JP3547046B2 - Probe for measuring thermal conductivity - Google Patents

Probe for measuring thermal conductivity Download PDF

Info

Publication number
JP3547046B2
JP3547046B2 JP11868299A JP11868299A JP3547046B2 JP 3547046 B2 JP3547046 B2 JP 3547046B2 JP 11868299 A JP11868299 A JP 11868299A JP 11868299 A JP11868299 A JP 11868299A JP 3547046 B2 JP3547046 B2 JP 3547046B2
Authority
JP
Japan
Prior art keywords
measurement
temperature
probe
thermal conductivity
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11868299A
Other languages
Japanese (ja)
Other versions
JP2000310604A (en
Inventor
廣 幾世橋
直也 早川
眞一 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP11868299A priority Critical patent/JP3547046B2/en
Publication of JP2000310604A publication Critical patent/JP2000310604A/en
Application granted granted Critical
Publication of JP3547046B2 publication Critical patent/JP3547046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】本発明は、特にガラス材料について、高温で溶融した液体状態から固体状態までの温度範囲のガラスの熱伝導率測定用プローブに関する。
【0002】
【従来の技術】
熱伝導率測定方法に、平板定常法、非定常レーザーフラッシュ法および非定常細線加熱法がある。特に流体の熱伝導率測定に関して、流体の熱対流の影響を除去することが重要であり、非定常細線加熱法がよく用いられている。
【0003】
【発明が解決しようとする課題】
高温で、固体から液体に変化するガラスのような材料の熱伝導率を正確に測定するためには、平板定常法では、固体から液体までを連続して測定できるセルの作製が困難であり、また非定常レーザーフラッシュ法では、常温の固体での測定精度は良いものの、高温の液体状態での信頼できる熱伝導率の測定は困難であるさらに、非定常細線加熱法においては、溶融したガラスのような高温の液体における熱伝導率を測定する場合、信頼性の高い結果を得るたことが困難であった。
【0004】
【課題を解決するための手段】
非定常細線加熱法による高温で溶融した液体状態から固体状態までの温度範囲のガラスの熱伝導率の測定用プローブにおいて、発熱体と温度測定用の熱電対を併せ持っていること、2本以上の温度測定用の熱電対が直列につながれていること、温度測定用の熱電対の測定距離を熱電対の線径の50倍以下とすること、さらに、測定用プローブの外径を1.5mm以上5mm以下とするガラスの熱伝導率の測定用プローブである。
【0005】
熱電対の線径は0.5mm以上1mm以下である上記のガラスの熱伝導率の測定用プローブである。
また、測定用プローブの保護管の内部が酸化マグネシウム粉末で充填されていること、及び保護管が白金ロジウム合金からなる上記のガラスの熱伝導率の測定用プローブである。
【0006】
【発明の実施の形態】
図1は、測定用プローブ5と測定試料14を入れる試料容器3の概略側面図を示したものである。図2と図3は、2本の熱電対を使用した本発明の測定用プローブ断面の概略図である。温度の測定感度を上げるために2本以上の熱電対を用いる。測定用プローブ管9の外径dpは1.5mm〜5mmの範囲にする。測定用プローブ管9は、保護管11の中に、熱電対温度計10、10’と加熱線12が、その間隙は充填材13で充填されて、設置されている。熱電対温度計10、10’は、クロメルーアルメル熱電対、白金ー白金ロジウム熱電対、ナイクルシルーナイシル系熱電対、タングステンーレニウム熱電対あるいはイリジウムーロジウム系熱電対などを、JIS Z 8704 に記載されているCrを主成分とする耐熱鋼、あるいはMoを主成分とする耐食鋼で作製した金属保護管、あるいは白金または白金ロジウム合金で作製した保護管内に設置したものを用いることが望ましい。
