JP3716301B2 - Method and apparatus for measuring biomolecule adsorption layer - Google Patents

Method and apparatus for measuring biomolecule adsorption layer Download PDF

Info

Publication number
JP3716301B2
JP3716301B2 JP2001226841A JP2001226841A JP3716301B2 JP 3716301 B2 JP3716301 B2 JP 3716301B2 JP 2001226841 A JP2001226841 A JP 2001226841A JP 2001226841 A JP2001226841 A JP 2001226841A JP 3716301 B2 JP3716301 B2 JP 3716301B2
Authority
JP
Japan
Prior art keywords
measuring
laser light
biomolecule
sample plate
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001226841A
Other languages
Japanese (ja)
Other versions
JP2003042926A (en
Inventor
英夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001226841A priority Critical patent/JP3716301B2/en
Publication of JP2003042926A publication Critical patent/JP2003042926A/en
Application granted granted Critical
Publication of JP3716301B2 publication Critical patent/JP3716301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タンパク質等の生体分子の吸着が課題となる多くの領域で利用されるものであり、医療・医学(歯学も含む)における予防技術、検査技術の領域、食品工業、環境関連の検査技術に関するものである。
【0002】
【従来の技術】
タンパク質などの生体分子が種々の材質表面に強固に吸着する現象は、よく知られているが、これら構造変化し易い生体物質が界面で示す濡れ性、疎水・親水性、界面張力を準非破壊的に測定する方法は、特許第2782502号(名称:生体分子吸着層の動的界面張力測定法とこれに用いる装置)において初めて開示されている。一方、生体分子の吸着量やその過程については、種々の測定法が報告されており、光学的方法においては、エリプソメトリー及びリフレクトメトリー等が知られている。
【0003】
【発明が解決しようとする課題】
タンパク質などの吸着層表面が示す疎水・親水性、濡れ性、界面張力等の既に開示されている測定方法では、生体分子吸着層表面の全体的な特性値として情報が得られるのみで、それが吸着量の大小に由来するのか、界面吸着による分子形態の変化に由来するのかは同定できなかった。
【0004】
【課題を解決するための手段】
本願発明は、吸着現象の時間変化を測定することにより吸着量を同時的に測定し、吸着層表面が示す疎水・親水性の測定値が、吸着量由来か分子形態変化由来かをはっきり区別できる方法を提供する。これにより、それぞれの分子の特性と測定値との関連付けが可能になり、分子レベルより正確な情報を得ることができる。具体的には、上記特許第2782502号に示された発明に、生体分子の吸着量及びその過程を光学的に観測する発明を組み合わせて行う。すなわち、生体分子を含む水溶液に試料板を浸漬させ、反射光の偏光状態の変化により試料板に吸着した生体分子の浸漬時よりの経時変化を測定する(リフレクトメトリーやエリプソメトリー)と同時に、浸漬後の所定の時間後に、瞬時に試料板の一部を気相中に露呈させ、レーザ光を用い、試料の2点間におけるレーザ光の反射強度変化又は干渉縞等の光学的信号の変化を測定することにより、生体分子吸着層表面を落下する液体膜の落下速度を獲得し、生体分子吸着量とその吸着層表面の濡れ性、疎水・親水性及び表面張力を同時的に測定するものである。
