JPS63269042A - Method for measuring particle size distribution of high density specimen utilizing diffraction of laser beam - Google Patents

Method for measuring particle size distribution of high density specimen utilizing diffraction of laser beam

Info

Publication number
JPS63269042A
JPS63269042A JP62104977A JP10497787A JPS63269042A JP S63269042 A JPS63269042 A JP S63269042A JP 62104977 A JP62104977 A JP 62104977A JP 10497787 A JP10497787 A JP 10497787A JP S63269042 A JPS63269042 A JP S63269042A
Authority
JP
Japan
Prior art keywords
laser beam
gap
particle size
size distribution
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62104977A
Other languages
Japanese (ja)
Other versions
JPH0785050B2 (en
Inventor
Takeshi Niwa
丹羽 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62104977A priority Critical patent/JPH0785050B2/en
Publication of JPS63269042A publication Critical patent/JPS63269042A/en
Publication of JPH0785050B2 publication Critical patent/JPH0785050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0211Investigating a scatter or diffraction pattern

Abstract

PURPOSE:To accurately measure particle size distribution without diluting a high conc. specimen suspension, by arranging the thickness direction of a gap having a minute thickness along the optical axis of laser beam to be allowed to irradiate and receiving the specimen suspension in said gap to perform measurement. CONSTITUTION:A specimen suspension prepared by dispersing a particle group tested in a liquid medium is irradiated with laser beam and the laser beam diffracted in accordance with the size of a particle is condensed to the detector 5, which is arranged to the focus surface of the lens 4 arranged behind the specimen suspension, by the lens 4 and the particle size distribution of the particle group tested is calculated from the intensity distribution of the receiving light of the detector 5 in the radius direction thereof. In this case, a gap G having a predetermined minute thickness is formed between beam pervious plate materials 31, 32 parallel to each other so that the thickness direction thereof is arranged along the optical axis A of the laser beam allowed to irradiate and the specimen suspension is received in the gap G to perform the measurement.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザ光回折を利用した粒度分布測定方法に
関し、特に、高密度試料の測定に適した測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a particle size distribution measuring method using laser light diffraction, and particularly to a measuring method suitable for measuring high-density samples.

〈従来の技術〉 フラウンホーファ回折を利用して粒子群の粒度分布を測
定する方法においては、一般に、媒液中に分散させた粒
子群に平行なレーザ光を照射し、各粒子の大きさに応じ
て回折される光をレンズで受け、このレンズの焦点面上
に同心円状の回折像を結ばせる。そして、この回折像の
光強度分布の測定値から、粒子群の粒度分布を算出する
<Prior art> In a method of measuring the particle size distribution of a particle group using Fraunhofer diffraction, a particle group dispersed in a medium is generally irradiated with a parallel laser beam, and the particle size distribution is determined according to the size of each particle. The diffracted light is received by a lens, and a concentric diffraction image is formed on the focal plane of this lens. Then, the particle size distribution of the particle group is calculated from the measured value of the light intensity distribution of this diffraction image.

このような測定方法においては、媒液中での粒子濃度が
高いと、第6図に示すように、ある粒子により散乱した
光が他の粒子で更に散乱される、多重散乱が増加し、散
乱角の大きな光についてその強度が増加する。散乱角が
大きくなることは、見かけ上、小さい粒子が多いという
ことになり、得られた粒度分布測定結果は真の粒度分布
よりも粒径が小さい方にずれ、正確な測定ができなくな
る。
In such measurement methods, when the particle concentration in the medium is high, multiple scattering, in which light scattered by one particle is further scattered by other particles, increases, as shown in Figure 6, and the scattering Its intensity increases for light with large angles. A larger scattering angle means that there are apparently more small particles, and the obtained particle size distribution measurement result deviates to a smaller particle size than the true particle size distribution, making accurate measurement impossible.