【0007】
加熱線12には、前記の熱電対用素線あるいは抵抗金属線を用いる。加熱線12も熱電対温度計と同様に、JIS Z 8704 に記載されているCrを主成分とする耐熱鋼、あるいはMoを主成分とする耐食鋼で作製した金属保護管、あるいは白金または白金ロジウム合金で作製した保護管内に設置したものを用いることが望ましい。
【0008】
充填材13は熱伝導性に優れ、高温での耐熱性が良い材料であり、酸化マグネシウム粉末が好ましい。
【0009】
保護管11は耐熱性があり、測定試料と反応しない材料で、測定精度に影響しない程度の熱伝導率の良い材料を用いる。ガラスの熱伝導率を測定する場合は白金ロジウム合金が好ましい材料の一つである。
【0010】
熱電対温度計10,10’の温度測定位置間の距離dtは、図示していない熱電対の線径dcの50倍以下にする。
【0011】
測定試料14が液体の場合、測定試料14の外径dsは測定試料を入れる容器3の内径と同じである。測定試料14が固体であっても、熱伝導率を測定する温度において軟化し、形状を保たないような場合は、試料容器3を用いる。軟化しない場合は、輻射による測定誤差が無いようにするため、測定試料の全面に、耐熱性のある金属酸化物膜、あるいは金または白金などの酸化をしない金属膜を塗布することが望ましい。
【0012】
測定試料14が固体の場合、測定試料14に測定プローブ管9の外径とほぼ同じ大きさの孔をあけ、その孔に測定用プローブ管を挿入する。さらに、測定試料にあけた孔と挿入した測定用プローブ管9の間を、測定試料の粉末で充填して、測定誤差を小さくする。
【0013】
測定試料14が高温で液体になる場合は、測定試料14は測定容器3に入れておき、高温にして、液体となった測定試料14に測定用プローブ管9を挿入し、温度を下げて、低温の固体の状態で測定を行ったほうがよい。
【0014】
試料容器3を用いる場合、精度に及ぼす輻射の影響を検討しやすくするため、試料容器に蓋15をする。蓋15は図1に示すように、試料容器3の内側に適当なストッパー16を設け、測定試料14に接するように置くことが望ましいが、単に試料容器3の上に載せるだけでも良い。
【0015】
試料容器3および蓋15は、測定試料と反応しないもので、測定温度に対する耐久性がある材料で作製する。高温の溶融ガラスの場合は、白金で試料容器3を作製することが望ましい。
【0016】
図1に示す測定用プローブ5と試料容器3を、図5に示すように、電気炉4の中に置く。測定試料14の温度は、電気炉4により熱伝導率を測定する所定の温度に保持する。測定試料14の温度は、測定用プローブ5によって測定する。
【0017】
測定試料14の温度が熱伝導率を測定する所定の温度になった後、電源1により、加熱線12に加熱用配線2を介して電流を流し、単位長さ当たりおよび単位時間当たりの発熱量が一定となるように、加熱線12を加熱する。加熱開始と同時に、測定用プローブ管9に設置された温度計10により加熱線12の加熱線温度θを測定する。
【0018】
加熱線12に電流を流して発生した熱量qを用いて、測定試料14の熱伝導率λは、次の(1)式で算出される。
【0019】
λ=(q/4π)/(Δθ/ln(t/t)) (1)
ここに、Δθ=θーθである。またθは測定開始後、時刻tでの加熱線温度であり、θは測定開始時刻tにおける加熱線温度で、t,tは加熱線12の温度上昇ー対数時間線図の勾配が一定となっている、直線部分の領域内での時刻である。
【0020】
細線加熱法において、Δθとln(t/t)の関係はおよそ図6に示すようであり、温度上昇ー対数時間線図の勾配がいってとなっているAの部分から、測定試料の熱伝導率λを(1)式によって求める。ガラスが高温である場合は、測定時間がある程度経過すると、温度上昇ー対数時間線図は直線からはずれ、曲線部分Bのようになだらかになる。この部分ではガラス資料内に対流が生じており、(1)式が適用できない。
【0021】
加熱線温度θはデータ収録装置7に温度測定用配線6を介して収録され、データ処理装置8を用いて、時計を用いて測定した時刻tと共に(1)式による演算処理等を行う。データ収録装置7は温度計10に対応した温度測定器であり、測定は電気的に電圧あるいは電流で行う。さらに、温度の測定値はA/D変換されて、データ処理装置8に取り込まれる。データ処理装置8にパーソナルコンピュータを用いる場合は、パーソナルコンピュータに内蔵されている時計で自動的に時刻t1、t0を読み込む方が精度的に好ましい。
【0022】
【実施例】
測定用プローブ管の管径dpと温度測定位置間の距離dtを、本発明に適合させた実施例1から実施例4の測定と、本発明に適合しない比較例1から比較例3の測定を行った。その結果を表1にまとめて示す。測定試料にはフロートガラスを用いた。また加熱線にはクロメルーアルメル熱電対用素線を用い、熱電対にはクロメルーアルメル熱電対を用いた。
【0023】
【表1】