【0005】
【実施の態様1】
図1に、本願発明の概要を模式的に示す。図1において、1は試料板、2は生体分子溶液が入ったセル、3はレーザ光線、4は偏光解析に使用するレーザ光線、5は生体分子吸着層、6は液体薄膜である。
まず、生体分子溶液が入ったセル2に試料板1を浸漬し、レーザ光線3,4を照射し、生体分子吸着層の厚みの変化を測定する。該吸着層の厚みが一定値に飽和してきたことを確認して、上記セルを落下させる。あるいは、試料板を急速に引き抜く。ここで、2つのレーザ光線を試料の異なった点に照射し、その反射光の反射強度あるいは干渉縞等の光学的信号の時間的変化について場所的相関とり、生体分子吸着層表面を落下する液体膜の落下速度を測定することにより、生体分子吸着量とその吸着層表面の濡れ性、疎水・親水性、表面張力を同時的に測定する。
【0006】
【実施の態様2】
図2に、レーザ光の2光束を用いた測定装置の概念図を示す。7、8はレーザ光源、9は偏光解消板あるいは回転偏光子、10は生体分子を含む水溶液セル、11は試料板、13はビームスプリッター、 12、14、15は光電変換素子、16は電圧計(2チャンネルマルチメータ)、17はデータ取り込み装置をもつコンピュータである。
【0007】
測定動作は、まず試料板を、生体分子溶液を含むセルに任意の時間浸漬させる。これにはセルを上昇させ、上から吊るした試料板が半分ほど浸るようにする。試料板上に形成される吸着分子の量を下方のレーザ光源とその検出系で測定する。これにはレーザ光入射面に平行な光強度の成分と垂直な成分がほぼ等しくなるように入射光を調整し、試料表面からの反射光を直交する2成分に分割するビームスプリッターにより分割し、それぞれの反射光の強度を光デテクターにより電気的信号に変換する。それぞれの電気信号の強度比および強度和の経時変化を電圧計(2チャンネルマルチメータ)を用いて測定する。強度比の時間変化から吸着量の時間変化を計算する。ある時点での吸着量をもつ試料板の疎水・親水性等を測定するためには、試料板をその時点で瞬時に気相に露呈し、その瞬間から生ずる液体薄膜の運動を観測する。これには溶液セルを瞬時に特定位置まで落下させる。液膜の落下速度を計測するためには、上部にある第二のレーザ光源と下部にある上述の第一のレーザ光とを用いる。これらの光線が液体薄膜を持つ試料より反射された反射光強度を光デテクターで検出し、第一のレーザ光の反射強度(変換された電圧の強度和)と第2の反射光強度の時間変化を測定し、信号強度の変化点のズレについて相対的時間間隔を計測する。このレーザ光が当たっている2点間の距離と落下に要した時間が得られれば、すでに報告されている理論(J. Colloid & Interface Sci., 233 (2001) 136-141)により液体薄膜の落下速度を算出後、吸着層表面の濡れ性(接触角)、さらには疎水・親水性、表面張力を計算することが可能である。
【0008】
【実施の態様3】
図3は、液膜落下速度計測に光干渉計を用いたものの概念図を示す。18、19はレーザ光源、20は偏光解消板あるいは回転偏光子、21、27は反射鏡、22はスペイシャルフィルター、23、30はビームスプリッター、24は試料板、25はビームスプリッター、26、28は光電変換素子、29は電圧計(2チャンネルマルチメータ)、31はレンズ系、32はビデオカメラ、33はモニタテレビと記録装置、34はコンピュータである。
【0009】
測定動作は、まず試料板を、生体分子溶液を含むセルに任意の時間浸す。このためには、セルを上昇させ、上から吊るした試料板が半分ほど浸るようにする。試料板上に形成される吸着分子量を下方のレーザ光源とその検出系で測定する。これにはレーザ光入射面に平行な光強度の成分と垂直な成分がほぼ等しくなるように入射光を調整し、試料表面からの反射光を直交する2成分に分割するビームスプリッターにより分割し、それぞれの反射光の強度を光デテクターにより電気的信号に変換する。それぞれの電気信号の強度比について経時変化を電圧計(2チャンネルマルチメータ)を用いて測定する。強度比の時間変化から吸着量の時間変化を計算する。ある時点での吸着量をもつ試料板の濡れ性、疎水・親水性等を測定するためには、試料板をその時点で瞬時に気相に露呈し、その瞬間から生ずる液体薄膜の運動を観測する。このためには溶液セルを瞬時に所定位置まで落下させる。液膜の落下速度を計測するためには、レーザ光源19からの光をスペイシャルフィルター(コリメータレンズ含む)を通した光ビームをビームスプリッターで二つに分岐し、一方をサンプルに当て、他方は参照光とし、別のビームスプリッターで混合し、シャリングモードによる干渉縞をビデオ画像として採録し、干渉縞の移動速度を画面で測定することにより、すでに報告した理論(J. Colloid & Interface Sci., 233 (2001) 136-141)により液体薄膜の落下速度を算出後、吸着層表面の濡れ性(接触角)、さらには疎水・親水性、表面張力を計算することが可能である。