そこで、この種の測定方法においては、従来、多重散乱
を起こさない濃度にまで希釈した懸濁液を用いて測定し
ていた。
Therefore, in this type of measurement method, measurement has conventionally been carried out using a suspension diluted to a concentration that does not cause multiple scattering.

〈発明が解決しようとする問題点〉 ところで、粉粒体のなかには、ある濃度範囲の懸濁液の
状態でのみ安定で、乾燥させたり、希釈したりすると粒
径等の特性が変化してしまうものがある。上述の濃度範
囲が高い場合、その粒度分布を正確に測定しようとして
も、上記したレーザ光回折法はもとより、ほかの沈降法
、細孔通過法等によっても不可能であり、高価で複雑な
画像解析装置(顕微鏡法)を用いるしかなかった。
<Problems to be solved by the invention> By the way, some powders and granules are stable only in a suspension state within a certain concentration range, and their properties such as particle size change when dried or diluted. There is something. When the above concentration range is high, even if we try to accurately measure the particle size distribution, it is impossible not only by the laser light diffraction method described above, but also by other sedimentation methods, pore passing methods, etc., and it is difficult to obtain expensive and complicated images. The only option was to use an analytical device (microscope).

本発明の目的は、高濃度の試料懸濁液を希釈することな
く、レーザ光回折法を用いて、多重散乱を起こさずに正
確に粒度分布を測定し得る方法を提供することにある。
An object of the present invention is to provide a method that can accurately measure particle size distribution without causing multiple scattering by using laser light diffraction without diluting a highly concentrated sample suspension.

く問題点を解決するための手段〉 本発明は、実施例に対応する第1図乃至第3図に示すよ
うに、媒液中に供試粒子群を分散させてなる試料懸濁液
にレーザ光を照射し、粒子の大きさに応じて回折させる
レーザ光を、試料懸濁液の後方に置かれたレンズ4によ
りそのレンズ4の焦点面に配設されたデテクタ5上に集
光させ、そのデテクタ5の半径方向受光強度分布から供
試粒子群の粒度分布を求める方法において、互いに平行
な2枚の透光性平板材料31.32間に所定の微小厚さ
の空隙Gを形成し、この空隙Gを、その厚さt方向が照
射レーザ光の光軸Aに沿うよう配置して、その空隙G内
に試料懸濁液を収容して測定を行うことによって、特徴
づけられる。
Means for Solving the Problems> As shown in FIGS. 1 to 3 corresponding to Examples, the present invention involves applying a laser beam to a sample suspension in which sample particles are dispersed in a medium. A laser beam that is irradiated with light and diffracted according to the size of the particles is focused by a lens 4 placed behind the sample suspension onto a detector 5 placed at the focal plane of the lens 4. In the method of determining the particle size distribution of the sample particle group from the radial light intensity distribution of the detector 5, a gap G of a predetermined minute thickness is formed between two mutually parallel translucent flat plate materials 31 and 32, This gap G is characterized by arranging the thickness t direction along the optical axis A of the irradiated laser beam, storing the sample suspension in the gap G, and performing the measurement.

く作用〉 高濃度の試料懸濁液であっても、照射されるレーザ光の
光軸A方向への粒子存在数が少なければ多重散乱の発生
確率が低下する。微小な厚さtの空隙Gを、その厚さt
方向がレーザ光軸Aに沿うよう配置してその内部に試料
懸濁液を収容することにより、粒子は平面上に拡がり、
光軸A方向への粒子存在数が減少し、所期の目的が達成
される。
Effect> Even in a highly concentrated sample suspension, if the number of particles present in the direction of the optical axis A of the irradiated laser beam is small, the probability of multiple scattering occurring will decrease. A small gap G with a thickness t is
By arranging the laser beam so that its direction is along the laser optical axis A and accommodating the sample suspension therein, the particles spread out on a plane.
The number of particles existing in the optical axis A direction is reduced, and the intended purpose is achieved.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明を実施するための装置の概要図である。FIG. 1 is a schematic diagram of an apparatus for carrying out the invention.

