JPH0537232Y2 - - Google Patents

Info

Publication number
JPH0537232Y2
JPH0537232Y2 JP4994388U JP4994388U JPH0537232Y2 JP H0537232 Y2 JPH0537232 Y2 JP H0537232Y2 JP 4994388 U JP4994388 U JP 4994388U JP 4994388 U JP4994388 U JP 4994388U JP H0537232 Y2 JPH0537232 Y2 JP H0537232Y2
Authority
JP
Japan
Prior art keywords
temperature measuring
measuring element
wire
fusing
metal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4994388U
Other languages
Japanese (ja)
Other versions
JPH01154438U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4994388U priority Critical patent/JPH0537232Y2/ja
Publication of JPH01154438U publication Critical patent/JPH01154438U/ja
Application granted granted Critical
Publication of JPH0537232Y2 publication Critical patent/JPH0537232Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、高炉、シヤフト炉等の操業中に炉内
装入物が荷下りする炉の炉内温度分布、特に高炉
内の1400〜1500℃範囲の軟化融着帯の分布形状を
検知する技術に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention is aimed at controlling the temperature distribution inside the furnace where the contents are unloaded during the operation of blast furnaces, shaft furnaces, etc. The present invention relates to a technique for detecting the distribution shape of a softened cohesive zone in a range.

[従来の技術] 高炉、シヤフト炉等の炉況を良好に制御するた
めに、炉内装入物の温度分布を知り解析すること
が重要である。一般に高炉内のガス流れは1400〜
1500℃範囲の軟化融着帯形状の影響を受けるの
で、高炉内ガス流れを制御するには軟化融着帯形
状を制御する必要がある。内部形状はともかくと
して、軟化融着帯の外部形状は、1200℃温度分布
線により測定することができる。
[Prior Art] In order to properly control the furnace conditions of blast furnaces, shaft furnaces, etc., it is important to know and analyze the temperature distribution of the contents in the furnace. Generally, the gas flow in the blast furnace is 1400 ~
Since it is affected by the shape of the softened cohesive zone in the 1500°C range, it is necessary to control the shape of the softened cohesive zone in order to control the gas flow in the blast furnace. Aside from the internal shape, the external shape of the softened cohesive zone can be measured using the 1200°C temperature distribution line.

特公昭57−48621号公報においては、硬質保護
管の長さ方向に沿つて複数の温度感知部を形成し
た測定プローブを高炉内装入原料の表層上へ半径
方向に載置し、荷下りにつれて測定プローブを降
下させながら、上記温度感知部の到達点において
温度を測定し、得られた測定値に基づいて炉内状
況を把握する方法が提案されている。すなわち、
垂直水平測定プローブを使用し、高炉内の温度分
布を垂直水平方向の2次元で測定している。温度
感知部としては、熱電対を取付けて測定してい
る。
In Japanese Patent Publication No. 57-48621, a measurement probe with a plurality of temperature sensing parts formed along the length of a hard protective tube is placed radially on the surface layer of the raw material input into the blast furnace, and measurements are taken as the material is unloaded. A method has been proposed in which the temperature is measured at the point reached by the temperature sensing section while the probe is lowered, and the situation inside the furnace is grasped based on the obtained measurement value. That is,
A vertical and horizontal measurement probe is used to measure the temperature distribution inside the blast furnace in two dimensions in the vertical and horizontal directions. A thermocouple is attached as the temperature sensing part to measure the temperature.

熱電対はクロメル−アルメル(CA)、白金−白
金ロジウム(Pt−PtRh)等の各種シース熱電対
があるが、再使用不能のため、コスト的に安価な
CAシース熱電対が用いられている。しかし、CA
熱電対は正確な測温は1200℃までしかできず、従
つて知り得る高炉内の温度分布形状は、この場合
軟化融着帯の外部までである。
There are various types of sheathed thermocouples, such as chromel-alumel (CA) and platinum-platinum rhodium (Pt-PtRh), but they are not reusable, so they are less expensive.
A CA sheath thermocouple is used. However, C.A.
Thermocouples can only accurately measure temperatures up to 1200°C, so the temperature distribution shape inside the blast furnace can only be known up to the outside of the softened cohesive zone.