【0010】
【実施例】
典型的血清タンパク質であるアルブミンを使い、図2の測定装置を用いて行った実験例を示す。はじめ蒸留水で満たされた測定セルを準備する。このセルには、あらかじめ白金板を気/水表面の上方から下降させ、板の中ほどまで浸しておく。水溶液に浸してある部分にレーザ光を照射する。このとき光強度の入射面に平行な成分(Ip0)と垂直成分(Is0)が等しくなるように偏光子や偏光解消板を調整する。そこからの反射光をビームスプリッターでそれぞれの成分(Ip,Is)に分割し、それぞれをリニアアンプをもつ光電変換素子で電圧に変換し、2チャンネルボルトメータでその電圧比の時間変化をコンピュータで記録しておく。この電圧比は、Ip/Isに対応している。ある時点で、このセルにアルブミンの濃厚水溶液を加え、所定の濃度のアルブミン水溶液にする。 セル中の水溶液は常時マグネチックスターラで攪拌しておく。その後のIp/Isを連続的に測定し、コンピュータで記録する。
【0011】
このように観測されたのが図4のデータであり、この場合のアルブミンの最終濃度は2.2x10−2mg/mlである。観測の最終時点で、溶液セルを約10mm下方まで瞬時に落下させ、白金試料板を気相に露呈し、その瞬間から板に吸着しているタンパク質層の上に生ずる液体薄膜の運動を観測する。先の第一のレーザビームとその上方4mmにある第二のレーザビームの試料平面より反射された反射光強度を光デテクターで検出し、第1のレーザ光の反射強度(変換された電圧の強度和)と第2のレーザの反射光強度について時間変化を測定し、コンピュータに記憶させる。信号強度の変化点のズレについて相対的時間間隔(落下時間)を計測する(図5)。
【0012】
図6にはこのようにして計測された2種類のタンパク質(アルブミンとリゾチーム)に関する落下時間と溶液中の濃度との関係を示す。
【0013】
【発明の効果】
本発明によれば、タンパク質など生体分子の吸着が経時的にどのように進行し、その結果として生起する吸着膜の重要な特性である濡れ性(疎水・親水性)を同一試料で同時的に観測することが可能となる。
【図面の簡単な説明】
【図1】 測定方法の概念図
【図2】 レーザの2光束の反射法を用いた装置の概略図
【図3】 光干渉法を併用した装置の概念図
【図4】 光反射強度の偏光成分比の時間変化(吸着量測定)
【図5】 レーザ2光束の反射光強度の時間変化(疎水・親水性測定)
【図6】 液体薄膜の落下時間と溶液中のタンパク質濃度との関係
【符号の説明】
1 試料板
2 生体分子溶液が入ったセル
3 レーザ光線
4 偏光解析に使用するレーザ光線
5 生体分子吸着層
6 液体薄膜
7、8、18、19 レーザ光源
9、20 偏光解消板あるいは回転偏光子
10 生体分子を含む水溶液セル
11、24 試料板
13、23、25、30 ビームスプリッター
12、14、15、26、28 光電変換素子
16、29 電圧計(2チャンネルマルチメータ)
17、34 データ取り込み装置をもつコンピュータ
21、27 反射鏡
22 スペイシャルフィルター
31 レンズ系
32 ビデオカメラ
33 モニタテレビと記録装置
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in many areas where the adsorption of biomolecules such as proteins is an issue, and is a preventive technique in medical / medicine (including dentistry), an inspection technique area, a food industry, and an environment-related inspection. It is about technology.