レーザ光源1からのレーザ光はビームエキスパンダ2に
よって拡大され、平行なレーザ光となって後述する偏平
セル3に照射される。偏平セル3内には、供試粒子群が
媒液中に分散されてなる試料懸濁液が収容されており、
照射されたレーザ光は分散状態の供試粒子によって、各
粒子径に応じた角度で回折する。その回折光は次段の集
光レンズ4によって、この集光レンズ4の焦点面に置か
れたデテクタ5上に回折像を結ぶ。
Laser light from a laser light source 1 is expanded by a beam expander 2, becomes parallel laser light, and is irradiated onto a flat cell 3, which will be described later. A sample suspension in which test particles are dispersed in a medium is contained in the flat cell 3.
The irradiated laser beam is diffracted by the dispersed sample particles at an angle corresponding to each particle diameter. The diffracted light forms a diffraction image on a detector 5 placed on the focal plane of the condensing lens 4 at the next stage.

デテクタ5は、例えば同心円状の複数のリング状受光面
を有するリングデテクタであって、偏平セル3内の分散
粒子によって回折された光のうち、回折角度の小さい光
は内側のリングに、回折角度の大きい光は外側のリング
にそれぞれ集光される。
The detector 5 is, for example, a ring detector having a plurality of concentric ring-shaped light-receiving surfaces, and among the light diffracted by the dispersed particles in the flat cell 3, light with a small diffraction angle is sent to the inner ring, and the light with a small diffraction angle is The larger light is focused on each outer ring.

各リング状受光面への光量は、電気信号に変換され、マ
ルチプレクサ、アンプおよびA−D変換器(いずれも図
示せず)によって量子化された後、マイクロコンピュー
タに採り込まれる。マイクロコンピュータでは、各リン
グ状受光面への光量データを用いて、公知の算法により
供試粒子群の粒度分布を算出することができる。
The amount of light incident on each ring-shaped light-receiving surface is converted into an electrical signal, quantized by a multiplexer, an amplifier, and an A-D converter (all not shown), and then input into a microcomputer. In the microcomputer, the particle size distribution of the sample particle group can be calculated by a known calculation method using the light amount data on each ring-shaped light-receiving surface.

第2図は偏平セル3の正面図で、第3図はそのm−m断
面図である。
FIG. 2 is a front view of the flat cell 3, and FIG. 3 is a sectional view taken along the line mm.

偏平セル3は、パイレックス製等の2枚の透光性平板3
1,32.スペーサ33,34.ホルダ35およびばね
等の複数の押え用弾性部材36・−・3日によって組立
て・分解自在に構成されており、透光性平板31.32
間に一様な微小厚さtの空隙Gを形成することができる
。すなわち、透光性平板31.32はスペーサ33.3
4を介して互いに平行に重ね合わされ、ホルダ35内に
挿入されて押え用弾性部材36・・−・・36によって
左右両端部において互いに押圧される。この状態におい
て、スペーサ33,34により、透光性平板31.32
間に一様な微小厚さtの空隙Gが形成される9次に、測
定手順とともに作用を述べる。
The flat cell 3 includes two transparent flat plates 3 made of Pyrex or the like.
1,32. Spacers 33, 34. It is constructed so that it can be assembled and disassembled freely by a holder 35 and a plurality of holding elastic members 36 such as springs.
A gap G having a uniform minute thickness t can be formed therebetween. That is, the transparent flat plate 31.32 is the spacer 33.3.
4 are placed parallel to each other, inserted into the holder 35, and pressed against each other at both left and right ends by the presser elastic members 36...36. In this state, the spacers 33 and 34 allow the transparent flat plates 31 and 32 to
A gap G with a uniform minute thickness t is formed in between.Next, the operation will be described along with the measurement procedure.

