high pressure in the compressor 3 becomes a pipe P 1 → 4-way directional control valve WV 1 → pipe P 13 → 4-way directional control valve WV 2 → pipe P, as indicated by a thick line in FIG.
18 → Pipe P 19 enters the water heat exchanger 4, and in the water heat exchanger 4, the hot water supply or the bath circulation pump is stopped, so that the refrigerant remains at a high temperature in the pipe P 20 → Pip P 21 → 4 Direction switching valve WV 3 → multi-function expansion valve SV 4 via pipe P 22
Enter Since the expansion valve SV 4 is in a fully open state in the defrost mode and is not depressurized, the refrigerant is pipe P 4 → solenoid valve SV 1 → pipe P 3 → outdoor heat exchanger 1 → pipe P 2 → 4-way switching valve WV 1 → pipe P 17 → It is returned to the compressor 3 through the pipe P 11 . At this time, the frost accumulated on the outdoor heat exchanger 1 is removed by the passage of the high-temperature refrigerant. still,
In the "hot water supply defrost operation mode", the fans of the hot water supply pump 9 and the outdoor heat exchanger 1 are stopped, and in the "bath heating defrost operation mode",
The fans of the bath circulation pump 10 and the outdoor heat exchanger 1 are stopped.

【0026】最後に、給湯冷暖房装置で「暖房デフロス
ト運転モード」または「暖房・給湯デフロスト運転モー
ド」或は「暖房・風呂保温デフロスト運転モード」を選
択すると、図12において太線で示すように、上記コン
プレッサ3で高圧となった冷媒が配管P→4方向切換
弁WV→配管P13→4方向切換弁WV→配管P
14→配管P→室内熱交換器2→配管P→配管P
15→レシーバ5→配管P16を経て多機能膨張弁SV
へと入る。この膨張弁SVは、全開となっているの
で、高温高圧の冷媒は、配管P→電磁弁SV→配管
→室外熱交換器1→配管P→4方向切換弁WV
→配管P17→配管P11を経てコンプレッサ3へと戻
される。このときに、室外熱交換器1に着霜している霜
が、高温冷媒の通過によって除かれる。尚、これらの運
転モードのときには、室内熱交換器2のファンおよび室
外熱交換器1のファンは停止しているが、室内熱交換器
2のファンを低速にコントロールすれば、暖房と同時に
除霜することもできる。
Finally, when the "heating defrost operation mode" or the "heating / hot water supply defrost operation mode" or the "heating / bath warming defrost operation mode" is selected in the hot water supply / cooling system, as shown by the thick line in FIG. The high-pressure refrigerant in the compressor 3 is the pipe P 1 → 4-way switching valve WV 1 → pipe P 13 → 4-way switching valve WV 2 → pipe P
14 → Piping P 7 → Indoor heat exchanger 2 → Piping P 6 → Piping P
15 → Receiver 5 → Multi-function expansion valve SV via piping P 16
Enter 4 . Since the expansion valve SV 4 is fully opened, the high-temperature and high-pressure refrigerant is piped P 4 → solenoid valve SV 1 → pipe P 3 → outdoor heat exchanger 1 → pipe P 2 → four-way switching valve WV 1.
→ Piping P 17 → Returned to the compressor 3 via the piping P 11 . At this time, the frost formed on the outdoor heat exchanger 1 is removed by the passage of the high-temperature refrigerant. In addition, in these operation modes, the fan of the indoor heat exchanger 2 and the fan of the outdoor heat exchanger 1 are stopped, but if the fan of the indoor heat exchanger 2 is controlled to a low speed, it will defrost simultaneously with heating. You can also do it.

【0027】尚、図13は、上記各運転モードに対する
制御例をフローチャートで示した図である。
FIG. 13 is a flow chart showing an example of control for each of the above operation modes.