[0002]
[Prior art]
The phenomenon that biomolecules such as proteins are strongly adsorbed on the surface of various materials is well known, but the wettability, hydrophobicity / hydrophilicity, and interfacial tension of these biological materials that are easily changed in structure are quasi-nondestructive. The method for measuring the temperature is first disclosed in Japanese Patent No. 27852502 (name: method for measuring dynamic interfacial tension of biomolecule adsorbing layer and apparatus used therefor). On the other hand, various measurement methods have been reported for the amount of biomolecules adsorbed and the process thereof, and ellipsometry, reflectometry, and the like are known as optical methods.
[0003]
[Problems to be solved by the invention]
In the already disclosed measurement methods such as hydrophobicity / hydrophilicity, wettability, interfacial tension, etc. exhibited by the adsorption layer surface such as protein, information can be obtained only as an overall characteristic value of the biomolecule adsorption layer surface. It was not possible to identify whether it was due to the amount of adsorption or due to a change in molecular morphology due to interfacial adsorption.
[0004]
[Means for Solving the Problems]
The present invention can measure the adsorption amount simultaneously by measuring the time change of the adsorption phenomenon, and can clearly distinguish whether the measured hydrophobicity / hydrophilicity indicated by the adsorption layer surface is derived from the adsorption amount or the molecular shape change. Provide a method. As a result, the characteristics of each molecule can be associated with the measured values, and more accurate information than the molecular level can be obtained. Specifically, the invention shown in the above-mentioned Japanese Patent No. 27852502 is combined with an invention for optically observing the amount of biomolecule adsorbed and its process. In other words, the sample plate is immersed in an aqueous solution containing biomolecules, and the time-dependent change of the biomolecule adsorbed on the sample plate due to the change in the polarization state of the reflected light is measured (reflectometry and ellipsometry) simultaneously. After a predetermined time later, a part of the sample plate is instantaneously exposed to the gas phase, and the laser beam is used to change the reflection intensity of the laser beam between two points of the sample or the change of optical signals such as interference fringes. By measuring, the falling speed of the liquid film falling on the surface of the biomolecule adsorption layer is acquired, and the amount of biomolecule adsorption and the wettability, hydrophobicity / hydrophilicity and surface tension of the adsorption layer surface are measured simultaneously. is there.
[0005]
Embodiment 1
FIG. 1 schematically shows an outline of the present invention. In FIG. 1, 1 is a sample plate, 2 is a cell containing a biomolecule solution, 3 is a laser beam, 4 is a laser beam used for polarization analysis, 5 is a biomolecule adsorption layer, and 6 is a liquid thin film.
First, the sample plate 1 is immersed in the cell 2 containing the biomolecule solution, irradiated with the laser beams 3 and 4, and the change in the thickness of the biomolecule adsorption layer is measured. After confirming that the thickness of the adsorption layer has saturated to a certain value, the cell is dropped. Alternatively, the sample plate is pulled out rapidly. Here, two laser beams are irradiated to different points on the sample, and the liquid that falls on the surface of the biomolecule adsorbing layer is correlated with the temporal change of the optical signal such as the reflection intensity of the reflected light or interference fringes. By measuring the falling speed of the membrane, the amount of biomolecule adsorbed and the wettability, hydrophobicity / hydrophilicity, and surface tension of the surface of the adsorption layer are measured simultaneously.
[0006]
Embodiment 2
FIG. 2 shows a conceptual diagram of a measuring apparatus using two light beams of laser light. 7 and 8 are laser light sources, 9 is a depolarizing plate or rotating polarizer, 10 is an aqueous solution cell containing a biomolecule, 11 is a sample plate, 13 is a beam splitter, 12, 14 and 15 are photoelectric conversion elements, and 16 is a voltmeter. (2 channel multimeter), 17 is a computer having a data capturing device.