Figure 0003547046
【0024】
図6は、実施例1において測定した、温度上昇ー対数時間線図である。線図1は測定試料の温度が700℃の場合であり、線図2は測定試料の温度が1000℃の場合である。また、熱伝導率の測定結果は図7の通りある。他の実施例でも同様の結果が得られ、精度の良い測定ができることを確認した。
【0025】
【発明の効果】
本発明の熱伝導率測定装置により、高温における材料の熱伝導率が測定でき、製造条件を検討するための貴重なデータを得ることを可能にした。
【図面の簡単な説明】
【図1】測定用プローブと試料容器の配置を示す概略側面図。
【図2】本発明の測定用プローブの断面を示す図。
【図3】図2A−A’の断面を示す図。
【図4】本発明の実施例の結果を示す図。
【図5】熱伝導率測定装置の全体を示す概略側面図。
【図6】時間経過に対する温度変化を示すグラフ。
【図7】実施例1で測定した、試料温度に対する熱伝導率を示すグラフ。
【符号の説明】
1 電源
2 加熱用配線
3 試料容器
4 電気炉
5 測定用プローブ
6 温度測定用配線
7 データ収録装置
8 データ処理装置
9 測定用プローブ管
10 熱電対温度計
11 保護管
12 加熱線
13 充填剤
14 測定試料
15 蓋
16 ストッパー[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for measuring the thermal conductivity of glass in a temperature range from a liquid state molten at a high temperature to a solid state , particularly for a glass material.
[0002]
[Prior art]
Thermal conductivity measurement methods include a flat plate steady state method, an unsteady laser flash method, and an unsteady fine wire heating method. Particularly in the measurement of the thermal conductivity of a fluid, it is important to remove the influence of thermal convection of the fluid, and the unsteady fine wire heating method is often used.
[0003]
[Problems to be solved by the invention]
In order to accurately measure the thermal conductivity of a material such as glass that changes from a solid to a liquid at high temperatures, it is difficult to make a cell that can continuously measure from a solid to a liquid using the steady-state flat plate method. In the transient laser flash method, although the measurement accuracy is good for a solid at room temperature, it is difficult to measure the thermal conductivity reliably in a liquid state at a high temperature. When measuring the thermal conductivity in such a high-temperature liquid, it has been difficult to obtain highly reliable results.
[0004]
[Means for Solving the Problems]
A probe for measuring the thermal conductivity of glass in the temperature range from the liquid state melted at a high temperature to the solid state by the unsteady fine wire heating method, having both a heating element and a thermocouple for temperature measurement . The thermocouple for temperature measurement is connected in series, the measurement distance of the thermocouple for temperature measurement is 50 times or less of the wire diameter of the thermocouple, and the outer diameter of the probe for measurement is 1.5 mm or more. This is a probe for measuring the thermal conductivity of glass having a size of 5 mm or less.
[0005]
This is a probe for measuring the thermal conductivity of the above glass having a thermocouple wire diameter of 0.5 mm or more and 1 mm or less.
Further, the inside of the protective tube of the measuring probe is filled with magnesium oxide powder , and the protective tube is a probe for measuring the thermal conductivity of the above glass made of a platinum-rhodium alloy.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic side view of a sample container 3 for storing a measurement probe 5 and a measurement sample 14. 2 and 3 are schematic views of a cross section of the measurement probe of the present invention using two thermocouples. Two or more thermocouples are used to increase the temperature measurement sensitivity. The outer diameter dp of the measurement probe tube 9 is set in a range of 1.5 mm to 5 mm. The measurement probe tube 9 is provided with a thermocouple thermometer 10, 10 ′ and a heating wire 12 in a protective tube 11, with a gap filled with a filler 13. The thermocouple thermometers 10 and 10 ′ include a chromer-almer thermocouple, a platinum-platinum rhodium thermocouple, a nickel-silyl-nisyl-based thermocouple, a tungsten-rhenium thermocouple, or an iridium-rhodium-based thermocouple in accordance with JIS Z8704. It is desirable to use a metal protective tube made of a heat-resistant steel containing Cr as a main component, a corrosion-resistant steel containing Mo as a main component, or a protective tube made of platinum or a platinum-rhodium alloy.
[0007]
As the heating wire 12, the aforementioned thermocouple wire or resistance metal wire is used. Similarly to the thermocouple thermometer, the heating wire 12 is a metal protective tube made of a heat-resistant steel mainly composed of Cr or a corrosion-resistant steel mainly composed of Mo described in JIS Z8704, or platinum or platinum rhodium. It is desirable to use one installed in a protective tube made of an alloy.
[0008]
The filler 13 is a material having excellent thermal conductivity and good heat resistance at high temperatures, and is preferably a magnesium oxide powder.
[0009]
The protective tube 11 is made of a material that has heat resistance and does not react with the measurement sample and has a high thermal conductivity that does not affect the measurement accuracy. When measuring the thermal conductivity of glass, a platinum-rhodium alloy is one of the preferred materials.
[0010]
The distance dt between the temperature measurement positions of the thermocouple thermometers 10 and 10 'is set to be 50 times or less the wire diameter dc of a thermocouple (not shown).
[0011]
When the measurement sample 14 is a liquid, the outer diameter ds of the measurement sample 14 is the same as the inner diameter of the container 3 for storing the measurement sample. Even if the measurement sample 14 is a solid, the sample container 3 is used when the sample is softened at a temperature at which the thermal conductivity is measured and the shape is not maintained. When the sample is not softened, it is desirable to apply a heat-resistant metal oxide film or a metal film that does not oxidize, such as gold or platinum, on the entire surface of the measurement sample in order to eliminate measurement errors due to radiation.
[0012]
When the measurement sample 14 is a solid, a hole having substantially the same diameter as the outer diameter of the measurement probe tube 9 is made in the measurement sample 14, and the measurement probe tube is inserted into the hole. Further, the gap between the hole formed in the measurement sample and the inserted measurement probe tube 9 is filled with the powder of the measurement sample to reduce the measurement error.