【0028】それ故、この実施例に係る給湯冷暖房装置
にあっては、家庭内空調(冷房/暖房)の一室居室(所
謂ワンルーム)の使用想定負荷を十分カバーし、かつ、
特に冬期の風呂給湯負荷を中心とした給湯負荷におい
て、優先的に標準温度までの加熱をヒートポンプ装置の
運転により行い、更に、高温を必要とするときに限り、
貯湯槽7の下部等に配設された補助熱源ヒーター(図示
せず)を利用することで賄うことができる。
Therefore, in the hot water supply / cooling system according to this embodiment, the assumed load of one room room (so-called one room) of home air conditioning (cooling / heating) is sufficiently covered, and
Especially in the hot water supply load centering on the bath hot water supply load in the winter season, heating to the standard temperature is preferentially performed by operating the heat pump device, and only when high temperature is required,
This can be covered by using an auxiliary heat source heater (not shown) arranged in the lower part of the hot water storage tank 7.

【0029】また、この実施例に係る給湯冷暖房装置で
は、外気温度、貯湯槽内湯量・湯温により運転可能な出
力と時間を割り出し、割安時間帯においては補助ヒータ
ー運転を必要最小限にする運転制御(ピークシフト制
御)を行うこともできる。これは、ヒートポンプ運転用
外気温度検出センサー(図示せず)と貯湯槽7内の残湯
量・湯温検出センサーと運転時間帯分布パターンによっ
て、ヒートポンプのみの運転とヒートポンプ給湯運転を
停止し、ヒーター運転に自動的に切り替えて制御する効
率の良いヒートポンプ運転を有効に選択させることによ
り、冬期においても大幅なトータル効率向上と必要湯量
の保証を実現することができる。
Further, in the hot water supply cooling / heating apparatus according to this embodiment, the operable output and time are determined by the outside air temperature, the amount of hot water in the hot water tank, and the hot water temperature, and the operation of the auxiliary heater operation is minimized in the cheap time zone. Control (peak shift control) can also be performed. This is because the operation of only the heat pump and the operation of the heat pump hot water supply are stopped by the heat pump operation outside air temperature detection sensor (not shown), the amount of remaining hot water in the hot water tank 7 By effectively selecting the efficient heat pump operation that is automatically switched to and controlled, it is possible to significantly improve the total efficiency and guarantee the required amount of hot water even in the winter.

【0030】さらに、この実施例に係る給湯冷暖房装置
にあっては、従来のシステムが貯湯槽内の予約量または
規定量までは、夏期中であっても冷房が運転していない
ときには、一律に、給湯運転にシフトしていたのに比
べ、運転制御シーケンスを室外温度や現在の時間帯或は
前回の冷房運転時間の状況によって給湯単独運転に移行
させないように制御することができる。
Further, in the hot-water supply / cooling system according to this embodiment, the conventional system is uniformly used up to the reserved amount or the specified amount in the hot-water storage tank even when the cooling is not operating even during the summer. As compared with the case of shifting to the hot water supply operation, the operation control sequence can be controlled so as not to shift to the hot water supply independent operation depending on the condition of the outdoor temperature, the current time zone, or the previous cooling operation time.

【0031】例えば、図14に示すように、「給湯運転
モード」又は「風呂追焚き運転モード」を選択すると、
通常は冷房指令がない図5,図6に示すように、夫々単
独運転を給湯制御マイクロプロセッサ装置が指令する
が、冷房運転シーズンの冷房排熱の利用チャンスを最大
限にするために、給湯単独運転をある条件で制限する運
転で構成される。
For example, as shown in FIG. 14, when the "hot water supply operation mode" or "bath heating operation mode" is selected,
Normally, there is no cooling command, as shown in FIG. 5 and FIG. 6, the hot water supply control microprocessor devices respectively command the individual operation, but in order to maximize the chance of utilizing the cooling air exhaust heat in the cooling operation season, the hot water supply independent It consists of operations that restrict the operation under certain conditions.