[0007]
In the measurement operation, first, the sample plate is immersed in a cell containing the biomolecule solution for an arbitrary time. For this purpose, the cell is raised so that the sample plate hung from above is immersed by about half. The amount of adsorbed molecules formed on the sample plate is measured with the lower laser light source and its detection system. For this purpose, the incident light is adjusted so that the light intensity component parallel to the laser light incident surface and the perpendicular component are substantially equal, and the reflected light from the sample surface is divided by a beam splitter that divides the light into two orthogonal components, The intensity of each reflected light is converted into an electrical signal by an optical detector. The intensity ratio of each electric signal and the change over time in the intensity sum are measured using a voltmeter (2-channel multimeter). The time change of the adsorption amount is calculated from the time change of the intensity ratio. In order to measure the hydrophobicity / hydrophilicity of a sample plate having an adsorption amount at a certain time, the sample plate is instantaneously exposed to the gas phase at that time, and the movement of the liquid thin film generated from that moment is observed. For this, the solution cell is instantaneously dropped to a specific position. In order to measure the falling speed of the liquid film, the second laser light source in the upper part and the first laser light in the lower part are used. The intensity of the reflected light reflected from the sample having the liquid thin film is detected by an optical detector, and the time variation of the reflected intensity of the first laser beam (the sum of the converted voltage intensity) and the second reflected light intensity is detected. And the relative time interval is measured for the deviation of the change point of the signal intensity. If the distance between the two points on which the laser beam hits and the time required for the fall can be obtained, the liquid thin film can be formed according to the already reported theory (J. Colloid & Interface Sci., 233 (2001) 136-141). After calculating the falling speed, it is possible to calculate the wettability (contact angle) of the adsorption layer surface, and also the hydrophobicity / hydrophilicity and surface tension.
[0008]
Embodiment 3
FIG. 3 is a conceptual diagram of an optical interferometer used for liquid film falling speed measurement. 18 and 19 are laser light sources, 20 is a depolarizing plate or rotating polarizer, 21 and 27 are reflecting mirrors, 22 is a spatial filter, 23 and 30 are beam splitters, 24 is a sample plate, 25 is a beam splitter, 26 and 28 Is a photoelectric conversion element, 29 is a voltmeter (2-channel multimeter), 31 is a lens system, 32 is a video camera, 33 is a monitor television and recording device, and 34 is a computer.
[0009]
In the measurement operation, first, the sample plate is immersed in a cell containing the biomolecule solution for an arbitrary time. For this purpose, the cell is raised so that the sample plate hung from above is immersed by about half. The adsorbed molecular weight formed on the sample plate is measured with the lower laser light source and its detection system. For this purpose, the incident light is adjusted so that the light intensity component parallel to the laser light incident surface and the perpendicular component are substantially equal, and the reflected light from the sample surface is divided by a beam splitter that divides the light into two orthogonal components, The intensity of each reflected light is converted into an electrical signal by an optical detector. The change with time of the intensity ratio of each electric signal is measured using a voltmeter (2-channel multimeter). The time change of the adsorption amount is calculated from the time change of the intensity ratio. In order to measure the wettability, hydrophobicity, hydrophilicity, etc. of a sample plate with an adsorption amount at a certain point in time, the sample plate is exposed to the gas phase instantaneously at that point, and the movement of the liquid thin film generated from that moment is observed. To do. For this purpose, the solution cell is instantaneously dropped to a predetermined position. In order to measure the falling speed of the liquid film, the light beam from the laser light source 19 is split into two beams by a beam splitter through a spatial filter (including a collimator lens), one of which is applied to the sample, By using a reference beam, mixing with another beam splitter, capturing the interference fringes due to the shearing mode as a video image, and measuring the moving speed of the interference fringes on the screen, the previously reported theory (J. Colloid & Interface Sci., 233 (2001) 136-141), it is possible to calculate the wettability (contact angle) of the adsorption layer surface, as well as hydrophobicity / hydrophilicity and surface tension after calculating the falling speed of the liquid thin film.
[0010]
【Example】
An example of an experiment conducted using albumin, which is a typical serum protein, using the measurement apparatus of FIG. First, prepare a measurement cell filled with distilled water. In this cell, a platinum plate is lowered from above the air / water surface in advance and immersed in the middle of the plate. Laser light is irradiated to the part immersed in the aqueous solution. At this time, the polarizer and the depolarizing plate are adjusted so that the component (Ip0) parallel to the incident surface of the light intensity is equal to the vertical component (Is0). The reflected light is divided into each component (Ip, Is) by a beam splitter, each is converted into a voltage by a photoelectric conversion element having a linear amplifier, and the time change of the voltage ratio is converted by a computer with a 2-channel voltmeter. Record it. This voltage ratio corresponds to Ip / Is. At some point, a concentrated aqueous solution of albumin is added to the cell to form an aqueous albumin solution of a predetermined concentration. The aqueous solution in the cell is always stirred with a magnetic stirrer. The subsequent Ip / Is is continuously measured and recorded by a computer.
[0011]
The data of FIG. 4 was observed in this way, and the final concentration of albumin in this case is 2.2 × 10 −2 mg / ml. At the final point of observation, the solution cell is instantaneously dropped to about 10 mm below, the platinum sample plate is exposed to the gas phase, and from this moment, the movement of the liquid thin film generated on the protein layer adsorbed on the plate is observed. . The reflected light intensity reflected from the sample plane of the first laser beam and the second laser beam 4 mm above it is detected by an optical detector, and the reflected intensity of the first laser beam (the intensity of the converted voltage) is detected. Sum) and the reflected light intensity of the second laser are measured over time and stored in a computer. The relative time interval (fall time) is measured for the deviation of the signal intensity change point (FIG. 5).
[0012]
FIG. 6 shows the relationship between the drop time and the concentration in the solution for the two types of proteins (albumin and lysozyme) thus measured.
[0013]
【The invention's effect】
According to the present invention, how the adsorption of biomolecules such as proteins progresses over time, and the wettability (hydrophobic / hydrophilicity), which is an important characteristic of the resulting adsorption film, is simultaneously measured in the same sample. It becomes possible to observe.
[Brief description of the drawings]
[Fig. 1] Conceptual diagram of the measurement method [Fig. 2] Schematic diagram of the apparatus using the two-beam reflection method of the laser [Fig. 3] Schematic diagram of the apparatus using the optical interferometry [Fig. 4] Polarization of the light reflection intensity Change in component ratio over time (adsorption amount measurement)
[Figure 5] Temporal change in reflected light intensity of two laser beams (measurement of hydrophobicity and hydrophilicity)
[Fig. 6] Relationship between drop time of liquid thin film and protein concentration in solution [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sample plate 2 Cell containing biomolecule solution 3 Laser beam 4 Laser beam 5 used for polarization analysis Biomolecule adsorption layer 6 Liquid thin film 7, 8, 18, 19 Laser light source 9, 20 Depolarization plate or rotating polarizer 10 Aqueous solution cells 11 and 24 containing biomolecules Sample plates 13, 23, 25, 30 Beam splitters 12, 14, 15, 26, 28 Photoelectric conversion elements 16, 29 Voltmeter (2-channel multimeter)
17, 34 Computers 21 and 27 having a data capturing device Reflector 22 Spatial filter 31 Lens system 32 Video camera 33 Monitor TV and recording device

Claims (3)