[0013]
When the measurement sample 14 becomes a liquid at a high temperature, the measurement sample 14 is put in the measurement container 3, the temperature is raised, and the measurement probe tube 9 is inserted into the liquid measurement sample 14, and the temperature is lowered. It is better to carry out the measurement in a solid state at low temperature.
[0014]
When the sample container 3 is used, the sample container is covered with a lid 15 so that the influence of radiation on accuracy can be easily examined. As shown in FIG. 1, the lid 15 is preferably provided with an appropriate stopper 16 inside the sample container 3 and placed so as to be in contact with the measurement sample 14, but it may be simply placed on the sample container 3.
[0015]
The sample container 3 and the lid 15 do not react with the measurement sample, and are made of a material having durability to the measurement temperature. In the case of high-temperature molten glass, it is desirable that the sample container 3 be made of platinum.
[0016]
The measurement probe 5 and the sample container 3 shown in FIG. 1 are placed in an electric furnace 4 as shown in FIG. The temperature of the measurement sample 14 is maintained by the electric furnace 4 at a predetermined temperature at which the thermal conductivity is measured. The temperature of the measurement sample 14 is measured by the measurement probe 5.
[0017]
After the temperature of the measurement sample 14 reaches a predetermined temperature at which the thermal conductivity is measured, an electric current is supplied from the power supply 1 to the heating wire 12 through the heating wire 2 to generate heat per unit length and per unit time. Is heated so that is constant. Simultaneously with the start of heating, the heating wire temperature θ of the heating wire 12 is measured by the thermometer 10 installed on the measurement probe tube 9.
[0018]
The heat conductivity λ of the measurement sample 14 is calculated by the following equation (1) using the amount of heat q generated by flowing a current through the heating wire 12.
[0019]
λ = (q / 4π) / (Δθ / ln (t 2 / t 1 )) (1)
Here, a [Delta] [theta] = theta 2 over theta 1. Further, θ 1 is the heating line temperature at time t 1 after the start of the measurement, θ 2 is the heating line temperature at the measurement start time t 2 , and t 1 and t 2 are the temperature rise of the heating line 12-logarithmic time diagram. Is the time within the area of the straight line portion where the gradient of is constant.
[0020]
In the thin wire heating method, the relationship between Δθ and ln (t 2 / t 1 ) is approximately as shown in FIG. 6, and from the part A where the slope of the temperature rise-logarithmic time diagram is described, the measurement sample is shown. Is determined by the equation (1). When the temperature of the glass is high, the temperature rise-logarithmic time curve deviates from a straight line and becomes gentle like a curved portion B after a certain measurement time has elapsed. In this part, convection occurs in the glass material, and the equation (1) cannot be applied.
[0021]
The heating line temperature θ is recorded in the data recording device 7 via the temperature measurement wiring 6, and the data processing device 8 performs an arithmetic process and the like according to the equation (1) together with the time t measured using a clock. The data recording device 7 is a temperature measuring device corresponding to the thermometer 10, and the measurement is performed electrically by voltage or current. Further, the measured temperature value is subjected to A / D conversion, and is taken into the data processing device 8. When a personal computer is used for the data processing device 8, it is preferable to automatically read the times t1 and t0 with a clock built in the personal computer in terms of accuracy.
[0022]
【Example】
The distance between the diameter dp of the probe tube for measurement and the distance dt between the temperature measurement positions was measured in Examples 1 to 4 adapted to the present invention and in Comparative Examples 1 to 3 which were not adapted to the present invention. went. The results are summarized in Table 1. Float glass was used as a measurement sample. In addition, a chromer-almer thermocouple wire was used as a heating wire, and a chromer-almer thermocouple was used as a thermocouple.
[0023]
[Table 1]
Figure 0003547046
[0024]
FIG. 6 is a temperature rise-logarithmic time diagram measured in Example 1. The diagram 1 shows the case where the temperature of the measurement sample is 700 ° C., and the diagram 2 shows the case where the temperature of the measurement sample is 1000 ° C. The measurement results of the thermal conductivity are as shown in FIG. Similar results were obtained in other examples, and it was confirmed that accurate measurement was possible.
[0025]
【The invention's effect】
The thermal conductivity measuring device of the present invention can measure the thermal conductivity of a material at a high temperature, and can obtain valuable data for studying manufacturing conditions.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing the arrangement of a measurement probe and a sample container.
FIG. 2 is a diagram showing a cross section of a measurement probe of the present invention.
FIG. 3 is a view showing a cross section of FIG. 2A-A ′;
FIG. 4 is a diagram showing the results of an example of the present invention.
FIG. 5 is a schematic side view showing the entire thermal conductivity measuring device.
FIG. 6 is a graph showing a temperature change with time.
FIG. 7 is a graph showing the thermal conductivity with respect to the sample temperature measured in Example 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power supply 2 Heating wiring 3 Sample container 4 Electric furnace 5 Measurement probe 6 Temperature measurement wiring 7 Data recording device 8 Data processing device 9 Measurement probe tube 10 Thermocouple thermometer 11 Protection tube 12 Heating wire 13 Filler 14 Measurement Sample 15 Lid 16 Stopper

Claims (3)

非定常細線加熱法による高温で溶融した液体状態から固体状態までの温度範囲のガラスの熱伝導率の測定用プローブにおいて、発熱体と温度測定用の熱電対を併せ持っていること、2本以上の温度測定用の熱電対が直列につながれていること、温度測定用の熱電対による測定距離を熱電対の線径の50倍以下とすること、さらに、測定用プローブの外径を1.5mm以上5mm以下とすることを特徴とするガラスの熱伝導率の測定用プローブ。A probe for measuring the thermal conductivity of glass in the temperature range from the liquid state melted at a high temperature to the solid state by the unsteady fine wire heating method, having both a heating element and a thermocouple for temperature measurement . The thermocouple for temperature measurement is connected in series, the distance measured by the thermocouple for temperature measurement is 50 times or less the wire diameter of the thermocouple, and the outer diameter of the probe for measurement is 1.5 mm or more. A probe for measuring the thermal conductivity of glass, which is set to 5 mm or less. 熱電対の線径は0.5mm以上1mm以下であることを特徴とする請求項1に記載のガラスの熱伝導率の測定用プローブ。 The probe for measuring the thermal conductivity of glass according to claim 1, wherein the wire diameter of the thermocouple is 0.5 mm or more and 1 mm or less . 測定用プローブの保護管の内部が酸化マグネシウム粉末で充填されていること、及び保護管が白金ロジウム合金からなることを特徴とする請求項1又は請求項2に記載のガラスの熱伝導率の測定用プローブ。The measurement of the thermal conductivity of glass according to claim 1 or 2, wherein the inside of the protection tube of the measurement probe is filled with magnesium oxide powder , and the protection tube is made of a platinum-rhodium alloy. For probes.
JP11868299A 1999-04-26 1999-04-26 Probe for measuring thermal conductivity Expired - Fee Related JP3547046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11868299A JP3547046B2 (en) 1999-04-26 1999-04-26 Probe for measuring thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11868299A JP3547046B2 (en) 1999-04-26 1999-04-26 Probe for measuring thermal conductivity