【0032】冷房指令がない場合の給湯要求に対して
は、まず外気温度が温度センサーによって検知され、あ
る一定の温度以上では給湯指令を許可しない。この後、
次のステップでは現在時刻が検知され、ある時刻の範囲
内では給湯指令を許可しない。さらに、次のステップで
は、不用意な給湯ミスを発生させないため、前回の冷房
運転停止時刻から一定時間経過すると給湯指令を許可す
る運転制御が行なわれるように、冷房シーズン特有の内
容で構成されている。尚、この給湯要求は、図15に示
すように、給湯リモコンからの要求信号によって作動さ
れるが、沸き上げが完了している場合や留守等の間の給
湯運転解除機能の作動によって、該要求は停止され、不
必要な運転を防止することができると共に、従来なかっ
た冷房排熱利用を風呂水の追焚きにも利用できるので、
利用可能な給湯容量を増加させることができる一方で、
貯湯するタンク内容量を小さくすることができる。
In response to a hot water supply request when there is no cooling command, first, the outside air temperature is detected by the temperature sensor, and the hot water supply command is not permitted above a certain temperature. After this,
In the next step, the current time is detected, and the hot water supply command is not permitted within a certain time range. Furthermore, in the next step, in order to prevent accidental careless hot water supply mistakes, it is configured with contents specific to the cooling season so that the operation control that allows the hot water supply command is performed after a certain time has elapsed from the previous cooling operation stop time. There is. This hot water supply request is activated by a request signal from the hot water supply remote controller as shown in FIG. 15, but when the boiling is completed or when the hot water supply operation cancellation function is activated during absence, etc. Is stopped, unnecessary operation can be prevented, and the use of cooling exhaust heat, which was not available in the past, can be used to reheat bath water.
While the available hot water supply capacity can be increased,
It is possible to reduce the capacity of the tank for storing hot water.

【0033】また更に、この実施例に係る給湯冷暖房装
置にあっては、図16乃至図19に示すように、水熱交
換側の凝縮温度検出センサー20と凝縮相当圧力検出セ
ンサー21と出湯温度センサー22によって、所定温度
範囲において安定的な給湯・風呂追焚きをすることがで
きるように構成することもできる。
Further, in the hot water supply / cooling system according to this embodiment, as shown in FIGS. 16 to 19, the condensation temperature detection sensor 20, the condensation equivalent pressure detection sensor 21, and the hot water temperature sensor on the water heat exchange side are provided. 22 can also be configured so that stable hot water supply / bath reheating can be performed within a predetermined temperature range.

【0034】図16乃至図19において、23,24,
25は貯湯温度センサー、26は風呂出湯温度センサ
ー、27は風呂入水温度センサー、28は給湯入水温度
センサー、30は水位センサー、MVは給湯比例弁、
MVは給湯用2方向切換弁、MVは風呂比例弁、W
は風呂用3方向切換弁、Y乃至Yは流水配管、
Zは混合分岐点、を夫々示している。
16 to 19, reference numerals 23, 24,
25 is a hot water storage temperature sensor, 26 is a bath hot water temperature sensor, 27 is a bath hot water temperature sensor, 28 is a hot water hot water temperature sensor, 30 is a water level sensor, MV 1 is a hot water proportional valve,
MV 2 is a 2-way switching valve for hot water supply, MV 3 is a bath proportional valve, W
V 4 is a bath 3-way switching valve, Y 5 to Y 9 are running water pipes,
Z indicates a mixed branch point, respectively.

【0035】かかる構成において「給湯運転」が選択さ
れると、給水・給湯回路は、図16で示すように、上記
貯湯槽7の出湯によって貯湯槽7の下部に補給された冷
えた水は、貯湯槽7の下部から給湯循環配管Y→給湯
ポンプ9→給湯比例弁MV→混合分岐点Zを経て水熱
交換器4へと送られ、該水熱交換器4で加熱された高温
の湯は、給湯用2方向切換弁MVを経て給湯循環配管
内を流れて貯湯槽7へと送られ、蓄熱されてバス・
キッチン・サニタリー等への供給が行なえる状態にセッ
トされる。このとき、貯湯槽7内の上・中・下部の各温
度は貯湯温度センサー23,24,25によって検知さ
れ、また、給湯循環配管Y内を流れる水の温度は給湯
入水温度センサー28によって検知されると共に、給湯
循環配管Y内を流れる湯の温度は出湯温度センサー2
2によって検知され、これら各検出温度によって加熱制
御が安定的、かつ、効率良く行なわれる。
When the "hot water supply operation" is selected in such a configuration, the water supply / hot water supply circuit causes the cold water supplied to the lower portion of the hot water storage tank 7 by the hot water discharge from the hot water storage tank 7 as shown in FIG. From the lower part of the hot water storage tank 7, the hot water supply circulation pipe Y 2 → hot water supply pump 9 → hot water supply proportional valve MV 1 → is sent to the water heat exchanger 4 through the mixing branch point Z and heated by the water heat exchanger 4. The hot water flows through the hot water supply two-way switching valve MV 2 in the hot water supply circulation pipe Y 3 and is sent to the hot water storage tank 7, where heat is stored and stored in the bath.
It is set so that it can be supplied to kitchens and sanitaries. At this time, the upper, middle, and lower temperatures in the hot water storage tank 7 are detected by the hot water storage temperature sensors 23, 24, and 25, and the temperature of the water flowing in the hot water supply circulation pipe Y 2 is detected by the hot water supply and incoming water temperature sensor 28. At the same time, the temperature of the hot water flowing in the hot water supply circulation pipe Y 3 is measured by the hot water temperature sensor 2
2 and the heating control is stably and efficiently performed by these detected temperatures.

【0036】また「風呂追焚き(保温)運転モード」が
選択されると、風呂水循環回路は、図17に示すよう
に、上記水熱交換器4で加熱された高温の湯が、配管Y
→風呂用3方向切換弁WV→風呂循環ポンプ10→
風呂比例弁MV→風呂循環配管Y→バスタブBへと
送られて浴槽内の湯水を撹拌しながら全体的に昇温させ
る一方、再循環する浴槽水は、バスタブB→風呂循環配
管Y→流水配管YおよびYを経て水熱交換器4へ
と戻されて再加熱され、風呂循環配管Y内を流れる湯
の温度を検知する風呂出湯温度センサー26と風呂循環
配管Y内を流れる水の温度を検知する風呂入水温度セ
ンサー27からの信号により制御されて、所定の浴槽水
温になるまで繰り返し運転される。
When the "bath reheating (warming) operation mode" is selected, the bath water circulation circuit causes the hot water heated by the water heat exchanger 4 to enter the pipe Y as shown in FIG.
6 → 3-way switching valve for bath WV 4 → Bath circulation pump 10 →
Bath proportional valve MV 3 → bath circulation pipe Y 1 → is sent to bathtub B to raise the temperature of the bathtub as a whole while stirring, while recirculating bathwater is bathtub B → bath circulation pipe Y 4 → The bath outlet temperature sensor 26 for detecting the temperature of the hot water flowing in the bath circulation pipe Y 1 after being returned to the water heat exchanger 4 via the running water pipes Y 7 and Y 8 and reheated, and the bath circulation pipe Y 4 It is controlled by a signal from the bath entrance temperature sensor 27 that detects the temperature of the flowing water, and is repeatedly operated until a predetermined bath water temperature is reached.

【0037】一方、バスタブB内の水位が設定水位より
も低い場合に「自動湯張り運転モード」を選択すると、
図18に示すように、貯湯槽7内の高温の湯は給湯循環
配管Y→給湯用2方向切換弁MV→水熱交換器4→
流水配管Y→混合分岐点Zへと流れる一方、貯湯槽7
の下部から供給される冷たい水は、給湯循環配管Y
給湯ポンプ9→給湯比例弁MV→混合分岐点Zへと流
れ、この混合分岐点Zで上記高温の湯と冷たい水が設定
温度の湯に混合された後、該混合湯は、流水配管Y
風呂用3方向切換弁WV→風呂循環ポンプ10→風呂
比例弁MV→風呂循環配管Y→バスタブBへと送ら
れ、設定温度の湯が設定水位までバスタブB内に供給さ
れる。但し、給湯リモコンの貯湯槽7内の残湯表示が全
て消灯し或は残湯不足が点灯している場合には、このモ
ードを選択しても、一回で指定温度で湯張りを完了でき
ないが、自動的に風呂追焚き運転に移行するように構成
されている。
On the other hand, if the "automatic filling operation mode" is selected when the water level in the bathtub B is lower than the set water level,
As shown in FIG. 18, the hot water in the hot water storage tank 7 is supplied from the hot water supply circulation pipe Y 3 → hot water supply two-way switching valve MV 2 → water heat exchanger 4 →
Running water pipe Y 5 → flowing to the mixing branch point Z, while the hot water storage tank 7
The cold water supplied from the bottom of the hot water circulation pipe Y 2
The hot water supply pump 9 → hot water supply proportional valve MV 1 → flows to the mixing branch point Z, and at this mixing branch point Z, the hot water and the cold water are mixed with the hot water of the set temperature, and then the mixed hot water is fed into the running water pipe Y. 9
The bath three-way switching valve WV 4 → bath circulation pump 10 → bath proportional valve MV 3 → bath circulation pipe Y 1 → sent to the bathtub B, and hot water of a preset temperature is supplied to the bathtub B up to the preset water level. However, when all the remaining hot water display in the hot water storage remote controller 7 is turned off or the shortage of remaining hot water is lit, even if this mode is selected, the filling of water cannot be completed at the specified temperature once. However, it is configured to automatically shift to the bath heating operation.