第6図は、特公62−61642号公報「高炉の炉内
状況の検知方法」において提案された1400〜1500
℃範囲の軟化融着帯の内部形状の測定を可能にす
る測定素子であつて、1aは測温素子、2は保護
シース、3は金属細線としての金属素線、3aは
接続点としての金属細線3の閉路先端、3b,3
cは金属細線3の開路先端、4は電気絶縁性耐熱
性を有する粉体の充填物である。
Figure 6 shows the 1400 to 1500
A measuring element that enables measurement of the internal shape of a softened cohesive zone in the °C range, 1a is a temperature measuring element, 2 is a protective sheath, 3 is a metal wire as a thin metal wire, and 3a is a metal as a connection point. Closed circuit tip of thin wire 3, 3b, 3
C is the open end of the thin metal wire 3, and 4 is a filling of electrically insulating and heat resistant powder.

金属素線3は例えば溶融温度が1453℃の純ニツ
ケル線であり、その往復2条に通電しておきなが
ら装入物とともに炉内に装入すると荷下りにつれ
て溶融し、通電の遮断により測温素子1aの位置
が素線金属溶融温度に達したことが検知できる。
The metal wire 3 is, for example, a pure nickel wire with a melting temperature of 1453°C, and when it is charged into the furnace with the charge while energizing its two reciprocating wires, it will melt as the load is unloaded, and the temperature will be measured by cutting off the current. It can be detected that the position of the element 1a has reached the melting temperature of the wire metal.

[解決しようとする課題] しかしながら、上記の測温素子には、若干の問
題がある。すなわち、 (1) 高温の溶融スラグの導電性が相当大きく、金
属素線3が溶断しても電気抵抗が無限大とはな
らず簡単な機器では判定できない。
[Problems to be Solved] However, the temperature measuring element described above has some problems. That is, (1) the electrical conductivity of the high-temperature molten slag is quite high, and even if the metal wire 3 is fused, the electrical resistance will not be infinite and cannot be determined with a simple device.

(2) 導通時の素線の電気抵抗が素子の温度上昇と
ともに著しく変化し、前記(1)と相まつて溶断の
判定が困難である。
(2) The electrical resistance of the wire during conduction changes significantly as the temperature of the element rises, which, combined with the above (1), makes it difficult to determine whether the wire is blown out.

本考案は、金属素線の材質、構造を検討するこ
とにより、1400〜1500℃範囲の軟化融着帯の内部
形状の測定を可能とする溶断型測温素子を得るこ
とを目的とする。
The purpose of the present invention is to obtain a fusing type temperature measuring element that makes it possible to measure the internal shape of a softened cohesive zone in the range of 1400 to 1500°C by examining the material and structure of the metal wire.

[課題を解決するための手段] 本考案の溶断型測温素子は、金属細線の接続点
の近傍で同接続点を挟んだ2個所に材質が前記金
属細線と同一な電圧検知線2線が取付けられ、同
電圧検知線2線が保護管外に引出されていること
を特徴としている。
[Means for Solving the Problems] The fusing type temperature measuring element of the present invention has two voltage detection wires made of the same material as the thin metal wires in two places near the connection point of the thin metal wires and sandwiching the connection point. It is characterized in that the two voltage detection wires are drawn out of the protective tube.

[作用] 高炉等の大型の炉では、炉内温度計測端から炉
外測定機器までの距離が数10メートルに達するの
で、抵抗測定時にはリード部分の抵抗の影響が非
常に大きくなる。一方、溶融スラグの電気伝導度
は相当大きく、特にTiO2が含まれているときは、
金属に近い電気伝導度となるために、単純に絶縁
体として扱うことはできない。
[Function] In large furnaces such as blast furnaces, the distance from the temperature measuring end inside the furnace to the measuring device outside the furnace is several tens of meters, so the influence of the resistance of the lead part becomes very large when measuring resistance. On the other hand, the electrical conductivity of molten slag is quite high, especially when it contains TiO2 .
Because its electrical conductivity is close to that of metal, it cannot simply be treated as an insulator.