Publications (2)

Publication Number Publication Date
JP2000310604A JP2000310604A (en) 2000-11-07
JP3547046B2 true JP3547046B2 (en) 2004-07-28

Family

ID=14742599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11868299A Expired - Fee Related JP3547046B2 (en) 1999-04-26 1999-04-26 Probe for measuring thermal conductivity

Country Status (1)

Country Link
JP (1) JP3547046B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313499B2 (en) 2006-01-03 2007-12-25 Ut-Battelle Llc Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof
CN105223232B (en) * 2015-10-28 2017-11-28 中国农业大学 A kind of thermal conductivity measuring instrument and measuring method
JP7037166B2 (en) * 2017-06-26 2022-03-16 京都電子工業株式会社 Needle-shaped probe for thermophysical property measuring device

Also Published As

Publication number Publication date
JP2000310604A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
Assael et al. Measurement of the thermal conductivity of stainless steel AISI 304L up to 550 K
US4848147A (en) Thermal transient anemometer
CA2011659C (en) Measuring sensor for fluid state determination and method for measurement using such sensor
JP2004340964A (en) Mass flowmeter
US7377687B2 (en) Fluid temperature measurement
JP3547046B2 (en) Probe for measuring thermal conductivity
TWI394940B (en) Metal surface temperature measuring device
JP3539624B2 (en) Thermal conductivity measuring method and measuring device
Thiery et al. Thermal contact calibration between a thermocouple probe and a microhotplate
US20220397438A1 (en) Non-invasive thermometer
Yamasue et al. Nonstationary hot wire method with silica-coated probe for measuring thermal conductivities of molten metals
US20220334003A1 (en) Noninvasive thermometer
CN117616257A (en) Thermometer with improved measurement accuracy
JP2949314B2 (en) Calorimeter and method
JP4273265B2 (en) Sensor for measuring thermal conductivity of high-temperature liquid substances
KR101070998B1 (en) Heat capacity measurement device at high temperature
JPS60146118A (en) Method and apparatus for measuring level of interface
Mokdad et al. A Self-Validation Method for High-Temperature Thermocouples Under Oxidizing Atmospheres
US20240068884A1 (en) Temperature measurement device, thermometer, temperature measurement method, and temperature attenuation measurement method
Gaiser et al. Temperature-measurement errors with capsule-type resistance thermometers
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
JPH04105053A (en) Measuring method for thermal conductivity of molten resin
JP2023077224A (en) Thermal conductivity measurement method
RU19922U1 (en) THERMOANEMOMETRIC SENSOR
Mekawy et al. Refinement of Thermal Conduction-Based Dew Condensation Detection on Target Solid Surface by Galvanic Arrays Sensor Chip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees