JPH0537238Y2 - - Google Patents

Info

Publication number
JPH0537238Y2
JPH0537238Y2 JP523488U JP523488U JPH0537238Y2 JP H0537238 Y2 JPH0537238 Y2 JP H0537238Y2 JP 523488 U JP523488 U JP 523488U JP 523488 U JP523488 U JP 523488U JP H0537238 Y2 JPH0537238 Y2 JP H0537238Y2
Authority
JP
Japan
Prior art keywords
container
spacer
optical path
particle size
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP523488U
Other languages
Japanese (ja)
Other versions
JPH01110349U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP523488U priority Critical patent/JPH0537238Y2/ja
Publication of JPH01110349U publication Critical patent/JPH01110349U/ja
Application granted granted Critical
Publication of JPH0537238Y2 publication Critical patent/JPH0537238Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は、レーザ回折法(光散乱法)を用いた
粒度分布測定装置の試料セルに関する。
[Detailed Description of the Invention] The present invention relates to a sample cell of a particle size distribution measuring device using a laser diffraction method (light scattering method).

〈従来の技術〉 フラウンホーフア回折を利用して試料懸濁液
(または浮濁液、以下、単に懸濁液と称する)中
の粒子の粒度分布を測定する方法においては、一
般に、試料懸濁液にレーザ光を照射し、液中の各
粒子の大きさに応じて回折される光をレンズで受
け、このレンズの焦点面上に同心円状の回折像を
結ばせる。そして、この回折像の光強度分布の測
定値から、試料懸濁液中に存在する粒子群の粒度
分布を算出する。
<Prior art> In a method of measuring the particle size distribution of particles in a sample suspension (or suspended liquid, hereinafter simply referred to as suspension) using Fraunhofer diffraction, it is generally known that Laser light is irradiated, and a lens receives the light that is diffracted according to the size of each particle in the liquid, forming a concentric diffraction image on the focal plane of this lens. Then, the particle size distribution of the particles present in the sample suspension is calculated from the measured value of the light intensity distribution of this diffraction image.

試料懸濁液は、通常2〜10mm程度の光路長(照
射レーザ光の光路方向の内形幅寸法)を有する容
器に収容され、レーザ光の光路上に配設される。
The sample suspension is usually housed in a container having an optical path length (inner width dimension in the optical path direction of the irradiated laser beam) of about 2 to 10 mm, and placed on the optical path of the laser beam.

このような測定法においては、試料懸濁液濃度
が高いと、第7図に示すように、ある粒子により
散乱した光が他の粒子で更に散乱される。多重散
乱が増加し、散乱角の大きな光についてその強度
が増加する。散乱角が大きくなることは、見かけ
上、小さい粒子が多いということになり、得られ
た粒度分布測定結果は真の粒度分布よりも粒径が
小さい方にずれ、正確な測定ができなくなる。
In such a measurement method, when the sample suspension concentration is high, light scattered by one particle is further scattered by other particles, as shown in FIG. Multiple scattering increases and its intensity increases for light with large scattering angles. A larger scattering angle means that there are apparently more small particles, and the obtained particle size distribution measurement result deviates to a smaller particle size than the true particle size distribution, making accurate measurement impossible.

そこで、従来、このような多重散乱による誤差
を少なくすべく、試料懸濁液の濃度を薄くして測
定することが行われている。
Therefore, in order to reduce errors caused by such multiple scattering, measurement has been conventionally carried out by reducing the concentration of the sample suspension.

〈考案が解決しようとする問題点〉 試料懸濁液の希釈操作は、ソンプリング誤差の
原因となり、また、試料によつてはある濃度範囲
の状態でのみ安定で、希釈により粒子径そのもの
が変化してしまうものもある。更に、レーザ回折
法は他の測定法に比して短時間い測定できるとい
う特長があるが、このことも相俟つて希釈操作は
測定者にとつて以外と煩わしさを感じさせる。
<Problems that the invention aims to solve> Dilution of sample suspensions causes sampling errors, and some samples are stable only within a certain concentration range, and dilution may change the particle size itself. There are some things that can happen. Furthermore, the laser diffraction method has the advantage of being able to perform measurements in a shorter time than other measurement methods, but this also makes the dilution operation extremely troublesome for the measurer.

本出願人はこのような点に鑑み、既に、試料懸
濁液を、2枚の透光性平板間の微小厚さの空隙中
に収容してレーザ光を照射することにより、高濃
度の試料懸濁液を希釈することなく、かつ、多重
散乱を起こさずに正確に粒度分布を測定し得る方
法を提案している(特願昭62−104977号)。
In view of these points, the present applicant has already developed a highly concentrated sample by storing a sample suspension in a microscopic gap between two transparent flat plates and irradiating the sample with laser light. We have proposed a method that can accurately measure particle size distribution without diluting a suspension and without causing multiple scattering (Japanese Patent Application No. 104977/1982).

本考案は、上述の提案を実用化するに際し、そ
の作業性を向上させるべくなされたもので、極め
て簡単な操作のもとに高濃度の試料懸濁液の粒度
分布を測定することのできる試料セルを提供しよ
うとするものである。
This invention was made to improve the workability when putting the above-mentioned proposal into practical use, and it is possible to measure the particle size distribution of a highly concentrated sample suspension using extremely simple operations. It is intended to provide cells.

〈問題点を解決するための手段〉 上記の目的を達成するため、本考案のレーザ光
回折を利用した粒度分布測定装置における試料セ
ルは、実施例に対応する第1図〜第4図に示すよ
うに、照射すべきレーザ光の光路A方向に所定の
内形幅寸法lを有する透明の容器1と、その容器
1内に挿脱自在に挿入され、上述の内形幅寸法l
より所定の微小寸法だけ短い厚さをtを有する透
明のスペーサ2を備えたことにより、特徴づけら
れる。
<Means for solving the problem> In order to achieve the above object, the sample cell in the particle size distribution measuring device using laser light diffraction of the present invention is as shown in FIGS. 1 to 4 corresponding to the embodiment. As shown in FIG.
It is characterized by having a transparent spacer 2 having a thickness t that is shorter by a predetermined minute dimension.

〈作用〉 スペーサ2を抜取つた状態で容器1内に試料懸
濁液を適当量注入した後、スペーサ2を容器1内
に挿入することにより、試料懸濁液は容器1の内
形幅寸法lとスペーサ2の厚さtの差(l−t)
だけの光路A方向への微小厚さを有する空隙内に
容易に侵入する。レーザ光の光路A方向への懸濁
液厚さが小さくなると、高濃度試料でも光路A方
向への粒子存在数が少なくなり、多重散乱の発生
確率が低下する。
<Operation> After injecting an appropriate amount of the sample suspension into the container 1 with the spacer 2 removed, by inserting the spacer 2 into the container 1, the sample suspension is poured into the inner width of the container 1. and the difference between the thickness t of spacer 2 (lt)
It easily penetrates into the gap having a very small thickness in the direction of the optical path A. When the thickness of the suspension in the direction of the optical path A of the laser beam becomes smaller, the number of particles present in the direction of the optical path A decreases even in a highly concentrated sample, and the probability of occurrence of multiple scattering decreases.

〈実施例〉 本考案の実施例を、以下、図面を参照しつつ説
明する。
<Example> An example of the present invention will be described below with reference to the drawings.

第1図は本考案実施例の斜視図で、容器1から
スペーサ2を抜き取つた状態で示し、第2図はス
ペーサ2を容器1内に挿入した状態で示す中央縦
断面図、第3図は照射すべきレーザ光の光路Aを
含む水平面を切断面とする断面図である。また、
第4図はスペーサ2の平面図である。
FIG. 1 is a perspective view of the embodiment of the present invention, with the spacer 2 removed from the container 1, FIG. 2 is a central vertical sectional view showing the spacer 2 inserted into the container 1, and FIG. 3 is a perspective view of the embodiment of the present invention. 1 is a cross-sectional view with a horizontal plane including an optical path A of a laser beam to be irradiated as a cutting surface. Also,
FIG. 4 is a plan view of the spacer 2.

容器1およびスペーサ2はいずれも、パイレツ
クス等の透明材料で形成されている。
Both the container 1 and the spacer 2 are made of transparent material such as pyrex.

容器1は、照射すべきレーザ光の光路A方向に
所定の一様な内形幅寸法lを有する測定室部11
と、その測定室部11の上方にあつて寸法lより
大きい内形幅寸法を有する液溜め部12とから成
つている。
The container 1 includes a measurement chamber 11 having a predetermined uniform internal width l in the direction of the optical path A of the laser beam to be irradiated.
and a liquid reservoir section 12 located above the measurement chamber section 11 and having an internal width dimension larger than the dimension l.

スペーサ2は、その左右両端部に容器1の測定
室部11の内形幅寸法lに対して微小なはめあい
すきま代を有する寸法l′の厚さを持つはめあい部
21,21を備え、容器1に対して挿入・抜取り
自在となつている。はめあい部21,21を連結
する中間部22には、照射すべきレーザ光の光路
A上において、容器1の測定室部11の内形幅寸
法lより例えば数十〜数百μm程度の微小寸法だ
け小さい一様な厚さtを備えた突出部23が設け
られており、スペーサ2を容器1内に挿入したと
きに、レーザ光の光路A上で測定室部11との間
に寸法(l−t)/2の2箇所の平行な微小空隙
が形成されるよう構成されている。
The spacer 2 is provided with fitting parts 21, 21 at both left and right ends thereof, each having a thickness l' with a small fitting clearance relative to the internal width l of the measurement chamber 11 of the container 1. It can be inserted and removed freely. The intermediate portion 22 that connects the fitting portions 21 and 21 has a minute dimension, for example, several tens to several hundred μm, than the internal width l of the measurement chamber portion 11 of the container 1, on the optical path A of the laser beam to be irradiated. A protrusion 23 is provided with a uniform thickness t that is small by -t)/2 parallel microgaps are formed at two locations.

次に作用を使用方法とともに述べる。 Next, we will discuss its effects along with how to use it.

まず、スペーサ2を抜取つた状態で、容器1内
に試料懸濁液を例えば第2図xの位置に液面が達
する程度にまで注入する。次いでスペーサ2を挿
入する。これにより、試料懸濁液面は上昇して液
溜め部12に達するとともに、測定室部11と突
出部23間の2箇所の空隙内に確実に侵入する。
First, with the spacer 2 removed, a sample suspension is injected into the container 1 until the liquid level reaches the position shown in FIG. 2, for example, x. Next, spacer 2 is inserted. As a result, the surface of the sample suspension rises and reaches the liquid reservoir 12, and also reliably enters the two gaps between the measurement chamber 11 and the protrusion 23.

この状態で、第5図に示すように光学系内に、
レーザ光の光路A上に突出部23が位置するよう
配置する。図において3は集光レンズ、4はデテ
クタである。また、Wは試料懸濁液を示してい
る。レーザ光は2箇所の空隙内の粒子によつて回
折し、集光レンズ3によりデテクタ4上に回折像
を結ぶ。この回折像の光強度分布から公知の算法
によつて試料懸濁液の粒子の粒度分布を求めるこ
とができる。
In this state, as shown in Fig. 5, inside the optical system,
The protrusion 23 is arranged so as to be located on the optical path A of the laser beam. In the figure, 3 is a condenser lens, and 4 is a detector. Further, W indicates a sample suspension. The laser beam is diffracted by the particles in the two gaps, and a diffraction image is formed on the detector 4 by the condenser lens 3. From the light intensity distribution of this diffraction image, the particle size distribution of the particles in the sample suspension can be determined by a known algorithm.

ここで、レーザ光の光路A方向への懸濁液厚
さ、つまり懸濁液中の光路長は2箇所の空隙の幅
の和、すなわち(l−t)となるが、突出部23
の厚さtが異なる複数種のスペーサを用意してお
けば、スペーサの交換によりこの光路長(l−
t)を任意に変更することができ、測定すべき試
料懸濁液の濃度に応じて、高濃度となるほど厚さ
tの大きなスペーサを用いることで、高濃度懸濁
液でも希釈することなく、多重散乱の影響を受け
ない正確な粒度分布測定が可能となる。
Here, the thickness of the suspension in the direction of the optical path A of the laser beam, that is, the optical path length in the suspension is the sum of the widths of the two gaps, that is, (lt).
By preparing multiple types of spacers with different thicknesses t, the optical path length (l-
t) can be changed arbitrarily, depending on the concentration of the sample suspension to be measured, and by using a spacer with a larger thickness t as the concentration increases, even high concentration suspensions can be measured without dilution. Accurate particle size distribution measurement that is not affected by multiple scattering becomes possible.

なお、容器1およびスペーサ2の形状は以上の
実施例に限定されることはなく、容器1内にスペ
ーサ2を挿入した状態で多重散乱の生じにくい微
小厚さの空隙が形成されればよく、例えば第6図
にその横断面図を示すような形状でもよい。この
例では、スペーサ62の一面側に突出部623が
形成されており、容器61の一方の内面とスペー
サ62の間に圧縮ばね等の弾性体65,65を介
在させてスペーサ62の他面側を容器61の他方
の内面に密着させることにより、突出部623と
容器61の一方の内面間に1箇所の空隙を形成し
ている。光学的にはこの例の方がむしろ好都合で
ある。
Note that the shapes of the container 1 and the spacer 2 are not limited to the above embodiments, and it is sufficient that the spacer 2 is inserted into the container 1 to form a gap with a minute thickness that makes it difficult for multiple scattering to occur. For example, the shape may be as shown in the cross-sectional view in FIG. In this example, a protrusion 623 is formed on one side of the spacer 62, and elastic bodies 65, 65 such as compression springs are interposed between one inner surface of the container 61 and the spacer 62, and the protrusion 623 is formed on the other side of the spacer 62. By bringing the protruding portion 623 into close contact with the other inner surface of the container 61, a gap is formed between the protruding portion 623 and one inner surface of the container 61. Optically, this example is more convenient.

〈考案の効果〉 以上説明したように、本考案によれば、試料懸
濁液を容器内に注入してスペーサを挿入するだけ
で、レーザ光の光路方向に微小厚さの懸濁液層を
形成することができ、高濃度の試料懸濁液を希釈
することなく、極めて簡単な操作のもとに正確な
粒度分布測定が可能となる。しかも、厚さtの異
なるスペーサを複数種用意しておくだけで、濃度
が変わつても必要に応じて懸濁液層の厚さを容易
に変更することができる。
<Effects of the invention> As explained above, according to the invention, by simply injecting the sample suspension into a container and inserting a spacer, it is possible to form a suspension layer of minute thickness in the optical path direction of the laser beam. This enables accurate particle size distribution measurements with extremely simple operations without diluting highly concentrated sample suspensions. Moreover, by simply preparing a plurality of types of spacers with different thicknesses t, the thickness of the suspension layer can be easily changed as necessary even if the concentration changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本考案実施例の構造説明図
で、第1図は容器1からスペーサ2を抜取つた状
態で示す斜視図、第2図は容器1内にスペーサ2
を挿入した状態で示す中央縦断面図、第3図はレ
ーザ光光路Aを含む水平面を切断面とする断面
図、第4図はスペーサ2の平面図である。第5図
は本考案実施例の使用説明図、第6図は本考案の
他の実施例の横断面図である。第7図は多重散乱
の説明図である。 1……容器、11……測定室部、12……液溜
め部、2……スペーサ、21……はめあい部、2
2……中間部、23……突出部、3……集光レン
ズ、4……デテクタ、A……レーザ光の光路。
1 to 4 are structural explanatory diagrams of an embodiment of the present invention. FIG. 1 is a perspective view showing the spacer 2 removed from the container 1, and FIG. 2 is a perspective view showing the spacer 2 inside the container 1.
FIG. 3 is a sectional view taken along a horizontal plane including the laser beam path A, and FIG. 4 is a plan view of the spacer 2. FIG. 5 is a diagram for explaining the use of an embodiment of the present invention, and FIG. 6 is a cross-sectional view of another embodiment of the present invention. FIG. 7 is an explanatory diagram of multiple scattering. DESCRIPTION OF SYMBOLS 1... Container, 11... Measurement chamber part, 12... Liquid reservoir part, 2... Spacer, 21... Fitting part, 2
2... Middle part, 23... Projection part, 3... Condensing lens, 4... Detector, A... Laser beam optical path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 媒液中に粒子群が懸濁もしくは浮濁してなる試
料液にレーザ光を照射し、その回折光の強度分布
に基づいて試料液中の粒子群の粒度分布を測定す
る装置において当該試料液を収容してレーザ光の
光路上に配置するためのセルであつて、照射すべ
きレーザ光の光路方向に所定の内形幅寸法を有す
る透明の容器と、その容器内に挿脱自在に挿入さ
れ、上記内形幅寸法より所定の微小寸法だけ短い
厚さを有する透明のスペーサを備えたことを特徴
とする、レーザ光回折を利用した粒度分布測定装
置における試料セル。
The sample liquid is irradiated with laser light to a sample liquid in which particles are suspended or suspended in a medium, and the sample liquid is measured in a device that measures the particle size distribution of the particle groups in the sample liquid based on the intensity distribution of the diffracted light. A cell for accommodating and disposing on the optical path of a laser beam, which includes a transparent container having a predetermined inner width dimension in the optical path direction of the laser beam to be irradiated, and a cell that is removably inserted into the container. . A sample cell in a particle size distribution measuring device using laser light diffraction, comprising a transparent spacer having a thickness shorter by a predetermined minute dimension than the inner width dimension.
JP523488U 1988-01-18 1988-01-18 Expired - Lifetime JPH0537238Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP523488U JPH0537238Y2 (en) 1988-01-18 1988-01-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP523488U JPH0537238Y2 (en) 1988-01-18 1988-01-18

Publications (2)

Publication Number Publication Date
JPH01110349U JPH01110349U (en) 1989-07-25
JPH0537238Y2 true JPH0537238Y2 (en) 1993-09-21

Family

ID=31208438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP523488U Expired - Lifetime JPH0537238Y2 (en) 1988-01-18 1988-01-18

Country Status (1)

Country Link
JP (1) JPH0537238Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710874B2 (en) * 2002-07-05 2004-03-23 Rashid Mavliev Method and apparatus for detecting individual particles in a flowable sample
JP2013061357A (en) * 2013-01-08 2013-04-04 Shimadzu Corp Sample cell and particle size distribution measurement apparatus using the same

Also Published As

Publication number Publication date
JPH01110349U (en) 1989-07-25

Similar Documents

Publication Publication Date Title
Yguerabide et al. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching
US9983064B2 (en) Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US5764345A (en) Methods for detecting inhomogeneities, specifically, striae, infused silica glasses
Faust The determination of the refractive indices of inhomogeneous solids by interference microscopy
JPH0537238Y2 (en)
Ohyama et al. Optical interferometry for measuring instantaneous thickness of transparent solid and liquid films
JPH0755700A (en) Device and method for inspecting refractive index of optical immersion liquid
JPH08178825A (en) Apparatus for measuring distribution of particle sizes
US6449049B1 (en) Profiling of aspheric surfaces using liquid crystal compensatory interferometry
Nishijima et al. Diffusion under the microscope
US20180372614A1 (en) Optical measurement cell and particle properties measuring instrument using the same
Hodgkinson The application of fringes of equal chromatic order to the assessment of the surface roughness of polished fused silica
Park et al. Measurement of film thickness by double-slit experiment
US8164749B2 (en) Optical measurement apparatus and electrode pair thereof
Lettieri et al. Certification of SRM1960: nominal 10 μm diameter polystyrene spheres (“space beads”)
KR20110031766A (en) Measurement of refractive index of wafer-type media by utilizing interference of transmitted and reflected beams
JPS63269042A (en) Method for measuring particle size distribution of high density specimen utilizing diffraction of laser beam
JP2565143Y2 (en) Focusing cell for spectrophotometry of ultra-trace samples and its holder
Biswas et al. Measurement of gradient refractive index profile using a birefringent lens
JP3716301B2 (en) Method and apparatus for measuring biomolecule adsorption layer
CN218628922U (en) Microstructure angle laser test instrument
Liu et al. Advances in the measurement of the poled silica nonlinear profile
Mil Department of Physics and Astronomy
US7310136B2 (en) Method and apparatus for measuring prism characteristics
JPH11173825A (en) Prism squareness-measuring method