本考案は、上記の事情に鑑みなされたもので、
測温素子溶断時に現れるスラグ橋絡抵抗に対し
て、未溶断時の素線抵抗を遥かに小さくするため
に、4端子抵抗測定法を適用できるよう、溶断点
を挟んだ溶断点の近接位置2個所に電圧検出線2
本を取付け、その電圧検出線2本を保護管の外部
に取りだしている。
This idea was created in view of the above circumstances.
In order to significantly reduce the strand resistance when the temperature sensing element is not fused, compared to the slag bridging resistance that appears when the temperature measuring element is fused, the 4-terminal resistance measurement method can be applied. Voltage detection line 2 in place
A book is attached, and its two voltage detection wires are taken out to the outside of the protection tube.

また、前記電圧検出線は、熱起電力が発生して
前記4端子抵抗測定に支障がでないように、前記
金属細線と同材質としている。
Further, the voltage detection wire is made of the same material as the thin metal wire so that thermal electromotive force will not occur and interfere with the four-terminal resistance measurement.

[実施例] 以下、本考案の一実施例を図面により詳細に説
明する。なお、既述の符号は同一の部分を示して
おり説明を省略する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. Note that the reference numerals already mentioned indicate the same parts, and the explanation will be omitted.

第1図は一実施例としての溶断型測温素子の縦
断面図であつて、1は溶断型測温素子、5は金属
素線3と同材質の金属線である電圧検知線、5
a,5bは金属素線3に電圧検知線5が取付けら
れる取付け点であり、5a,5bの位置は閉路先
端3aに近接するようにされる。
FIG. 1 is a longitudinal cross-sectional view of a fusing type temperature measuring element as an example, in which 1 is a fusing type temperature measuring element, 5 is a voltage detection line which is a metal wire made of the same material as the metal wire 3, and 5
Reference numerals a and 5b are attachment points at which the voltage detection line 5 is attached to the metal wire 3, and the positions of 5a and 5b are set close to the closed circuit tip 3a.

5c,5dは取付け点5a,5bに取付けられ
た電圧検知線5の開路先端3b,3c側の引出し
リードである。
Reference numerals 5c and 5d designate lead-out leads on the open-circuit tips 3b and 3c of the voltage detection wire 5 attached to the attachment points 5a and 5b.

第2図a,bは、前記第1図で示した溶断型測
温素子1の横断面図であり、同図aは第1図A−
A′断面、同図bは第1図B−B′断面を示してい
る。
FIGS. 2a and 2b are cross-sectional views of the fusing type temperature measuring element 1 shown in FIG. 1, and FIG.
Section A' shows the section B--B' in FIG.

第3図は、同実施例の溶断型測温素子1の信号
検出回路を示す回路図であり、6は直流または交
流の電流源、7は電圧計である。
FIG. 3 is a circuit diagram showing a signal detection circuit of the fusing type temperature measuring element 1 of the same embodiment, where 6 is a direct current or alternating current source, and 7 is a voltmeter.

本実施例の溶断型測温素子はこのように構成さ
れており、次のように動作する。
The fusion type temperature measuring element of this embodiment is constructed as described above and operates as follows.

金属保護シース2内に金属素線3、電圧検知線
5をMgO,Al2O3等の耐熱性、絶縁性の充填物4
と共に詰め、伸線等で一体整形する。
A metal wire 3 and a voltage detection wire 5 are placed inside a metal protective sheath 2 with a heat-resistant and insulating filling 4 made of MgO, Al 2 O 3 , etc.
They are packed together and shaped into one piece using wire drawing, etc.

金属素線3は保護シース2内の充填物4中に先
端で折返し状に埋蔵され、溶断検出点の閉路先端
3aとなる。
The metal wire 3 is buried in the filling 4 in the protective sheath 2 in a folded manner at its tip, and becomes a closed circuit tip 3a at a fusing detection point.

閉路先端3aの直近の5a,5bで、折返し状
の金属細線3端部それぞれを2端子の計4端子に
して、他端を通電のための電流端子3b,3c
と、溶断検出のための電圧端子5c,5dからな
る開口基端2bとする。
At 5a and 5b closest to the closed circuit tip 3a, each end of the folded thin metal wire 3 has two terminals, a total of four terminals, and the other end has current terminals 3b and 3c for conducting electricity.
The opening base end 2b is made up of voltage terminals 5c and 5d for blowout detection.

金属素線3は、溶融温度が既知であり電気抵抗
の温度依存性の小さい、高融点金属線を選択し、
例えば製鉄高炉に対しては、溶融温度1427℃のク
ロメル線、または1510℃のカンタル線を使用す
る。線径は0.3〜2mm程度でよい。
The metal wire 3 is a high melting point metal wire whose melting temperature is known and whose electrical resistance is small in temperature dependence.
For example, for iron-making blast furnaces, chromel wire with a melting temperature of 1427°C or Kanthal wire with a melting temperature of 1510°C is used. The wire diameter may be about 0.3 to 2 mm.

溶断型測温素子1の溶断の検出は第3図の回路
で行う。同回路は4端子抵抗測定法に準じた溶断
検知回路であり、金属素線3に定電流を流してお
くと電圧検知線5には取付け点5a,5b間の抵
抗に比例した電圧が得られる。電圧計7へ流れ込
む電流は小さいので、電圧検知線5に多少の抵抗
があつても取り込み点5a,5b間の電圧が殆ど
誤差なしに検出される。
Detection of fusing in the fusing type temperature measuring element 1 is performed by the circuit shown in FIG. This circuit is a blowout detection circuit based on the four-terminal resistance measurement method, and when a constant current is passed through the metal wire 3, a voltage proportional to the resistance between the attachment points 5a and 5b is obtained on the voltage detection wire 5. . Since the current flowing into the voltmeter 7 is small, even if there is some resistance in the voltage detection line 5, the voltage between the intake points 5a and 5b can be detected with almost no error.

従来の検出法では、3b−5a間、3c−5b
間の抵抗も加算した値として抵抗が計測され、3
a部の抵抗変化の影響が弱められて、溶断検出精
度が低下していたが、本実施例においては、5a
−3a−5b部の変化のみを取りだすことができ
るので、5a−3a−5b間の金属素線3の抵抗
値を小さく設計すること、すなわち距離を小さく
することにより、高温スラグの接触があつても溶
断非溶断時の抵抗変化比を大きくすることができ
る。
In the conventional detection method, between 3b-5a, 3c-5b
The resistance is measured by adding the resistance between
The effect of resistance change in part a was weakened and the fusing detection accuracy was lowered, but in this example, 5a
Since it is possible to extract only the change in the -3a-5b section, by designing the resistance value of the metal wire 3 between 5a-3a-5b to be small, that is, by shortening the distance, contact of the high-temperature slag can be prevented. It is also possible to increase the resistance change ratio when fused and not fused.

本考案では、この抵抗が増大した時点を溶断時
点とし、溶断型測温素子1のある炉内個所の雰囲
気温度が金属素線3の溶融温度に達したと判断す
る。
In the present invention, the time when this resistance increases is defined as the time of fusing, and it is determined that the atmospheric temperature at the location in the furnace where the fusing type temperature measuring element 1 is located has reached the melting temperature of the metal wire 3.

第4図aは、溶断型測温素子1の炉内装入時の
出力電圧を示したもので、図中点線は素線として
純ニツケル線を使用したとき、実戦はクロメル線
を使用したときを示す。また、同図bは従来の測
温素子1aの検出出力を示すもので、温度上昇と
共に素線抵抗値が上昇し、溶断時にはスラグ橋絡
抵抗と大差なくなつて溶断点の判定が困難なのに
対して、本実施例素子1では、未溶断時の検出抵
抗値が小さいので溶断時の抵抗変化比が大きく、
シヤープな電圧変化が観察される。また、クロメ
ル線を使用したときは同クロメル合金の電気抵抗
の温度係数が小さいので未溶断時(温度上昇期)
の出力変化が殆どなく、溶断判定回路を設計する
とき調整容易な確度の高い装置とすることができ
る。
Figure 4a shows the output voltage of the fusing type temperature measuring element 1 when it is inserted into the furnace. show. In addition, Figure b shows the detection output of the conventional temperature measuring element 1a, which shows that the wire resistance increases as the temperature rises, and at the time of fusing, it is not much different from the slag bridging resistance, making it difficult to determine the fusing point. In this example element 1, since the detected resistance value when not blown is small, the resistance change ratio when fused is large.
A sharp voltage change is observed. In addition, when using chromel wire, the temperature coefficient of electrical resistance of the chromel alloy is small, so when it is not fused (temperature rise period)
There is almost no change in the output, and a highly accurate device that is easy to adjust when designing a blowout determination circuit can be obtained.

この溶断型測温素子1を用いて高炉の内部装入
物の温度を計測するときは、第5図に示すよう
に、溶断型測温素子の所要数(例えば、第1〜第
4の溶断型測温素子)を鋼管8内に収容し、鋼管
8の長さ方向の所定の水平測定位置に検知孔(例
えば、9a〜9d)を設け、各検知孔9a〜9d
から各金属素線3の閉路先端10(第1〜第4の
溶断型測温素子のそれぞれの閉路先端3aを、1
0a〜10dとする)を露出させて測定プローブ
11とする。
When measuring the temperature of the internal charge of a blast furnace using this fusing type temperature measuring element 1, as shown in FIG. type temperature measuring element) is accommodated in the steel pipe 8, and detection holes (for example, 9a to 9d) are provided at predetermined horizontal measurement positions in the length direction of the steel pipe 8, and each detection hole 9a to 9d is
The closed circuit tip 10 of each metal wire 3 (the closed circuit tip 3a of each of the first to fourth fusing type temperature measuring elements is 1
0a to 10d) are exposed to form the measurement probe 11.

第5図に示した測定プローブ11を、高炉内の
頂部のすりばち状となつた炉内装入物の上面に、
例えば、実公昭56−28678に示す挿入装置を使用
する等をして半径方向の姿勢として先端が炉内中
心に、基端が炉壁耐火物の近くに位置するように
して載置し、次の装入物の装入により埋蔵状態と
し、操業に伴う炉内装入物の荷下りとともに降下
して垂直方向の検出が可能なようにする。
The measurement probe 11 shown in FIG. 5 is placed on the upper surface of the mortar-shaped furnace contents at the top of the blast furnace.
For example, use the insertion device shown in Japanese Utility Model Publication No. 56-28678, and place it in a radial position with the tip at the center of the furnace and the base end near the furnace wall refractories. The reactor is placed in a buried state by charging the charge, and descends as the charge is unloaded into the reactor during operation, making it possible to detect in the vertical direction.

このようにして、本実施例の溶断型測温素子に
より金属素線の溶断時点を明確に検出できるよう
になり、素線金属の溶融温度に従つて、1400〜
1500℃範囲の炉内温度を正確に知ることにより、
炉況制御の有力な手段とすることができる。
In this way, the fusing type temperature measuring element of this example makes it possible to clearly detect the point of fusing of the metal wire, and the melting temperature of the metal wire can be determined from 1400 to 1400.
By accurately knowing the furnace temperature in the 1500℃ range,
It can be used as an effective means of controlling furnace conditions.

なお、金属細線3の接続点としての閉路先端3
aは、溶接など物理的な接続加工点に限定される
ものではなく、1条の金属細線をヘアピン状に折
返したものであつてもよい。その場合であつて
も、溶断検知の作用はまつたく同一であるのは明
らかである。
Note that the closed circuit tip 3 serves as the connection point of the thin metal wire 3.
A is not limited to a physical connection processing point such as welding, but may be a single thin metal wire folded back into a hairpin shape. Even in that case, it is clear that the function of blowout detection is exactly the same.

また、前記のように素線の材質は温度による電
気抵抗変化の少ないものが好ましく、前記検出出
力の安定と共に電源の負荷変動がなくなるので、
電源の回路構成を簡単とすることができる。
In addition, as mentioned above, the material of the wire is preferably one that has little change in electrical resistance due to temperature, which stabilizes the detection output and eliminates load fluctuations in the power supply.
The circuit configuration of the power supply can be simplified.

また、前記のように、本考案溶断型測温素子の
金属素線3は知りたい温度域によつて金属の種類
を変更する。例えば、高炉内の軟化融着帯の把握
には、溶融点が大凡1427℃のクロメル線または溶
融点が大凡1510℃のカンタル線が適当である。還
元性雰囲気のもとでは炭素を固溶することによつ
て溶融点温度が変化するので、その対策として、
シースを施したりあるいは容射等を施して使用し
ても良い。
Further, as described above, the type of metal of the metal wire 3 of the fusing type temperature measuring element of the present invention is changed depending on the temperature range of interest. For example, to understand the softened cohesive zone in a blast furnace, a chromel wire with a melting point of approximately 1427°C or a Kanthal wire with a melting point of approximately 1510°C is suitable. In a reducing atmosphere, the melting point temperature changes due to solid solution of carbon, so as a countermeasure,
It may be used with a sheath or with a radiation injection.

また、本考案の溶断型測温素子と共に、鋼管8
にCA熱電対等の熱電対を併設して0〜1200℃ま
での温度計測をあわせ行うようにすることができ
る。
In addition, along with the fusing type temperature measuring element of the present invention, a steel pipe 8
By adding a thermocouple such as a CA thermocouple to the sensor, it is possible to measure temperatures from 0 to 1200°C.

[考案の効果] 本考案の溶断型測温素子は、金属細線の接続点
の近傍で同接続点を挟んだ2個所に材質が前記金
属細線と同一な電圧検知線2線が取付けられ、同
電圧検知線2線が保護管外に引出されているの
で、 (1) 先端部直近で4端子法に構成するため、先端
部のみの抵抗が正確に測定でき、溶融温度での
溶断をシヤープに検出できる。
[Effects of the invention] The fusion-type temperature measuring element of the present invention has two voltage detection wires made of the same material as the thin metal wires attached at two locations sandwiching the connection point near the connection point of the thin metal wires. Since the two voltage detection wires are drawn out of the protection tube, (1) The four-terminal method is configured near the tip, so the resistance only at the tip can be accurately measured, and the melting temperature can be sharpened. Can be detected.

(2) 同種金属線対から構成するため、端子間での
熱起電力を生じず、抵抗測定が正確となる。
(2) Since it is constructed from a pair of metal wires of the same type, no thermal electromotive force is generated between the terminals, making resistance measurement accurate.

従つて、軟化融着帯の内部形状が1450℃温度分
布線等により判明し、軟化融着帯の全体像が正確
に把握できるようになる。その結果、軟化融着帯
形状の制御も従来より容易に行えるようになり、
炉内ガス流分布の制御を適確に行うことができ
る。
Therefore, the internal shape of the softened cohesive zone can be determined from the 1450° C. temperature distribution line, etc., and the overall image of the softened cohesive zone can be accurately grasped. As a result, the shape of the softened cohesive zone can be controlled more easily than before.
The gas flow distribution in the furnace can be controlled accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例の溶断型測温素子の縦断面
図、第2図a,bは同実施例の溶断型測温素子の
横断面図、第3図は同実施例の信号検出回路を示
す回路図、第4図aは同実施例の溶断型測温素子
の出力電圧を示すグラフ、第4図bは従来の測温
素子の検出出力を示すグラフ、第5図は前記実施
例の測定プローブの斜視図、第6図は従来の測定
素子の縦断面図である。 1……溶断型測温素子、2……保護シース、3
……金属細線としての金属素線、3a……接続点
としての閉路先端、3b,3c……開路先端、4
……充填物、5……電圧検知線、5a,5b……
取付け点、5c,5d……電圧検知線の引出しリ
ード、6……電流源、7……電圧計、8……鋼
管、9a〜9d……検知孔、10a〜10d……
第1〜第4の溶断型測温素子のそれぞれの閉路先
端、11……測定プローブ。
Fig. 1 is a longitudinal cross-sectional view of a fusing type temperature measuring element of one embodiment, Fig. 2 a and b are cross sectional views of a fusing type temperature measuring element of the same embodiment, and Fig. 3 is a signal detection circuit of the same embodiment. FIG. 4a is a graph showing the output voltage of the fusing type temperature measuring element of the same example, FIG. 4b is a graph showing the detection output of the conventional temperature measuring element, and FIG. 5 is a graph showing the detection output of the conventional temperature measuring element. FIG. 6 is a perspective view of the measuring probe of FIG. 6, and FIG. 6 is a longitudinal sectional view of a conventional measuring element. 1... Fusing type temperature measuring element, 2... Protective sheath, 3
...Metal wire as thin metal wire, 3a... Closed circuit tip as connection point, 3b, 3c... Open circuit tip, 4
...Filling material, 5...Voltage detection wire, 5a, 5b...
Attachment point, 5c, 5d...Voltage detection wire lead, 6...Current source, 7...Voltmeter, 8...Steel pipe, 9a-9d...Detection hole, 10a-10d...
Each closed circuit tip of the first to fourth fusing type temperature measuring elements, 11... measurement probe.

Claims (1)

【実用新案登録請求の範囲】 (1) 溶融温度が既知の金属細線2条を、一端を相
互に接続して保護管内に収容し、前記金属細線
の溶断によつて温度検知を行う溶断型測温素子
において、前記相互に接続した接続点の近傍で
同接続点を挟んだ2個所に材質が前記金属細線
と同一な電圧検知線2線が取付けられ、同電圧
検知線2線が保護管外に引出されていることを
特徴とする溶断型測温素子。 (2) 前記金属細線および電圧検知線の材質が、ク
ロメル(溶融点が大凡1427℃)あるいはカンタ
ル(溶融点が大凡1510℃)であることを特徴と
する請求項1記載の溶断型測温素子。 (3) 複数箇が鋼管内に収容され、それぞれの前記
接続点が前記鋼管の長さ方向の異なる位置にあ
ることを特徴とする請求項1あるいは2記載の
溶断型測温素子。
[Claims for Utility Model Registration] (1) A fusing type measurement method in which two thin metal wires with known melting temperatures are connected at one end and housed in a protective tube, and the temperature is detected by fusing the thin metal wires. In the thermal element, two voltage detection wires made of the same material as the thin metal wire are attached to two places sandwiching the connection point near the mutually connected connection point, and the two voltage detection wires are connected outside the protection tube. A fusing type temperature measuring element characterized by being drawn out. (2) The fusing type temperature measuring element according to claim 1, wherein the material of the thin metal wire and the voltage detection wire is chromel (melting point is approximately 1427°C) or kanthal (melting point is approximately 1510°C). . (3) The fusing type temperature measuring element according to claim 1 or 2, wherein a plurality of the temperature measuring elements are housed in a steel pipe, and each of the connection points is located at a different position in the length direction of the steel pipe.
JP4994388U 1988-04-15 1988-04-15 Expired - Lifetime JPH0537232Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4994388U JPH0537232Y2 (en) 1988-04-15 1988-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4994388U JPH0537232Y2 (en) 1988-04-15 1988-04-15

Publications (2)

Publication Number Publication Date
JPH01154438U JPH01154438U (en) 1989-10-24
JPH0537232Y2 true JPH0537232Y2 (en) 1993-09-21

Family

ID=31276024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4994388U Expired - Lifetime JPH0537232Y2 (en) 1988-04-15 1988-04-15

Country Status (1)

Country Link
JP (1) JPH0537232Y2 (en)

Also Published As

Publication number Publication date
JPH01154438U (en) 1989-10-24

Similar Documents

Publication Publication Date Title
CA1165726A (en) Method and apparatus for controlling the heat balance in aluminum reduction cells
US3307401A (en) Element for measurement of furnace wall thickness and temperature
US3321974A (en) Surface temperature measuring device
US4848147A (en) Thermal transient anemometer
US3905243A (en) Liquid-level sensing device
US5044764A (en) Method and apparatus for fluid state determination
SE445688B (en) DEVICE FOR Saturation of the amount of heat generated by a certain length section of a fuel rod in a nuclear reactor
CN108489628A (en) A kind of measureing method of high-temperature
JP3891592B2 (en) Method and infiltration meter for measuring electrochemical activity
US3834237A (en) Thermocouple for surface temperature measurements
CN109282911A (en) High precision measuring temperature probe and high precision measuring temperature instrument
JPH0537232Y2 (en)
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
US3527620A (en) Method of using noble metal thermocouple
US3755126A (en) System for determining amount of an element dissolved in a molten metal
US4162175A (en) Temperature sensors
CN107063493B (en) Dual-purpose temperature-measuring and heating sensor
JP2004165233A (en) Seebeck coefficient measuring device
JPS6261642B2 (en)
JPH04332859A (en) Device for detecting conductive insoluble constituent within high-temperature melt
JPH01263545A (en) Heat flux type differential scanning calorimeter
JP3547046B2 (en) Probe for measuring thermal conductivity
Edler et al. Investigation of self-validating thermocouples with integrated fixed-point units
AU594758B2 (en) Thermocouple connector
JP3539624B2 (en) Thermal conductivity measuring method and measuring device