生体分子吸着層を測定する方法において、生体分子を含む水溶液に試料板を浸漬させ、該試料板に吸着した生体分子吸着量を光分析により測定し、その後、瞬時に試料板の一部を気相中に露呈させ、試料の2点間における光信号を測定し、生体分子吸着層表面を落下する液体膜の落下速度を測定することにより、上記生体分子吸着量及び上記生体分子吸着層表面の特性を測定することを特徴とする生体分子吸着層測定方法。In the method of measuring a biomolecule adsorption layer, a sample plate is immersed in an aqueous solution containing biomolecules, the amount of biomolecule adsorbed on the sample plate is measured by optical analysis, and then a part of the sample plate is instantly removed. By exposing to the phase, measuring the optical signal between two points of the sample, and measuring the falling speed of the liquid film falling on the surface of the biomolecule adsorption layer, the amount of the biomolecule adsorption and the surface of the biomolecule adsorption layer A method for measuring a biomolecule adsorbed layer, characterized by measuring characteristics. 生体分子吸着層を測定する装置において、生体分子を含む水溶液が入れられたセル、該セル内に浸漬される試料板、第1のレーザ光源、該第1のレーザ光源が発するレーザ光の偏光面を調節する光学素子、上記試料板により反射された反射光を分割するビームスプリッター、分割されたそれぞれの反射光の強度を電気的信号に変換する光デテクター、該光デテクターにより変換されたそれぞれの電気信号を測定する電圧計、上記試料板を気相に露呈した瞬間から生ずる液体薄膜の運動を観測するための第2のレーザ光源、該第2の光源が発するレーザ光が液体薄膜を有する試料板より反射された反射光強度を検出する光デテクター及び第1のレーザ光の反射強度と第2の反射光強度信号を処理する信号処理装置とからなることを特徴とする生体分子吸着量及び生体分子吸着層表面の特性を測定する装置。In an apparatus for measuring a biomolecule adsorption layer, a cell in which an aqueous solution containing a biomolecule is placed, a sample plate immersed in the cell, a first laser light source, and a polarization plane of laser light emitted from the first laser light source An optical element that adjusts the reflected light, a beam splitter that divides the reflected light reflected by the sample plate, an optical detector that converts the intensity of each of the divided reflected light into an electrical signal, and an electrical signal converted by the optical detector. A voltmeter for measuring a signal, a second laser light source for observing the movement of the liquid thin film generated from the moment when the sample plate is exposed to the gas phase, and a sample plate in which the laser light emitted from the second light source has a liquid thin film A raw detector comprising: an optical detector for detecting the intensity of reflected light reflected from the light; and a signal processing device for processing the intensity of reflection of the first laser light and the intensity of the second reflected light. Device for measuring properties of molecular adsorption and biomolecules adsorbed layer surface. 生体分子吸着層を測定する装置において、生体分子を含む水溶液が入れられたセル、該セル内に浸漬される試料板、第1のレーザ光源、該第1のレーザ光源が発するレーザ光の偏光面を調節する光学素子、上記試料板により反射された反射光を分割するビームスプリッター、分割されたそれぞれの反射光の強度を電気的信号に変換する光デテクター、該光デテクターにより変換されたそれぞれの電気信号を測定する電圧計、試料板を気相に露呈した瞬間から生ずる液体薄膜の運動を観測するための第2のレーザ光源、該第2のレーザ光源が発するレーザ光を分割するビームスプリッター、分割されたレーザ光の一方が上記液体薄膜を透過あるいは反射した後に分割されたレーザ光の他方と合成して干渉縞を形成するビームスプリッター及び採録された上記干渉縞より液膜の落下速度を観察する画像解析器からなることを特徴とする生体分子吸着量及び生体分子吸着層表面の特性を測定する装置。In an apparatus for measuring a biomolecule adsorption layer, a cell in which an aqueous solution containing a biomolecule is placed, a sample plate immersed in the cell, a first laser light source, and a polarization plane of laser light emitted from the first laser light source An optical element that adjusts the reflected light, a beam splitter that divides the reflected light reflected by the sample plate, an optical detector that converts the intensity of each of the divided reflected light into an electrical signal, and an electrical signal converted by the optical detector. A voltmeter for measuring a signal, a second laser light source for observing the movement of the liquid thin film generated from the moment when the sample plate is exposed to the gas phase, a beam splitter for splitting the laser light emitted from the second laser light source, and splitting One of the laser beams transmitted through or reflected by the liquid thin film is combined with the other of the divided laser beams to form an interference fringe and sampling. Biomolecule adsorption characterized by comprising the image analyzer to observe the falling speed of the liquid film from the interference fringes and apparatus for measuring the characteristics of the biomolecule adsorption layer surface.
JP2001226841A 2001-07-26 2001-07-26 Method and apparatus for measuring biomolecule adsorption layer Expired - Lifetime JP3716301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226841A JP3716301B2 (en) 2001-07-26 2001-07-26 Method and apparatus for measuring biomolecule adsorption layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226841A JP3716301B2 (en) 2001-07-26 2001-07-26 Method and apparatus for measuring biomolecule adsorption layer

Publications (2)

Publication Number Publication Date
JP2003042926A JP2003042926A (en) 2003-02-13
JP3716301B2 true JP3716301B2 (en) 2005-11-16

Family

ID=19059593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226841A Expired - Lifetime JP3716301B2 (en) 2001-07-26 2001-07-26 Method and apparatus for measuring biomolecule adsorption layer

Country Status (1)

Country Link
JP (1) JP3716301B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931392B (en) * 2015-05-25 2018-01-16 长安大学 A kind of method using absorption measurement Solid Surface Free Energy
US11885716B2 (en) 2017-10-10 2024-01-30 Mitsubishi Electric Corporation Test method of a semiconductor device and manufacturing method of a semiconductor device
CN113281227B (en) * 2021-07-07 2023-09-15 淮南联合大学 Optical fiber array dynamic imbibition tester convenient to operate and use

Also Published As

Publication number Publication date
JP2003042926A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
Jin et al. A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions
KR100917912B1 (en) Single-Polarizer Focused-Beam Ellipsometer
KR100245064B1 (en) Optical differential profile measurement apparatus and process
Jin et al. Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates
US9909985B2 (en) Multiple superimposed interface pattern porous microstructure multi layer biosensing method
US8792102B2 (en) Interferometric spectral imaging of a two-dimensional array of samples using surface plasmon resonance
US6661519B2 (en) Semiconductor impurity concentration testing apparatus and semiconductor impurity concentration testing method
JPH11173994A (en) Optical measuring system
CN108020504A (en) Optical measuring instrument and sample refractive index, optical rotatory spectrum and chiral molecules Enantiomeric excess measurement analysis method based on the weak measurement of quantum
JP2008076324A (en) Optical anisotropy parameter measuring apparatus
JPH06103252B2 (en) High resolution ellipsometer apparatus and method
JPH03115834A (en) Method of inspecting physical characteris- tics of thin layer
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
JP3716301B2 (en) Method and apparatus for measuring biomolecule adsorption layer
JP3365474B2 (en) Polarizing imaging device
JP5868327B2 (en) Photodetection apparatus and method
CN111896228A (en) Lens reliability front and back nondestructive testing method and device based on optical coherent imaging
JP3716305B2 (en) Internal reflection type two-dimensional imaging ellipsometer
JP3940376B2 (en) Spectrometer for gel sample
JP2004531719A (en) Imaging apparatus and method
JP3181655B2 (en) Optical system and sample support in ellipsometer
TWI608227B (en) Optical surface scanning systems and methods
JPS598762B2 (en) How to use the information
JP3436704B2 (en) Birefringence measuring method and apparatus therefor
JPH0815155A (en) Method and apparatus for optical inspection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Ref document number: 3716301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term