まず、偏平セル3の空隙G内に試料懸濁液を収容するが
、そのためには、例えば偏平セル3を分解し、一方の透
光性平板31上に試料懸濁液を適当量滴下し、スペーサ
33.34を介在させて他方の透光性平板32をその上
から重ね合わせ、ホルダ35内に組み込む。これにより
、試料懸濁液は空隙G内で平面上に拡がる。
First, a sample suspension is accommodated in the gap G of the flat cell 3. To do this, for example, the flat cell 3 is disassembled, and an appropriate amount of the sample suspension is dropped onto one of the transparent flat plates 31. The other light-transmitting flat plate 32 is placed on top of it with spacers 33 and 34 interposed therebetween, and is incorporated into the holder 35. As a result, the sample suspension spreads within the gap G on a plane.

次に、その状態で偏平セル3を、その空隙Gの厚さt方
向がレーザ光の光軸Aに沿うよう、ビームエキスパンダ
2の後方所定の定位置に配置し、レーザ光を照射する。
Next, in this state, the flat cell 3 is placed at a predetermined position behind the beam expander 2 so that the thickness t direction of the gap G is along the optical axis A of the laser beam, and the laser beam is irradiated.

このとき、試料懸濁液は空隙G内で平面的に拡がってい
るので、多重散乱は起こりに(い。
At this time, since the sample suspension is spreading in a plane within the gap G, multiple scattering does not occur.

多重散乱が発生せずに正確な粒度分布を求めることので
きる試料懸濁液の限界濃度は、試料懸濁液内での光路長
(空隙Gの厚さt)と所定の関係を有し、かつ、供試粒
子群の平均粒径とも相関することか実験により明らかと
なった。
The critical concentration of the sample suspension at which an accurate particle size distribution can be obtained without causing multiple scattering has a predetermined relationship with the optical path length (thickness t of the gap G) within the sample suspension. Moreover, it was revealed through experiments that there is a correlation with the average particle size of the sample particle group.

すなわち、試料懸濁液内での光路長がある距離以上の場
合においては、その光路長に拘らず、105個/cc程
度以下の密度でないと正確な測定はできない。このこと
は既に知られている。ところが、光路長を小さくしてゆ
くと、ある光路長以下で限界濃度が高くなる結果を得た
。限界濃度が従来の測定法に比して有益となる程度以上
に高くなる点における光路長は、供試粒子群の平均粒径
の5倍以下であることが判明した。すなわち、空隙Gの
厚さtを、供試粒子群の平均粒径の5倍以下とすること
により、従来知られている限界濃度の数倍乃至数十倍も
の濃度の懸濁液を用いても、正確な測定結果を得ること
ができた。
That is, when the optical path length in the sample suspension is longer than a certain distance, accurate measurements cannot be made unless the density is about 105 particles/cc or less, regardless of the optical path length. This is already known. However, as the optical path length was decreased, the critical concentration increased below a certain optical path length. It has been found that the optical path length at the point where the critical concentration becomes high enough to be useful compared to conventional measurement methods is less than five times the average particle size of the sample particle population. That is, by setting the thickness t of the void G to 5 times or less the average particle diameter of the sample particle group, it is possible to use a suspension with a concentration several times to several tens of times higher than the conventionally known limit concentration. We were also able to obtain accurate measurement results.

第4図に本発明方法を用いて行った実験結果の例を示す
。この実験例においては、供試粒子群として平均粒径3
0μmの石粉子を用い、偏平セル3の空隙Gの厚さtを
100μmとし、種々の濃度の懸濁液について測定を行
った。その結果、多重散乱を起こさずに正確な測定結果
を得る限界濃度は、粒子群2gを320ccの媒液中に
分散させた濃度であった。
FIG. 4 shows an example of the results of an experiment conducted using the method of the present invention. In this experimental example, the average particle size was 3 as the sample particle group.
Using stone powder of 0 μm, the thickness t of the gap G of the flat cell 3 was set to 100 μm, and measurements were performed on suspensions of various concentrations. As a result, the critical concentration for obtaining accurate measurement results without causing multiple scattering was found to be a concentration in which 2 g of particles were dispersed in 320 cc of medium.

第5図は、従来の測定方法を用いて同じく平均粒径30
μmの石粉子を測定した場合の結果である。
Figure 5 shows the average particle diameter of 30 mm using the conventional measurement method.
These are the results when stone particles of μm were measured.

この例では、懸濁液中の光路長を5龍、すなわち厚さ5
flの通常の測定セルを用いた。その結果、粒子群2g
を20.0OOccの媒液中に分散させないと正確な測
定結果を得ることができなかった。
In this example, the optical path length in the suspension is 5 dragons, i.e. the thickness is 5
A normal measuring cell of fl was used. As a result, 2g of particles
Accurate measurement results could not be obtained unless it was dispersed in 20.000cc of medium.

なお、本発明は偏平セル3の構造に関して何ら限定され
ることなく、上述した実施例のほか、透光性平板31.
32により、空隙Gの上方に懸濁液導入路を形成し、偏
平セル3を分解せずにこの導入路を介して空隙G内に懸
濁液を注入し得るよう構成することができる。この場合
、2枚の透光性平板31.32を実質的に一体化するこ
とができる。また、空隙G内を懸濁液が流れる、いわゆ
るフローセルタイプにしてもよい。
Note that the present invention is not limited in any way to the structure of the flat cell 3, and in addition to the above-mentioned embodiments, the transparent flat plate 31.
32, a suspension introduction path can be formed above the gap G, and the suspension can be injected into the gap G through this introduction path without disassembling the flat cell 3. In this case, the two light-transmitting flat plates 31 and 32 can be substantially integrated. Alternatively, a so-called flow cell type may be used in which the suspension flows through the gap G.

〈発明の効果〉 以上説明したように、本発明によれば、レーザ光回折を
利用した粒度分布測定方法において、互いに平行な2枚
の透光性平板間に所定の微小厚さの空隙を形成し、この
空隙を、その厚さ方向が照射レーザ光の光軸に沿う方向
に配置するとともに、その空隙内に試料懸濁液を収容し
て測定を行うので、供試粒子群はこの空隙内で平面上に
拡がり、多重散乱を起こしにくい。その結果、試料懸濁
液の限界濃度が高(なり、高濃度(高密度)の試料懸濁
液の測定が可能となった。実験によれば、従来方法に比
して限界濃度が60倍にも及ぶ結果を得た。
<Effects of the Invention> As explained above, according to the present invention, in a particle size distribution measuring method using laser light diffraction, a gap with a predetermined minute thickness is formed between two parallel transparent flat plates. This void is arranged so that its thickness direction is along the optical axis of the irradiated laser beam, and the sample suspension is contained in the void for measurement, so the sample particles are contained within this void. spreads out on a flat surface, making it difficult to cause multiple scattering. As a result, the critical concentration of the sample suspension is high, making it possible to measure sample suspensions with high concentration (high density).According to experiments, the critical concentration is 60 times higher than with conventional methods. We obtained results ranging from

また、本発明によれば、必要とする試料量がごく微量で
よいため、高濃度懸濁液の測定ばかりでなく、サンプル
量が少ない場合やサンプルが高価で多くを消費したくな
い場合にも、有益な測定法となり得る。
In addition, according to the present invention, only a very small amount of sample is required, so it can be used not only for measuring highly concentrated suspensions, but also when the sample amount is small or when the sample is expensive and you do not want to consume a large amount. , can be a useful measurement method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の概要図、第2図
はその偏平セル3の正面図、 第3図はそのm−m断面図、 第4図は本発明を用いた実験結果の例を示すグラフ、 第5図は従来の測定方法を用いた場合の測定結果の例を
示すグラフ、 第6図は多重散乱の説明図である。 1・・・レーザ光源 2・・・ビームエキスパンダ 3・・・偏平セル 31.32・・・透光性平板 33.34・・・スペーサ 35・・・ホルダ 36−・−36・・・押え用弾性、部材4・・・集光用
レンズ 5・・・デデクタ 特許出願人    株式会社島津製作所代 理 人  
  弁理士 西1)断 簡1図 第 2 図 第 31!1 10    J  JJ  崎す印出】叩万θφ(、J
−1m)第6図
Fig. 1 is a schematic diagram of an apparatus for implementing the present invention, Fig. 2 is a front view of the flat cell 3, Fig. 3 is a cross-sectional view taken along line mm, and Fig. 4 is an experimental result using the present invention. FIG. 5 is a graph showing an example of measurement results using the conventional measurement method. FIG. 6 is an explanatory diagram of multiple scattering. 1... Laser light source 2... Beam expander 3... Flat cell 31.32... Translucent flat plate 33.34... Spacer 35... Holder 36--36... Holder Elasticity for use, member 4...Condensing lens 5...Dedekta Patent applicant Shimadzu Corporation Agent Agent
Patent Attorney Nishi 1) Fragment 1 Figure 2 Figure 31! 1 10 J JJ
-1m) Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)媒液中に供試粒子群を分散させてなる試料懸濁液
にレーザ光を照射し、粒子の大きさに応じて回折される
レーザ光を、試料懸濁液の後方に置かれたレンズにより
そのレンズの焦点面に配設されたデテクタ上に集光させ
、そのデデクタの半径方向受光強度分布から供試粒子群
の粒度分布を求める方法において、互いに平行な2枚の
透光性平板材料間に所定の微小厚さの空隙を形成し、こ
の空隙を、その厚さ方向が上記照射レーザ光の光軸に沿
うよう配置するとともに、その空隙内に試料懸濁液を収
容して測定を行うことを特徴とする、レーザ光回折を利
用した高密度試料の粒度分布測定方法。
(1) A sample suspension consisting of a group of test particles dispersed in a medium is irradiated with a laser beam, and the laser beam, which is diffracted according to the size of the particles, is placed behind the sample suspension. In this method, the particle size distribution of the sample particle group is determined from the radial received light intensity distribution of the detector by focusing the light onto a detector disposed on the focal plane of the lens using a lens that is parallel to each other. A gap with a predetermined minute thickness is formed between the flat plate materials, and this gap is arranged so that the thickness direction thereof is along the optical axis of the irradiated laser beam, and a sample suspension is accommodated in the gap. A method for measuring the particle size distribution of a high-density sample using laser light diffraction.
(2)上記空隙の厚さが、測定すべき粒子群の平均粒径
の5倍以下であることを特徴とする、特許請求の範囲第
1項記載のレーザ光回折を利用した高密度試料の粒度分
布測定方法。
(2) A high-density sample using laser light diffraction according to claim 1, characterized in that the thickness of the voids is 5 times or less the average particle diameter of the particle group to be measured. Particle size distribution measurement method.
JP62104977A 1987-04-27 1987-04-27 Method for measuring particle size distribution of high density sample using laser light diffraction Expired - Fee Related JPH0785050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62104977A JPH0785050B2 (en) 1987-04-27 1987-04-27 Method for measuring particle size distribution of high density sample using laser light diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62104977A JPH0785050B2 (en) 1987-04-27 1987-04-27 Method for measuring particle size distribution of high density sample using laser light diffraction

Publications (2)

Publication Number Publication Date
JPS63269042A true JPS63269042A (en) 1988-11-07
JPH0785050B2 JPH0785050B2 (en) 1995-09-13

Family

ID=14395152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62104977A Expired - Fee Related JPH0785050B2 (en) 1987-04-27 1987-04-27 Method for measuring particle size distribution of high density sample using laser light diffraction

