JPH0538050Y2 - - Google Patents
Info
- Publication number
- JPH0538050Y2 JPH0538050Y2 JP1988171111U JP17111188U JPH0538050Y2 JP H0538050 Y2 JPH0538050 Y2 JP H0538050Y2 JP 1988171111 U JP1988171111 U JP 1988171111U JP 17111188 U JP17111188 U JP 17111188U JP H0538050 Y2 JPH0538050 Y2 JP H0538050Y2
- Authority
- JP
- Japan
- Prior art keywords
- filament
- evaporation source
- magnetic field
- crucible
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001704 evaporation Methods 0.000 claims description 29
- 230000008020 evaporation Effects 0.000 claims description 29
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Electron Sources, Ion Sources (AREA)
- Physical Vapour Deposition (AREA)
Description
【考案の詳細な説明】
[産業上の利用分野]
本考案は、フイラメントから熱放出された電子
流を磁場で偏向して坩堝に導き、坩堝に収納され
た蒸発源を蒸発させて、放射させる蒸発源装置に
関し、特にフイラメント出力が10kW以下の小型
蒸発源装置に適用するのが好適な蒸発源装置に関
する。[Detailed description of the invention] [Industrial application field] The present invention deflects the electron flow heat released from the filament using a magnetic field, guides it to the crucible, evaporates the evaporation source housed in the crucible, and radiates it. The present invention relates to an evaporation source device, and particularly relates to an evaporation source device suitable for application to a small evaporation source device with a filament output of 10 kW or less.
[従来の技術]
真空蒸着装置や分子線エピタキシー装置におい
て、蒸発源として用いられる電子衝撃磁場偏向型
蒸発源のうち、坩堝の容積が比較的小さく、従つ
てフイラメントからの熱電子の放出量も小さいも
のは、従来、第3図及び第4図に示すような構造
を有していた。すなわち、蒸発源を収納する坩堝
1の側方に熱電子放出用のフイラメント2と、そ
こから放出される電子流を加速する陽極3とが設
けられ、さらに上記坩堝1を両側から挟むよう
に、電子流を坩堝1に導くための偏向磁場を形成
する導入用磁石4のヨーク5,5が配置されてい
る。[Prior art] Among electron impact magnetic field deflection type evaporation sources used as evaporation sources in vacuum evaporation equipment and molecular beam epitaxy equipment, the volume of the crucible is relatively small, and therefore the amount of thermionic electrons emitted from the filament is also small. Conventionally, the device had a structure as shown in FIGS. 3 and 4. That is, a filament 2 for emitting thermionic electrons and an anode 3 for accelerating the electron flow emitted from the filament 2 are provided on the side of the crucible 1 that houses the evaporation source, and further, the crucible 1 is sandwiched from both sides. Yokes 5, 5 of the introduction magnet 4 are arranged to form a deflecting magnetic field for guiding the electron flow into the crucible 1.
この従来における蒸発源装置のうち、小型のも
のは、坩堝の容積が小さく、その開口面積も狭い
ため、電子流を走査することは行なわれず、走査
する場合でも、導入用磁石4で発生する磁場を変
動させて電子流の照射経路を多少変える程度であ
つた。 Among these conventional evaporation source devices, small ones have a small crucible volume and a narrow opening area, so the electron flow is not scanned, and even if it is scanned, the magnetic field generated by the introduction magnet 4 is varied to change the irradiation path of the electron flow slightly.
[考案が解決しようとする課題]
しかし、こうした小型の蒸発源装置において
も、電子流の走査手段により、蒸発源を無駄な
く、効率的に蒸発させることが強く望まれてい
る。[Problems to be Solved by the Invention] However, even in such a small-sized evaporation source device, it is strongly desired to efficiently evaporate the evaporation source without wasting it using an electron flow scanning means.
ところが、小型の蒸発源装置では、電子流が発
生するフイラメント2の周りのスペースが限られ
ており、走査用の磁場を形成するための電磁石を
配置することが困難である。このため、便宜的
に、導入用磁石4として電磁石を用い、ここで変
動磁場を形成して、電子流を走査することが実施
されているが、この場合は、磁界の大幅な変動が
必要とされ、相当大型の電磁石を用いなければ、
電子流の正確で大幅な走査は望めない。 However, in a small evaporation source device, the space around the filament 2 where the electron flow is generated is limited, and it is difficult to arrange an electromagnet for forming a scanning magnetic field. For this reason, for convenience, an electromagnet is used as the introduction magnet 4 to form a fluctuating magnetic field to scan the electron flow, but in this case, a large fluctuation in the magnetic field is required. and unless a fairly large electromagnet is used,
Accurate and extensive scanning of the electron flow cannot be expected.
そこで本考案は、上記従来の問題点に鑑み、小
型の電磁石で、正確で大幅な電子流の走査が可能
な電子衝撃磁場偏向型蒸発源装置を提供すること
を目的とする。 SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, it is an object of the present invention to provide an electron impact magnetic field deflection type evaporation source device that can accurately and widely scan an electron flow using a small electromagnet.
[課題を解決するための手段]
すなわち、上記目的を達成するため、本考案に
おいて採用した手段の要旨は、蒸発源aを収納す
る坩堝1と、電子を熱放出するフイラメント2
と、このフイラメント2から放出された電子を加
速する陽極3と、電子の放射経路上に変動磁場を
形成する走査用磁石8と、電子流を上記坩堝1に
導入する偏向磁場を形成する導入用磁石4とを備
える電子衝撃磁場偏向型蒸発源装置において、上
記走査用磁石8が、それから引き出された引出ヨ
ーク9を有し、その先端に形成された磁極9a,
9aが、フイラメント2を両側で対極しているこ
とを特徴とする電子衝撃磁場偏向型蒸発源装置で
ある。[Means for Solving the Problem] That is, the gist of the means adopted in the present invention to achieve the above object is as follows: a crucible 1 that houses an evaporation source a; a filament 2 that emits electrons as heat;
an anode 3 for accelerating the electrons emitted from the filament 2; a scanning magnet 8 for forming a fluctuating magnetic field on the electron radiation path; and an introduction magnet 8 for forming a deflecting magnetic field for introducing the electron flow into the crucible 1. In the electron impact magnetic field deflection type evaporation source device comprising a magnet 4, the scanning magnet 8 has an extraction yoke 9 drawn out from it, and a magnetic pole 9a formed at the tip thereof.
9a is an electron impact magnetic field deflection type evaporation source device characterized in that the filament 2 is placed at opposite poles on both sides.
[作用]
上記本考案による蒸発源装置においては、電子
流を発生するフイラメント2を挟むように走査用
磁石8,8の引出ヨーク9,9の磁極9a,9a
が対極しているため、フイラメント2から発生し
た直後のエネルギーの小さな電子流を、上記磁極
9a,9aの間で発生する磁界により偏向し、走
査することができる。このため、小型の走査用磁
石8,8を用いて大幅で正確な走査が可能にな
る。[Function] In the evaporation source device according to the present invention, the magnetic poles 9a, 9a of the extraction yokes 9, 9 of the scanning magnets 8, 8 are arranged so as to sandwich the filament 2 that generates an electron flow.
Since these are opposite poles, it is possible to deflect and scan the low-energy electron flow immediately after being generated from the filament 2 by the magnetic field generated between the magnetic poles 9a, 9a. For this reason, it becomes possible to perform wide and accurate scanning using the small scanning magnets 8, 8.
しかも、フイラメント2の周囲のスペースが限
られていても、その両側に引出ヨーク9,9の先
端を配置するだけでよいので、走査用磁石8,8
をフイラメント2の周りから離して設置すること
が可能であり、小型の蒸発源装置でも、無理なく
レイアウトできる。 Moreover, even if the space around the filament 2 is limited, it is only necessary to arrange the tips of the drawing yokes 9, 9 on both sides of the filament 2, so the scanning magnets 8, 8
It is possible to install the evaporation source away from the surroundings of the filament 2, and even a small evaporation source device can be easily laid out.
[実施例]
次に、本考案の実施例について、第1図と第2
図を参照しながら具体的に説明する。[Example] Next, regarding an example of the present invention, FIGS.
This will be explained in detail with reference to the drawings.
坩堝1は、窒化珪素等の化学的、熱的に安定な
セラミツクにより、上方を開口したカツプ状に形
成され、その両側に導入用磁石4,4のヨーク
5,5が配置されている。これら導入用磁石4,
4、そのヨーク5,5の基部及び坩堝1は、シー
ルドケース10によつて周囲を囲まれ、磁気シー
ルドされている。 The crucible 1 is formed of a chemically and thermally stable ceramic such as silicon nitride into a cup shape with an open top, and yokes 5, 5 of introducing magnets 4, 4 are arranged on both sides of the cup. These introduction magnets 4,
4. The bases of the yokes 5, 5 and the crucible 1 are surrounded by a shield case 10 and are magnetically shielded.
上記シールドケース10の前方にフイラメント
固定ユニツト11が配置され、また、上記坩堝1
の側方に電子流を発生させるフイラメント2が配
置され、その両端が上記フイラメントユニツト1
1に固定されている。このフイラメント2の真上
には、フイラメント2から発生した熱電子を加速
する陽極3が配置されている。 A filament fixing unit 11 is arranged in front of the shield case 10, and the crucible 1
A filament 2 that generates an electron flow is arranged on the side of the filament unit 1, and both ends thereof are connected to the filament unit 1.
It is fixed at 1. An anode 3 is placed directly above the filament 2 to accelerate thermoelectrons generated from the filament 2.
他方、上記シールドケース10の両側に、シー
ルドケース12,12で磁気シールドされた一対
の走査用磁石8,8が配置されている。この走査
用磁石8,8は、その巻線を施したヨーク本体
(図示せず)から引き出された棒状の磁性体性の
引出ヨーク9,9を有し、その引出ヨーク9,9
の先端は、上記フイラメント2の両側に各々導か
れ、その先端に形成された磁極9a,9bがフイ
ラメント2を両側で対極している。 On the other hand, a pair of scanning magnets 8, 8 magnetically shielded by shield cases 12, 12 are arranged on both sides of the shield case 10. The scanning magnets 8, 8 have rod-shaped magnetic pull-out yokes 9, 9 drawn out from a yoke body (not shown) provided with windings.
The tips of the filament 2 are guided to both sides of the filament 2, and magnetic poles 9a and 9b formed at the tips oppose the filament 2 on both sides.
既に述べた通り、上記蒸発源装置では、フイラ
メント2を加熱すると、ここから熱電子が放出さ
れる。発生た電子流は、陽極3に印加された加速
電圧により加速されると共に、導入用磁石4によ
つて、ヨーク5,5の間に形成される磁場により
偏向され、坩堝1の開口部からその中に導入さ
れ、蒸発源を蒸発させる。この際に、走査用磁石
8,8により、そのヨーク9,9の磁極9a,9
aの間に発生する磁界を変動させることにより、
上記電子流を走査することができる。フイラメン
ト2から発射された電子流の照射経路の一例を、
第1図において破線で示す。 As already mentioned, in the above-mentioned evaporation source device, when the filament 2 is heated, thermoelectrons are emitted from the filament 2. The generated electron current is accelerated by the accelerating voltage applied to the anode 3, and is deflected by the magnetic field formed between the yokes 5, 5 by the introducing magnet 4, and flows from the opening of the crucible 1. is introduced into the evaporation source to evaporate the evaporation source. At this time, the magnetic poles 9a, 9 of the yokes 9, 9 are controlled by the scanning magnets 8, 8.
By varying the magnetic field generated between a,
The electron stream can be scanned. An example of the irradiation path of the electron flow emitted from the filament 2 is shown below.
It is indicated by a broken line in FIG.
[考案の効果]
以上説明した通り、本考案によれば、坩堝1の
周囲のスペースが限られた小型の蒸発源装置にお
いても無理なく走査用磁石8,8をレイアウトす
ることが可能であり、しかも小型の走査用磁石
8,8で大幅で正確な電子流の走査が可能な蒸発
源装置を提供することができる効果が得られる。[Effects of the invention] As explained above, according to the invention, it is possible to easily lay out the scanning magnets 8, 8 even in a small evaporation source device where the space around the crucible 1 is limited, Furthermore, an effect can be obtained in that it is possible to provide an evaporation source device that can scan the electron flow with great accuracy using the small-sized scanning magnets 8, 8.
第1図は、本考案の実施例を示す蒸発源の斜視
図、第2図は、同蒸発源の正面図、第3図は、蒸
発源の従来例を示す斜視図、第4図は、同従来例
の正面図である。
1……坩堝、2……フイラメント、3……陽
極、4……導入用磁石、5……導入用磁石のヨー
ク、8……走査用磁石、9……走査用磁石のヨー
ク、9a,9a……走査用磁石の磁極。
FIG. 1 is a perspective view of an evaporation source showing an embodiment of the present invention, FIG. 2 is a front view of the evaporation source, FIG. 3 is a perspective view of a conventional evaporation source, and FIG. It is a front view of the same conventional example. 1... Crucible, 2... Filament, 3... Anode, 4... Introducing magnet, 5... Yoke of introducing magnet, 8... Scanning magnet, 9... Yoke of scanning magnet, 9a, 9a ...The magnetic pole of the scanning magnet.
Claims (1)
るフイラメント2と、このフイラメント2から放
出された電子を加速する陽極3と、電子の放射経
路上に変動磁場を形成する走査用磁石8と、電子
流を上記坩堝1に導入する偏向磁場を形成する導
入用磁石4とを備える電子衝撃磁場偏向型蒸発源
装置において、上記走査用磁石8が、それから引
き出された引出ヨーク9を有し、その先端に形成
された磁極9a,9aが、フイラメント2を両側
で対極していることを特徴とする電子衝撃磁場偏
向型蒸発源装置。 A crucible 1 that houses an evaporation source a, a filament 2 that emits electrons as heat, an anode 3 that accelerates the electrons emitted from the filament 2, and a scanning magnet 8 that forms a fluctuating magnetic field on the emission path of the electrons. , an electron impact magnetic field deflection type evaporation source device comprising an introduction magnet 4 that forms a deflection magnetic field for introducing an electron flow into the crucible 1, wherein the scanning magnet 8 has an extraction yoke 9 drawn out from it; An electron impact magnetic field deflection type evaporation source device characterized in that magnetic poles 9a, 9a formed at the tips thereof are opposite poles on both sides of the filament 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988171111U JPH0538050Y2 (en) | 1988-12-30 | 1988-12-30 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988171111U JPH0538050Y2 (en) | 1988-12-30 | 1988-12-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0291145U JPH0291145U (en) | 1990-07-19 |
JPH0538050Y2 true JPH0538050Y2 (en) | 1993-09-27 |
Family
ID=31462651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1988171111U Expired - Lifetime JPH0538050Y2 (en) | 1988-12-30 | 1988-12-30 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0538050Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044392A (en) * | 1983-08-23 | 1985-03-09 | Mitsubishi Electric Corp | Transfer-type thermal recording sheet |
-
1988
- 1988-12-30 JP JP1988171111U patent/JPH0538050Y2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6044392A (en) * | 1983-08-23 | 1985-03-09 | Mitsubishi Electric Corp | Transfer-type thermal recording sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH0291145U (en) | 1990-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008044194A3 (en) | Electron optical apparatus, x-ray emitting device and method of producing an electron beam | |
US7439526B2 (en) | Beam neutralization in low-energy high-current ribbon-beam implanters | |
JP2010521765A (en) | Front plate for ion source | |
JP4582065B2 (en) | Analysis electromagnet, control method thereof, and ion implantation apparatus | |
US6111934A (en) | X-ray tube with electromagnetic electron beam deflector formed by laminating in planes oriented perpendicularly to the electron beam | |
JPH0538050Y2 (en) | ||
CA1136764A (en) | Trirotron: triode rotating beam radio-frequency amplifier | |
US4180760A (en) | Flat cathode ray tube having magnetically collimated electron beam device | |
JPH0799720B2 (en) | Fast atom beam source | |
JPH0538049Y2 (en) | ||
US5029259A (en) | Microwave electron gun | |
US7005795B2 (en) | Electron bombardment of wide bandgap semiconductors for generating high brightness and narrow energy spread emission electrons | |
JPH07161323A (en) | Ion source | |
JPH03190044A (en) | Electron beam accelerator | |
US20030001110A1 (en) | System and method for amplifying an angle of divergence of a scanned ion beam | |
TW202135113A (en) | Electron gun device and evaporation deposition device achieving high reliability and enhancing scanning capability | |
US2727171A (en) | Ion trap for a cathode ray tube | |
JPH06231900A (en) | Linear electron accelerator | |
JP3206506B2 (en) | Ion implanter with analysis magnet with magnetic field offset by permanent magnet | |
JP2524916Y2 (en) | Electron impact magnetic field deflection type evaporation source device | |
JPS6133160B2 (en) | ||
JPS59134531A (en) | Accelerating and scanning enlarging electronic lens unit | |
CN207269014U (en) | A kind of controllable miniaturization on-radiation electron source of emission current | |
US20240321542A1 (en) | X-ray generation device | |
JP3406156B2 (en) | Electron beam apparatus, electron beam axis alignment method, and electron beam astigmatism correction or focusing method |