【0038】また、バスタブB内の水位が設定水位より
も低い場合に「自動水張り運転モード」を選択すると、
図19に示すように、上記貯湯槽7の下部から供給され
る冷たい水は、給湯循環配管Y→給湯ポンプ9→給湯
比例弁MV→混合分岐点Z→流水配管Y→風呂用3
方向切換弁WV→風呂循環ポンプ10→風呂比例弁M
→風呂循環配管Y→バスタブBへと送られ、設定
水位までバスタブB内に供給される。
If the "automatic water filling operation mode" is selected when the water level in the bathtub B is lower than the set water level,
As shown in FIG. 19, the cold water supplied from the lower part of the hot water storage tank 7 is the hot water supply circulation pipe Y 2 → hot water supply pump 9 → hot water supply proportional valve MV 1 → mixing branch point Z → running water pipe Y 9 → bath water 3
Direction switching valve WV 4 → bath circulation pump 10 → bath proportional valve M
V 3 → Bath circulation pipe Y 1 → Sent to bathtub B and supplied to bathtub B up to the set water level.

【0039】実際の給湯運転の例では、給湯運転開始時
には、入水温度検出センサーによって水温を検知し所定
の弁開度を保ち、次に、凝縮温度検出センサーによって
所定の温度上昇を検知して循環ポンプをスタートさせる
(ホットキープ機能)。そして、循環ポンプの運転がス
タートすると、出湯温度(凝縮温度)と設定値との比較
および凝縮温度の変化度合いから比例弁の開閉度を常時
制御する。また、安定時においては、凝縮温度パラメー
タを出湯温度に切り替え、補正的に凝縮圧力検知によっ
て冷凍サイクルの状態監視を行う。この冷凍サイクルに
おいては、過熱ガス領域の影響が加味されるが、通常に
おける場合で、出湯温度が厳密に要求されない場合の最
適の制御因子は、冷媒圧力によるサイクル状態を標準化
して温度流量調整制御とするのが望ましい。
In the example of the actual hot water supply operation, when the hot water supply operation is started, the water temperature is detected by the incoming water temperature detection sensor to maintain a predetermined valve opening degree, and then the predetermined temperature rise is detected by the condensation temperature detection sensor for circulation. Start the pump (hot keep function). When the operation of the circulation pump is started, the opening / closing degree of the proportional valve is constantly controlled based on the comparison between the hot water temperature (condensation temperature) and the set value and the degree of change of the condensation temperature. Further, when stable, the condensing temperature parameter is switched to the tap water temperature, and the refrigerating cycle state is monitored by correcting the condensing pressure. In this refrigeration cycle, the effect of the superheated gas region is added, but in the normal case, when the tapping temperature is not strictly required, the optimal control factor is to standardize the cycle state by the refrigerant pressure and control the temperature and flow rate. Is desirable.

【0040】[0040]

【発明の効果】この発明は、以上説明したように構成し
たので、1台のヒートポンプ装置によって給湯・冷房給
湯・暖房給湯・冷房風呂追焚き・暖房風呂追焚き(保
温)・冷房・暖房の7つの主機能を備え、しかも、水熱
交換器の出口から出湯される高温水を蓄熱用貯湯槽上部
まで戻す間の放熱を最小限に抑えることができるので、
この種のヒートポンプ式給湯冷暖房装置に付帯する製造
コストや施工コストを大幅にコストダウンさせることが
できると共に、貯湯槽と給湯ユニットを一体化し同一の
水熱交換器で風呂水の追焚き・保温を行なうことができ
るように構成したので、装置を大幅に小型化することが
できる他、エネルギー変換効率に優れているので、ラン
ニングコストを低く抑えることができる等、幾多の優れ
た効果を奏する。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to use one heat pump device for hot water supply / cooling hot water supply / heating hot water supply / cooling bath heating / heating bath heating (heat retention) / cooling / heating. It has two main functions, and moreover, it is possible to minimize the heat radiation while returning the high temperature water discharged from the outlet of the water heat exchanger to the upper part of the hot water storage tank.
The manufacturing costs and construction costs associated with this type of heat pump hot water supply air conditioner can be significantly reduced, and the hot water tank and hot water supply unit are integrated to reheat and keep warm bath water with the same water heat exchanger. Since it is configured so that it can be performed, the apparatus can be significantly downsized, and since it has excellent energy conversion efficiency, running costs can be kept low, and many other excellent effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係るヒートポンプ式給湯
冷暖房装置の概略的構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a heat pump hot water supply / cooling system according to an embodiment of the present invention.

【図2】同ヒートポンプ式給湯冷暖房装置の冷媒流路を
示す冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow path of the heat pump hot water supply / cooling system.

【図3】同ヒートポンプ式給湯冷暖房装置における「冷
房運転モード」のときの冷媒の流れを示す冷媒回路図で
ある。
FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow in a “cooling operation mode” in the heat pump hot water supply / cooling apparatus.

【図4】同ヒートポンプ式給湯冷暖房装置における「暖
房運転モード」のときの冷媒の流れを示す冷媒回路図で
ある。
FIG. 4 is a refrigerant circuit diagram showing a refrigerant flow in a “heating operation mode” in the heat pump hot water supply / cooling apparatus.

【図5】同ヒートポンプ式給湯冷暖房装置における「給
湯運転モード」のときの冷媒の流れを示す冷媒回路図で
ある。
FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow in a “hot water supply operation mode” in the heat pump hot water supply / cooling system.

【図6】同ヒートポンプ式給湯冷暖房装置における「風
呂追焚き運転モード」のときの冷媒の流れを示す冷媒回
路図である。
FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow in the “bath heating operation mode” in the heat pump hot water supply / cooling system.

【図7】同ヒートポンプ式給湯冷暖房装置における「冷
房・給湯運転モード」のときの冷媒の流れを示す冷媒回
路図である。
FIG. 7 is a refrigerant circuit diagram showing a refrigerant flow in the “cooling / hot water supply operation mode” in the heat pump hot water supply / cooling system.

【図8】同ヒートポンプ式給湯冷暖房装置における「冷
房・風呂追焚き運転モード」のときの冷媒の流れを示す
冷媒回路図である。
FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow in the “cooling / bath heating mode” in the heat pump hot water supply / cooling system.

【図9】同ヒートポンプ式給湯冷暖房装置における「暖
房・給湯運転モード」のときの冷媒の流れを示す冷媒回
路図である。
FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow in the “heating / hot water supply operation mode” in the heat pump hot water supply / cooling system.

【図10】同ヒートポンプ式給湯冷暖房装置における
「暖房・風呂保温運転モード」のときの冷媒の流れを示
す冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram showing a refrigerant flow in a “heating / bath warming operation mode” in the heat pump hot water supply / cooling / heating apparatus.

【図11】同ヒートポンプ式給湯冷暖房装置における
「給湯デフロスト運転モード」または「風呂追焚きデフ
ロスト運転モード」のときの冷媒の流れを示す冷媒回路
図である。
FIG. 11 is a refrigerant circuit diagram showing a refrigerant flow in the “hot water supply defrost operation mode” or the “bath heating defrost operation mode” in the heat pump hot water supply / cooling apparatus.

【図12】同ヒートポンプ式給湯冷暖房装置における
「暖房デフロスト運転モード」または「暖房・給湯デフ
ロスト運転モード」或は「暖房・風呂保温デフロスト運
転モード」のときの冷媒の流れを示す冷媒回路図であ
る。
FIG. 12 is a refrigerant circuit diagram showing a refrigerant flow in the “heating defrost operation mode”, the “heating / hot water supply defrost operation mode”, or the “heating / bath warming defrost operation mode” in the heat pump hot water supply / cooling system. ..

【図13】同ヒートポンプ式給湯冷暖房装置における作
動制御例を示すフローチャートである。
FIG. 13 is a flowchart showing an example of operation control in the heat pump hot water supply / cooling system.