Country Status (1)

Country Link
JP (1) JPH0785050B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532550A (en) * 2002-07-05 2005-10-27 ラシード マフリエフ, Method and apparatus for detecting individual particles in a flowable sample
JP2010066056A (en) * 2008-09-09 2010-03-25 Dic Corp Method and program for evaluating particle size distribution, and apparatus for evaluating particle size distribution
CN103792167A (en) * 2014-01-22 2014-05-14 西安航天化学动力厂 Method for testing granularity of 12-14 mu m ammonium perchlorate
GB2535019A (en) * 2015-01-30 2016-08-10 Horiba Ltd Optical analysis cell and particle size distribution measuring apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110033A (en) * 1984-11-02 1986-05-28 Toray Ind Inc Measuring apparatus for agglutination reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110033A (en) * 1984-11-02 1986-05-28 Toray Ind Inc Measuring apparatus for agglutination reaction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532550A (en) * 2002-07-05 2005-10-27 ラシード マフリエフ, Method and apparatus for detecting individual particles in a flowable sample
JP2010281827A (en) * 2002-07-05 2010-12-16 Rashid Mavliev Method and apparatus for detecting individual particle in fluid sample
JP2010066056A (en) * 2008-09-09 2010-03-25 Dic Corp Method and program for evaluating particle size distribution, and apparatus for evaluating particle size distribution
CN103792167A (en) * 2014-01-22 2014-05-14 西安航天化学动力厂 Method for testing granularity of 12-14 mu m ammonium perchlorate
GB2535019A (en) * 2015-01-30 2016-08-10 Horiba Ltd Optical analysis cell and particle size distribution measuring apparatus
US9638619B2 (en) 2015-01-30 2017-05-02 Horiba, Ltd. Optical analysis cell and particle size distribution measuring apparatus
GB2535019B (en) * 2015-01-30 2018-01-31 Horiba Ltd Optical analysis cell and particle size distribution measuring apparatus
CN105842131B (en) * 2015-01-30 2020-04-03 株式会社堀场制作所 Optical analysis cell and particle size distribution measuring apparatus using same

Also Published As

Publication number Publication date
JPH0785050B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JP2825644B2 (en) Particle size analysis method and apparatus
US5956139A (en) Cross-correlation method and apparatus for suppressing the effects of multiple scattering
JP2911877B2 (en) Fiber detector for detecting scattered light or fluorescence of suspension
KR960009877B1 (en) Bulk diffuser for a projection television screen
JPH03140840A (en) Flow cytoanalyser
JPS61153546A (en) Particle analyzer
JPH0237536B2 (en)
US20220350125A1 (en) Optical trap calibration apparatus and method based on variation of electric field by optical imaging of nanoparticle
US6104491A (en) System for determining small particle size distribution in high particle concentrations
Lewis et al. Attenuated total internal reflection microspectroscopy of isolated particles: an alternative approach to current methods
JPH04115140A (en) Micro fluid cell
JPS62168033A (en) Particle analyzing device
US4828388A (en) Method of measuring concentration of substances
JPS63269042A (en) Method for measuring particle size distribution of high density specimen utilizing diffraction of laser beam
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JPH08510839A (en) Apparatus and method for measuring particle size using light scattering
JPH08178825A (en) Apparatus for measuring distribution of particle sizes
JPS58158538A (en) Optical device for aligning luminous flux passing liquid flow absorbing cell
Bursill et al. Electron-optical imaging of Ti6O11 at 1· 6 Å point-to-point resolution
Hester et al. Tunable optical tweezers for wavelength-dependent measurements
JP3301658B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
JPH05215664A (en) Method and device for detecting submicron particle
CN115112533A (en) High-resolution scattering spectrum particle size measurement method and system
JPS61110033A (en) Measuring apparatus for agglutination reaction
JPH0220053B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees