JPH0538492A - Method for filtering seawater in desalination device thereof - Google Patents
Method for filtering seawater in desalination device thereofInfo
- Publication number
- JPH0538492A JPH0538492A JP3195377A JP19537791A JPH0538492A JP H0538492 A JPH0538492 A JP H0538492A JP 3195377 A JP3195377 A JP 3195377A JP 19537791 A JP19537791 A JP 19537791A JP H0538492 A JPH0538492 A JP H0538492A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- solution
- filtration
- anthracite
- sand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、海水の淡水化装置に用
いられる海水中の汚染物質を二層濾過塔により濾過除去
するに際して、その除去効率を高めることができる海水
の濾過方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seawater filtration method capable of enhancing the efficiency of removal of contaminants in seawater used in seawater desalination equipment by filtration with a two-layer filtration tower.
【0002】[0002]
【従来の技術】逆浸透(Reverse Osmosi
s、以下ROという)方法による海水淡水化装置の前処
理装置としては、砂−アンスラサイト(無煙炭)からな
る二層濾過器(Dual Media Filter、
以下DMFという)が一般的に使用される。2. Description of the Related Art Reverse Osmosi
s, hereinafter referred to as RO) as a pretreatment device for a seawater desalination apparatus, a two-layer filter (Dual Media Filter) composed of sand-anthracite (anthracite),
(Hereinafter referred to as DMF) is generally used.
【0003】原水の海水中には、溶解した塩の他に種々
の懸濁物質、コロイド性の有機物と無機物、ウイルス及
び細菌などの汚染物質を含んでいる。RO方法は、主と
して溶解成分のみを分離することを目的とした分離方法
で、前記の汚染物質はRO膜を汚染し性能の低下を引き
起す原因となる。In addition to dissolved salts, raw water seawater contains various suspended substances, colloidal organic and inorganic substances, and pollutants such as viruses and bacteria. The RO method is a separation method mainly intended to separate dissolved components, and the above-mentioned contaminants contaminate the RO membrane and cause deterioration in performance.
【0004】DMFは、RO膜に弊害を及ぼす汚染物質
を濾過除去して膜の耐久性を向上させるもので、RO方
法では中空糸型モジュールの場合、次の(1)式で定義
される膜汚染指数(Fouling Index、以下
FIという)を3以下、スパイラル型モジュールでは4
以下にすることが条件となっている。 FI15=(1−t0 /t15)×100/15 (1) t0 :細孔度0.45μm、直径47mmのメンブラン
フィルターに圧力2.1kg/cm2 で試水を濾過し、
濾過初期に500mlの濾過水を得るに要する時間
(秒) t15:更に濾過を継続し、15分経過後に500mlの
濾過水を得るに要する時間(秒) FI:0〜6.66の値を示し、数値が大きい程汚染度
は大きい。DMF is a filter that removes contaminants that adversely affect the RO membrane to improve the durability of the membrane. In the RO method, in the case of a hollow fiber type module, the membrane defined by the following formula (1) is used. Contamination index (Fouling Index, hereinafter referred to as FI) is 3 or less, and spiral module is 4
The condition is as follows. FI 15 = (1−t 0 / t 15 ) × 100/15 (1) t 0 : A sample water is filtered at a pressure of 2.1 kg / cm 2 through a membrane filter having a pore size of 0.45 μm and a diameter of 47 mm,
Time required for obtaining 500 ml of filtered water at the initial stage of filtration (second) t 15 : Time required for further filtering and obtaining 500 ml of filtered water after 15 minutes (sec) FI: 0 to 6.66 The higher the value, the higher the pollution level.
【0005】従来のDMFによる海水の濾過方法は、1
00m/日以上の濾過速度で砂−アンスラサイドからな
る二層の粒状濾材層を通すことによって汚染物質を除去
する方法である。その場合除去、効率を高めるために、
汚染物質同士の凝集によるマイクロフロックの形成や濾
材粒子への凝集を目的として塩化第二鉄(凝集剤)を鉄
濃度換算で1〜1.5mg/l程度濾過塔前に注入して
いたが、FI値6以上の汚染度の高い海水では凝集剤を
注入しても目標であるFI値を3以下までに下げること
ができず、またRO膜汚染要因である鉄分の除去も十分
でない欠点があった。The conventional seawater filtration method using DMF is as follows:
In this method, contaminants are removed by passing through two layers of sand-anthracide granular filter media at a filtration speed of at least 00 m / day. In that case, to increase efficiency
Ferric chloride (coagulant) was injected in front of the filtration tower in an amount of about 1 to 1.5 mg / l in terms of iron concentration for the purpose of forming micro-flocs by aggregating contaminants and aggregating to filter media particles. In seawater with a high FI value of 6 or more, even if a coagulant is injected, the target FI value cannot be lowered to 3 or less, and the iron component, which is a factor of RO film contamination, is not sufficiently removed. It was
【0006】[0006]
【発明が解決しようとする課題】DMF装置の濾過塔前
に凝集剤として塩化第二鉄を注入するだけの従来の濾過
方法では、汚染度の低い(FI値5以下)海水の場合は
RO膜汚染指数(FI)3以下の条件を十分達成できる
が、汚染度の高い(FI値5以上)海水の場合はFI値
3以下の条件を達成することができない。In the conventional filtration method of only injecting ferric chloride as a coagulant in front of the filter tower of the DMF device, the RO membrane is used in the case of seawater having a low degree of pollution (FI value of 5 or less). Although the condition of pollution index (FI) of 3 or less can be sufficiently achieved, the condition of FI value of 3 or less cannot be achieved in the case of seawater having a high degree of pollution (FI value of 5 or more).
【0007】本発明は、従来方法で用いられている凝集
剤注入に加えて硫酸又は塩酸の溶液を海水に添加するこ
とで従来の技術の欠点を解決することができる海水の淡
水化装置における海水の濾過方法を提供しようとするも
のである。The present invention can solve the drawbacks of the prior art by adding a solution of sulfuric acid or hydrochloric acid to seawater in addition to the coagulant injection used in the conventional method. It is intended to provide a filtration method of
【0008】[0008]
【課題を解決するための手段】本発明の海水の淡水化装
置における海水の濾過方法は、逆浸透方法による海水の
淡水化装置において、前記逆浸透装置導入前の海水に第
二鉄塩の無機化合物溶液と硫酸溶液または塩酸溶液を添
加し海水のpHを6.0〜7.5の範囲に調整した上、
同海水を砂とアンスラサイトを充てんした二層濾過塔を
流過させて、海水中の汚染物質を除去することを特徴と
する。A method of filtering seawater in a seawater desalination apparatus according to the present invention is a seawater desalination apparatus using a reverse osmosis method, wherein the ferric salt is an inorganic salt of ferric salt in the seawater before the introduction of the reverse osmosis apparatus. After adding a compound solution and a sulfuric acid solution or a hydrochloric acid solution to adjust the pH of seawater to the range of 6.0 to 7.5,
The seawater is passed through a two-layer filtration tower filled with sand and anthracite to remove contaminants from the seawater.
【0009】[0009]
【作用】本発明において、第二鉄塩の無機化合物溶液を
海水に添加すると水酸化第2鉄〔Fe(OH)3 〕のコ
ロイド溶液となるが、海水に硫酸または塩酸の溶液を添
加してpHを6.0〜7.5の範囲に調整することによ
って、より微小粒子のコロイド溶液となって海水中の微
濁粒子をより均一に吸着する。このような第二鉄塩の無
機化合物溶液と硫酸または塩酸を添加した海水を二層濾
過塔内のアンスラサイト及び砂を充たした二層濾過塔を
流過させることによって、海水中の汚染物粒子を吸着し
たFe(OH)3 のコロイド溶液は凝集効果を促進し、
濾過材によってより確実に捕捉され、浄化された高水質
の海水が得られる。In the present invention, when a solution of an inorganic compound of ferric salt is added to seawater, a colloidal solution of ferric hydroxide [Fe (OH) 3 ] is obtained. However, a solution of sulfuric acid or hydrochloric acid is added to seawater. By adjusting the pH in the range of 6.0 to 7.5, a colloidal solution of finer particles is formed, and finely suspended particles in seawater are more uniformly adsorbed. By flowing the inorganic compound solution of ferric salt and the sulfuric acid or hydrochloric acid-added seawater through the two-layer filtration tower filled with anthracite and sand in the two-layer filtration tower, contaminant particles in seawater The colloidal solution of Fe (OH) 3 adsorbed by promotes the aggregation effect,
High-quality seawater that is more reliably captured and purified by the filter medium is obtained.
【0010】本発明において、第二鉄塩としては、塩化
第二鉄、硫酸第二鉄、硝酸鉄など水に溶解して3価の鉄
イオン(Fe3+)になるものが用いられる。これら鉄塩
の注入濃度は、原海水中の汚染物濃度によって異なる
が、FI値が4.5以下の汚染度の低い場合は鉄濃度換
算(asFe)で0.3〜0.5ppmの範囲で十分で
あり、FI値が4.5以上で汚染度が比較的高い場合は
鉄濃度換算(asFe)で0.5〜1ppmの範囲が好
ましい。鉄塩の注入量増加に伴って薬品及び濾過塔内の
濾材の再生(逆洗工程による差圧解消)頻度増しによる
ランニングコストが高くなるので1ppm以上の添加は
好ましくない。In the present invention, as the ferric salt, ferric chloride, ferric sulfate, iron nitrate or the like that dissolves in water to form trivalent iron ions (Fe 3+ ). The concentration of these iron salts injected varies depending on the concentration of contaminants in the raw seawater, but when the FI value is 4.5 or less and the degree of contamination is low, the iron concentration conversion (asFe) is in the range of 0.3 to 0.5 ppm. When the FI value is sufficient and the degree of contamination is relatively high, the range of 0.5 to 1 ppm in terms of iron concentration (asFe) is preferable. As the injection amount of the iron salt increases, the running cost increases due to the increase in the frequency of regeneration of chemicals and the filter medium in the filtration tower (elimination of the differential pressure by the backwashing step), and therefore the addition of 1 ppm or more is not preferable.
【0011】また濾過塔前の原海水pHを6.0〜7.
5の範囲に調整するための硫酸または塩酸の溶液は、第
二鉄塩の無機化合物溶液と一諸に混合して海水に添加し
てもよく、別々に添加してもよい。両者を別々に注入す
る場合は、硫酸または塩酸の溶液の注入位置は、鉄塩の
無機化合物溶液の注入位置と同じにするか、鉄塩注入位
置の前部にすることが望ましい。The pH of the raw seawater in front of the filtration tower is 6.0 to 7.
The solution of sulfuric acid or hydrochloric acid for adjusting to the range of 5 may be mixed with the inorganic compound solution of ferric salt and added to seawater, or may be added separately. When both are separately injected, it is desirable that the injection position of the sulfuric acid or hydrochloric acid solution is the same as the injection position of the iron salt inorganic compound solution or the front of the iron salt injection position.
【0012】本発明における硫酸または塩酸の溶液の注
入による濾過塔前の海水のpHは、薬品のランニングコ
ストの面から下限pHを6.0とし、またpH7.5を
超えるとRO膜に対する目標FI値3以下の達成が困難
となり、かつ鉄分除去も完全ではなくなるので、海水の
pH上限を7.5とした。In the present invention, the lower limit of the pH of seawater in front of the filtration tower by injecting a solution of sulfuric acid or hydrochloric acid is 6.0 in view of the running cost of chemicals, and when it exceeds 7.5, the target FI for the RO membrane is set. Since it is difficult to achieve a value of 3 or less and the iron content is not completely removed, the upper limit of pH of seawater is set to 7.5.
【0013】[0013]
【実施例】本発明の一実施例を、図1によって説明す
る。6は、支持砂利の層6cで支持されたアンスラサイ
トの層6aと砂の層6cが充てんされた二層の濾過塔で
あり、同濾過塔6には、海水槽1の海水が海水供給ポン
プ2、開閉バルブ5を経て海水通水管20から供給され
るようになっている。また、前記海水通水管20へは、
薬液容器3に収容された凝集剤としての第二鉄塩の無機
化合物溶液とpH調整剤としての硫酸または塩酸が注入
ポンプ(容量可変型定量ポンプ)4によって供給される
ようになっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. Reference numeral 6 is a two-layer filter tower filled with an anthracite layer 6a supported by a support gravel layer 6c and a sand layer 6c, and the seawater of the seawater tank 1 is supplied to the seawater supply pump 6 through the filter tower 6. 2. It is adapted to be supplied from the seawater conduit 20 via the open / close valve 5. In addition, to the seawater conduit 20
An inorganic compound solution of a ferric salt as a coagulant and a sulfuric acid or hydrochloric acid as a pH adjuster accommodated in the chemical liquid container 3 are supplied by an injection pump (variable-volume metering pump) 4.
【0014】前記濾過塔6の下部に接続され開閉バルブ
7をもつ排出管21は処理海水槽9へ接続されている。
また、前記排出管21には、逆洗用ポンプ(エアポン
プ)8が接続されており、前記濾過塔6の上部には逆洗
水を収容するオーバーフロー管10が設けられている。A discharge pipe 21 connected to the lower part of the filtration tower 6 and having an opening / closing valve 7 is connected to the treated seawater tank 9.
A backwash pump (air pump) 8 is connected to the discharge pipe 21, and an overflow pipe 10 for storing backwash water is provided above the filtration tower 6.
【0015】本実施例では、開閉バルブ5を開にした上
で供給ポンプ2を始動して海水槽1より海水を濾過塔6
へ供給する。この時、注入ポンプ4を始動して薬液容器
3より凝集剤としての第二鉄塩の無機化合物溶液及びp
H調整剤としての硫酸または塩酸を海水通水管20に注
入する。In this embodiment, the open / close valve 5 is opened, the supply pump 2 is started, and the seawater is filtered from the seawater tank 1 by the filtration tower 6.
Supply to. At this time, the injection pump 4 is started and the ferric salt inorganic compound solution as a coagulant and p
Sulfuric acid or hydrochloric acid as an H adjuster is injected into the seawater passage pipe 20.
【0016】海水通水管20より濾過塔6へ供給される
海水のpHは6.0〜7.5の範囲にあるように、前記
の硫酸または塩酸の添加量が調整される。The amount of sulfuric acid or hydrochloric acid added is adjusted so that the pH of seawater supplied from the seawater passage 20 to the filtration tower 6 is in the range of 6.0 to 7.5.
【0017】このようにして濾過塔6内へ供給された海
水は、開閉バルブ7のバルブ開度を調節して濾過塔内の
液レベルを適当に保持した状態で、濾過塔6中のアンス
ラサイト層6aと砂層6cを流過する。The seawater thus supplied into the filtration tower 6 is anthracite in the filtration tower 6 while the liquid level in the filtration tower is appropriately maintained by adjusting the opening degree of the opening / closing valve 7. Flow through the layer 6a and the sand layer 6c.
【0018】前記のように、この海水には、第二鉄塩の
無機化合物溶液が含まれ、またそのpHが6.0〜7.
5の範囲に調整されているので、前記の〔作用〕欄で詳
述したように、海水中の微濁粒子は水酸化第二鉄〔Fe
(OH)3 〕の微小粒子のコロイド溶液によって吸着さ
れた上、これがアンスラサイトの層6aと砂の層6bに
よって確実に捕捉され、汚染物質と残留鉄分が少い浄化
された高水質の海水が処理海水槽9内に得られることに
なる。As described above, this seawater contains a solution of an inorganic compound of ferric salt, and its pH is 6.0 to 7.
Since it is adjusted to the range of 5, the fine suspended particles in seawater are ferric hydroxide [Fe
(OH) 3 ] is adsorbed by a colloidal solution of fine particles, and this is surely captured by the anthracite layer 6a and the sand layer 6b, resulting in purified high-quality seawater with a small amount of pollutants and residual iron. It will be obtained in the treated seawater tank 9.
【0019】なお、本実施例において、砂及びアンスラ
サイトの再生は、エアポンプ8による空洗及び排出管2
1へ供給される逆洗用水を濾過塔6内のオーバーフロー
管10へ流すことによる逆洗によって行なわれる。In this embodiment, the sand and anthracite are regenerated by the air washing by the air pump 8 and the exhaust pipe 2.
It is carried out by backwashing by flowing the backwashing water supplied to 1 into the overflow pipe 10 in the filtration tower 6.
【0020】図1に示す装置を用いて行なった本発明の
実験例を以下に説明する。使用された機器、設備の容量
等は次の通りである。 海水(原水)槽1:200リットル 海水供給ポンプ(容量可変型定量ポンプ)2:600m
l/分 薬液容器3:25リットル 注入ポンプ(容量可変型定量ポンプ)4:18ml/分 濾過塔6:50φ×3000H×0.002m2 濾過材:砂 0.45mm 400H アンスラサイト 0.9mm 400H 逆洗用ポンプ(エアポンプ)8:2.5リットル/分 処理海水槽9:200リットル 以上の装置を用いて、濾過塔への通水5時間後の濾過水
を試水として測定した。An experimental example of the present invention conducted by using the apparatus shown in FIG. 1 will be described below. The used equipment and equipment capacity are as follows. Seawater (raw water) tank 1: 200 liters Seawater supply pump (variable capacity metering pump) 2: 600m
1 / min Chemical solution container 3:25 liter Injection pump (variable capacity metering pump) 4:18 ml / min Filtration tower 6:50 φ × 3000H × 0.002m 2 Filter material: Sand 0.45mm 400H Anthracite 0.9mm 400H Reverse Washing pump (air pump) 8: 2.5 liters / minute Treated seawater tank 9: 200 liters Using the above equipment, the filtered water after 5 hours of passing through the filtration tower was measured as a sample water.
【0021】比較例として、濾過塔前で凝集剤(塩化第
二鉄)のみを海水に添加する従来方法も同一の装置を用
いて、前記実験例に準じた条件で実験した。As a comparative example, a conventional method in which only a coagulant (ferric chloride) was added to seawater in front of a filtration tower was also tested using the same apparatus under the conditions according to the above experimental example.
【0022】実験結果を、図2に示す。図2中、試験番
号1〜11は本発明の実験例であり、試験番号12〜1
4は前記の比較例である。The experimental results are shown in FIG. In FIG. 2, test numbers 1 to 11 are experimental examples of the present invention, and test numbers 12 to 1
4 is the above-mentioned comparative example.
【0023】図2に示すように、本発明によって、従来
の方法に比して濾過海水性状(SS、Fe濃度、汚染指
数)が著しく向上されることが確かめられた。As shown in FIG. 2, it was confirmed that the present invention significantly improves the filtered seawater state (SS, Fe concentration, pollution index) as compared with the conventional method.
【0024】[0024]
【発明の効果】本発明により次の効果が奏せられる。The present invention has the following effects.
【0025】(1)従来の凝集剤(第二鉄塩)注入のみ
による濾過方法では汚染度の高い海水になると充分な高
水質の海水を得ることが困難であったが、本発明によ
り、FI値6以上の高汚染海水でもRO膜耐久に必要な
FI値3以下を達成することができる。(1) It was difficult to obtain seawater of sufficiently high quality when the seawater was highly contaminated by the conventional filtration method using only the coagulant (ferric salt) injection. Even with highly contaminated seawater having a value of 6 or more, the FI value of 3 or less, which is necessary for durability of the RO film, can be achieved.
【0026】(2)RO膜汚染要因である鉄分について
も、従来の濾過方法では濾過海水中0.005〜0.0
1mg/l程度残存するのに対し、本発明によれば、検
出下限である0.003mg/l以下まで除去すること
ができる。(2) The iron content, which is a factor for fouling the RO membrane, is 0.005 to 0.05 in the filtered seawater according to the conventional filtration method.
While about 1 mg / l remains, according to the present invention, the lower limit of detection of 0.003 mg / l or less can be removed.
【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.
【図2】本発明に係る実験の供給海水の性状、条件及び
結果を示す表である。FIG. 2 is a table showing properties, conditions, and results of seawater supplied in an experiment according to the present invention.
1 海水槽 3 薬液容器 6 濾過塔 6a アンスラサイトの層 6b 砂の層 9 処理海水槽 1 Sea Water Tank 3 Chemical Solution Container 6 Filter Tower 6a Anthracite Layer 6b Sand Layer 9 Treated Sea Water Tank
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成3年10月14日[Submission date] October 14, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Correction target item name] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0005】従来のDMFによる海水の濾過方法は、1
00m/日以上の濾過速度で砂−アンスラサイトからな
る二層の粒状濾材層を通すことによって汚染物質を除去
する方法である。その場合除去、効率を高めるために、
汚染物質同士の凝集によるマイクロフロックの形成や濾
材粒子への凝集を目的として塩化第二鉄(凝集剤)を鉄
濃度換算で1〜1.5mg/1程度濾過塔前に注入して
いたが、FI値6以上の汚染度の高い海水では凝集剤を
注入しても目標であるFI値を3以下までに下げること
ができず、またRO膜汚染要因である鉄分の除去も十分
でない欠点があった。The conventional seawater filtration method using DMF is as follows:
This is a method of removing contaminants by passing through two layers of sand-anthracite granular filter media at a filtration speed of 00 m / day or more. In that case, to increase efficiency
Ferric chloride (aggregating agent) was injected in front of the filtration tower at an iron concentration of about 1 to 1.5 mg / 1 for the purpose of forming microflocs by aggregating contaminants and aggregating to filter media particles. In seawater with a high FI value of 6 or more, even if a coagulant is injected, the target FI value cannot be lowered to 3 or less, and the iron component, which is a factor of RO membrane contamination, is not sufficiently removed. It was
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 Z 6647−4D (72)発明者 吉田 博明 長崎県長崎市飽の浦町5番7号 長菱エン ジニアリング株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI technical display location C02F 9/00 Z 6647-4D (72) Inventor Hiroaki Yoshida 5-7 Atsunoura-cho, Nagasaki-shi, Nagasaki Prefecture Nagahishi Engineering Co., Ltd.
Claims (1)
いて、前記逆浸透装置導入前の海水に第二鉄塩の無機化
合物溶液と硫酸溶液または塩酸溶液を添加し海水のpH
を6.0〜7.5の範囲に調整した上、同海水を砂とア
ンスラサイトを充てんした二層濾過塔を流過させて、海
水中の汚染物質を除去することを特徴とする海水の淡水
化装置における海水の濾過方法。1. In a desalination apparatus for seawater by the reverse osmosis method, the inorganic compound solution of ferric salt and a sulfuric acid solution or a hydrochloric acid solution are added to the seawater before the introduction of the reverse osmosis apparatus to adjust the pH of the seawater.