【図14】同ヒートポンプ式給湯冷暖房装置における
「冷房給湯・風呂運転モード」のときの動作指令の流れ
を示すフロー図である。
FIG. 14 is a flowchart showing a flow of operation commands in the “cooling hot water supply / bath operation mode” in the heat pump hot water supply / cooling system.

【図15】同ヒートポンプ式給湯冷暖房装置における
「給湯運転モード」のときの運転フロー図である。
FIG. 15 is an operation flow chart in the “hot water supply operation mode” in the heat pump hot water supply / cooling system.

【図16】同ヒートポンプ式給湯冷暖房装置における
「給湯運転モード」のときの湯・水の流れを示す回路図
である。
FIG. 16 is a circuit diagram showing a flow of hot water and water in the “hot water supply operation mode” in the heat pump hot water supply / cooling system.

【図17】同ヒートポンプ式給湯冷暖房装置における
「風呂追焚き(保温)運転モード」のときの湯・水の流
れを示す回路図である。
FIG. 17 is a circuit diagram showing a flow of hot water and water in the “bath heating (warm) operation mode” in the heat pump hot water supply / cooling system.

【図18】同ヒートポンプ式給湯冷暖房装置における
「自動湯張り運転モード」のときの湯・水の流れを示す
回路図である。
FIG. 18 is a circuit diagram showing a flow of hot water and water in the “automatic hot water filling operation mode” in the heat pump hot water supply / cooling system.

【図19】同ヒートポンプ式給湯冷暖房装置における
「自動水張り運転モード」のときの水の流れを示す回路
図である。
FIG. 19 is a circuit diagram showing a flow of water in the “automatic water filling operation mode” in the heat pump hot water supply / cooling system.

【符号の説明】[Explanation of symbols]

1 室外熱交換器 2 室内熱交換器 3 コンプレッサ 4 水熱交換器 5 レシーバ 7 貯湯槽 8 膨張機構 P乃至P22 冷媒配管 SV,SV,SV 電磁弁 SV 多機能膨張弁 Y,Y 風呂循環配管 Y,Y 給湯循環配管1 Outdoor Heat Exchanger 2 Indoor Heat Exchanger 3 Compressor 4 Water Heat Exchanger 5 Receiver 7 Hot Water Storage Tank 8 Expansion Mechanism P 1 to P 22 Refrigerant Pipe SV 1 , SV 2 , SV 3 Solenoid Valve SV 4 Multifunctional Expansion Valve Y 1 , Y 4 bath circulation pipe Y 2 , Y 3 hot water supply circulation pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 敏文 東京都渋谷区代々木三丁目25番3号 サン ウエーブ工業株式会社内 (72)発明者 田畑 顕 東京都渋谷区代々木三丁目25番3号 サン ウエーブ工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshifumi Masuda 3-25-3 Yoyogi, Shibuya-ku, Tokyo Sun Wave Industry Co., Ltd. (72) Akira Tabata 3-25-3 Yoyogi, Shibuya-ku, Tokyo Sun Wave Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、蒸発器、負荷空気側凝縮器、熱
源側水熱交換器及び膨張機構を冷媒用配管路で連通接続
してなるヒートポンプサイクル加熱装置と、上記水熱交
換器が接続された蓄熱用貯湯槽と、該貯湯槽内の水を加
熱する補助加熱装置と、を備えてなる給湯冷暖房装置に
おいて、上記水熱交換器の三重管熱交換コイルを上記蓄
熱用貯湯槽に巻装して取り付けたことを特徴とする給湯
冷暖房装置。
1. A heat pump cycle heating device in which a compressor, an evaporator, a load air side condenser, a heat source side water heat exchanger and an expansion mechanism are connected in communication by a refrigerant pipe line, and the water heat exchanger is connected. In a hot water supply / cooling device comprising a hot water storage tank for storing heat and an auxiliary heating device for heating water in the hot water storage tank, the triple pipe heat exchange coil of the water heat exchanger is wound around the hot water storage tank. A hot-water supply / cooling system that is equipped and installed.
JP28426491A 1991-08-06 1991-08-06 Hot water feeding, cooling and heating device Pending JPH0539957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28426491A JPH0539957A (en) 1991-08-06 1991-08-06 Hot water feeding, cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28426491A JPH0539957A (en) 1991-08-06 1991-08-06 Hot water feeding, cooling and heating device

Publications (1)

Publication Number Publication Date
JPH0539957A true JPH0539957A (en) 1993-02-19

Family

ID=17676280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28426491A Pending JPH0539957A (en) 1991-08-06 1991-08-06 Hot water feeding, cooling and heating device

Country Status (1)

Country Link
JP (1) JPH0539957A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253228A (en) * 1994-03-17 1995-10-03 Matsushita Electric Works Ltd Method for controlling heat source system for air-conditioning and hot water supply
JP2001235252A (en) * 2000-02-23 2001-08-31 Kyushu Electric Power Co Inc Air-conditioning and hot water feeding system
JP2001241762A (en) * 2000-02-25 2001-09-07 Sanyo Electric Co Ltd Heat pump hot-water supplier
JP2004245462A (en) * 2003-02-12 2004-09-02 Denso Corp Storage type hot water supply device
JP2009133540A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
JP2009299942A (en) * 2008-06-11 2009-12-24 Rinnai Corp Hot water supply system
CN102012104A (en) * 2010-12-14 2011-04-13 广东美的电器股份有限公司 Water tank of heat pump water heater
JP2014196887A (en) * 2013-03-29 2014-10-16 リンナイ株式会社 Hot water storage water heater
JP2015206542A (en) * 2014-04-21 2015-11-19 富士電機株式会社 Cooling medium circuit device
JP2017075764A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Heat pump type heating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253228A (en) * 1994-03-17 1995-10-03 Matsushita Electric Works Ltd Method for controlling heat source system for air-conditioning and hot water supply
JP2001235252A (en) * 2000-02-23 2001-08-31 Kyushu Electric Power Co Inc Air-conditioning and hot water feeding system
JP4486205B2 (en) * 2000-02-23 2010-06-23 九州電力株式会社 Air conditioning and hot water supply system
JP2001241762A (en) * 2000-02-25 2001-09-07 Sanyo Electric Co Ltd Heat pump hot-water supplier
JP2004245462A (en) * 2003-02-12 2004-09-02 Denso Corp Storage type hot water supply device
JP2009133540A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
JP2009299942A (en) * 2008-06-11 2009-12-24 Rinnai Corp Hot water supply system
CN102012104A (en) * 2010-12-14 2011-04-13 广东美的电器股份有限公司 Water tank of heat pump water heater
JP2014196887A (en) * 2013-03-29 2014-10-16 リンナイ株式会社 Hot water storage water heater
JP2015206542A (en) * 2014-04-21 2015-11-19 富士電機株式会社 Cooling medium circuit device
JP2017075764A (en) * 2015-10-16 2017-04-20 ダイキン工業株式会社 Heat pump type heating device

Similar Documents

Publication Publication Date Title
KR900000809B1 (en) Room-warming/cooling and hot-water supplying heat-pump apparatus
US8141623B2 (en) Automatic switching two pipe hydronic system
EP1298395A2 (en) Heat pump type hot water supply system
KR100923373B1 (en) Heat pump type hot water supply and floor heating device
JPH0894190A (en) Heat storing device utilizing solar heat, and hot-water supplying system including the device
JPH0539957A (en) Hot water feeding, cooling and heating device
KR100563178B1 (en) Heat pump type hot water supplier
JP2006125722A (en) Heat pump hot water supply heating system
JP4375095B2 (en) Heat pump water heater
JP3387474B2 (en) Heat pump water heater
AU2020280293B2 (en) Water heater, control method for water heater and storage medium
JP2010054145A (en) Heat pump water heater
JPH11337188A (en) Storage type hot water supply equipment
JPH10122684A (en) Heat pump system
JP4284291B2 (en) Heat pump water heater
JP2008304153A (en) Heat pump water heater
JP2705492B2 (en) Water storage, hot water storage type hot water supply device
JP3692813B2 (en) Heat pump water heater
EP2622523A2 (en) Hot water prioritization
JP7376921B2 (en) Heating and cooling supply system
JP2605545B2 (en) Hot water storage system
JP2005241216A (en) Heat pump type hot water supply heating system
JP2850811B2 (en) Water heater
JPH06159845A (en) Water/hot water storage type water supply apparatus
JP2006090576A (en) Heat pump water heater