Is adjusted to a range of 6.0 to 7.5, and the seawater is passed through a two-layer filtration tower filled with sand and anthracite to remove contaminants in the seawater. A method for filtering seawater in a desalination apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3195377A JPH0538492A (en) | 1991-08-05 | 1991-08-05 | Method for filtering seawater in desalination device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3195377A JPH0538492A (en) | 1991-08-05 | 1991-08-05 | Method for filtering seawater in desalination device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0538492A true JPH0538492A (en) | 1993-02-19 |
Family
ID=16340158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3195377A Withdrawn JPH0538492A (en) | 1991-08-05 | 1991-08-05 | Method for filtering seawater in desalination device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0538492A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100736428B1 (en) * | 2001-09-19 | 2007-07-09 | 주식회사 미래엔지니어링 | A method for removal and recovery of nitrogen compounds in the wastewater and a device therefor |
JP2010527287A (en) * | 2007-05-16 | 2010-08-12 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Wastewater mercury removal method |
WO2010137827A3 (en) * | 2009-05-26 | 2011-03-24 | 대우조선해양 주식회사 | Seawater desalination plant to be installed on a barge, and method for installing same |
EP3090793A1 (en) | 2015-05-04 | 2016-11-09 | Doosan Heavy Industries & Construction Co., Ltd. | Media filter comprising a coagulation/flocculation multi-step |
KR20160131802A (en) | 2015-05-08 | 2016-11-16 | 두산중공업 주식회사 | Filtration device including powerless mixing flocculation tank and desalination plant using the same |
-
1991
- 1991-08-05 JP JP3195377A patent/JPH0538492A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100736428B1 (en) * | 2001-09-19 | 2007-07-09 | 주식회사 미래엔지니어링 | A method for removal and recovery of nitrogen compounds in the wastewater and a device therefor |
JP2010527287A (en) * | 2007-05-16 | 2010-08-12 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Wastewater mercury removal method |
WO2010137827A3 (en) * | 2009-05-26 | 2011-03-24 | 대우조선해양 주식회사 | Seawater desalination plant to be installed on a barge, and method for installing same |
CN102448890A (en) * | 2009-05-26 | 2012-05-09 | 大宇造船海洋株式会社 | Sea water desalination device mounted on barge and method for placing sea water desalination device |
JP2012527378A (en) * | 2009-05-26 | 2012-11-08 | デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド | Barge-mounted seawater desalination plant and its installation method |
EP3090793A1 (en) | 2015-05-04 | 2016-11-09 | Doosan Heavy Industries & Construction Co., Ltd. | Media filter comprising a coagulation/flocculation multi-step |
US10550018B2 (en) | 2015-05-04 | 2020-02-04 | DOOSAN Heavy Industries Construction Co., LTD | Media filter having nonpowered mixing and coagulation basin, and seawater desalination plant and dissolved air floatation apparatus using same |
US11427486B2 (en) | 2015-05-04 | 2022-08-30 | Doosan Enerbility Co., Ltd. | Media filter having nonpowered mixing and coagulation basin, and seawater desalination plant and dissolved air floatation apparatus using same |
KR20160131802A (en) | 2015-05-08 | 2016-11-16 | 두산중공업 주식회사 | Filtration device including powerless mixing flocculation tank and desalination plant using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2031997C (en) | Water treatment installation for a tangential filtration loop | |
US3836458A (en) | Water purification means | |
US5374357A (en) | Filter media treatment of a fluid flow to remove colloidal matter | |
JP2002534262A (en) | Process for removing organic and inorganic contaminants from acidified water from which phenol has been removed by employing reverse osmosis | |
KR100985707B1 (en) | Method and system for the treatment of liquid effluents containing pollutants in a suspension | |
CN103663807A (en) | Ultrafiltration system | |
JPWO2008096585A1 (en) | Filtration apparatus and water treatment method | |
JPH0538492A (en) | Method for filtering seawater in desalination device thereof | |
RU2222371C1 (en) | The improvements brought in filtration using membranes | |
US3836460A (en) | Process for removal of algae,diatoms and organic contaminants from water | |
TWI711588B (en) | Treatment method of high hardness drainage | |
Lee et al. | Development of an integrated iron oxide adsorption/membrane separation system for water treatment | |
Zhu et al. | Pre-ozonation for dead-end microfiltration of the secondary effluent: suspended particles and membrane fouling | |
JP4592390B2 (en) | High pressure fine sand filter | |
JP7403387B2 (en) | Coagulation membrane filtration system and coagulation membrane filtration method | |
JP3986227B2 (en) | Solid-liquid separation processing method | |
JP3697938B2 (en) | Wastewater treatment equipment | |
KR100736428B1 (en) | A method for removal and recovery of nitrogen compounds in the wastewater and a device therefor | |
JP3831055B2 (en) | Public water supply | |
JP2005238152A (en) | Organic material-containing water treatment method | |
JPH0966296A (en) | Water treatment method and apparatus | |
Al-Malack et al. | Treatment of refinery wastewater using membrane processes | |
CN206051787U (en) | A kind of coal gas condenses the processing system of waste water | |
JPH10202297A (en) | Waterpurifying method and device therefor | |
JPS61274714A (en) | Method for washing filter apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |