JPH0537175A - Method for changing matching characteristics of electromagnetic wave absorber and electromagnetic wave absorbing wall employing its method - Google Patents

Method for changing matching characteristics of electromagnetic wave absorber and electromagnetic wave absorbing wall employing its method

Info

Publication number
JPH0537175A
JPH0537175A JP40745190A JP40745190A JPH0537175A JP H0537175 A JPH0537175 A JP H0537175A JP 40745190 A JP40745190 A JP 40745190A JP 40745190 A JP40745190 A JP 40745190A JP H0537175 A JPH0537175 A JP H0537175A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
electromagnetic wave
absorber
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40745190A
Other languages
Japanese (ja)
Other versions
JP2941436B2 (en
Inventor
Yoji Kozuka
洋司 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP40745190A priority Critical patent/JP2941436B2/en
Publication of JPH0537175A publication Critical patent/JPH0537175A/en
Application granted granted Critical
Publication of JP2941436B2 publication Critical patent/JP2941436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To utilize both sides of electromagnetic wave absorber corresponding to required characteristics by composing the electromagnetic wave absorber by providing electromagnetic wave absorption materials with different characteristics on both sides of conductive material. CONSTITUTION:Ferrites 1-A, 1-B, and 1-C are given different matching characteristics respectively, and the ferrite 1-A is adhered on the front surface of a substrate 3 made of conductive plate and the ferrites 1-B and 1-C are adhered on the back so as to form the electromagnetic wave absorption faces. In other words, the electromagnetic wave absorption characteristics, i.e., matching characteristics differs depending on the case where the ferrite 1-A is set to be a electromagnetic wave incident plane or the ferrite 1-C is set to be a electromagnetic wave incident plane. Therefore, the matching center frequency of the ferrite 1-A side is employed for the high-frequency side and the matching center frequency of the ferrite 1-C is employed for the low-frequency side, thereby realizing a wide band by single radio-wave absorber through selecting a electromagnetic wave absorption face corresponding to required characteristics.

Description

【発明の詳細な説明】(産業上の利用分野)本発明は電
波吸収体および電波吸収壁ならびにそれらの整合特性の
変更方法に関する。さらに詳述すると本発明は異なった
電波吸収特性をもつ材料を基板の表裏に用いて一体化し
たり、多面体を利用したり、円柱や球状の基板に分割し
て電波吸収材を取り付けて電波吸収体を構成し、要求特
性に応じて表を電波入射面にしたり、または裏を電波入
射面に使用したり、また多面体の各面を電波吸収体面と
して使用して電波吸収特性、特に周波特性を広帯域にわ
たり維持出来るように構成する方法に関する。 (従来の技術)従来の電波吸収体は電波を吸収できる面
は一面だけであった。例えば、フェライトを用いた電波
吸収体は、図1に示すようにフェライト(1)を板状に
作り、これを導体板(2)に密着するようにして成る。
したがって電波吸収面はフェライト板側だけであった。
この方法では、フェライト(1)の電波吸収特性つまり
整合特性によって、この電波吸収体の特性が定まってし
まう。しかし、最近電波吸収体は広帯域特性が要求さ
れ、また整合特性そのものも低反射量のものが要求され
ている。従って、従来の電波吸収体や電波吸収壁は電波
吸収面が片側だけであるため、構成材料によって定まる
1種類の特性しか得られないという大きな欠点を有して
いた。 (発明が解決しようとする課題)上述のように、従来の
電波吸収体や電波吸収壁は、電波吸収面として片面だけ
をもつ構成であった。このため広帯域整合特性や要求特
性に応じた低反射特性を広帯域にわたり維持することが
困難であった。本発明は、従来の電波吸収体がもつこの
ような問題点を解決するために、導電性材料やその他の
材料、すなわち磁石や誘電体、強誘電体などを基板とし
て、この両面にそれぞれ異なった電波吸収特性をもつ材
料を取り付けたり、多面体の各面や円柱状や球状基板に
特性の異なった電波吸収材を分割して取り付けて電波吸
収体を構成している。さらに本発明は、この電波吸収体
の表裏や多面体や球面、円柱面の他の面を容易に使い分
けられる構造として、この電波吸収体をブラインド状や
回転させる構造やガイドレールを用いて電波入射面を反
転させる構成法を発明している。このように本発明は、
複数の異なった電波吸収特性つまり整合特性を実現でき
ることを目的としている。 (問題を解決するための手段)この目的を達成するため
に、まず本発明では導電性の材料や磁石、誘電体などを
基板として、この両側に電波吸収材、例えばフェライト
材やカーボン材などの電波吸収材を装着するか、または
多面体の各面に電波吸収材を装着して電波吸収体を構成
する。この場合電波吸収材は単一材料に限定されず複数
の種類の材料を組み合わせたものを用いてもよい。この
ように構成した電波吸収体は、表裏で、また多面体や円
柱面や球面の各面で異なった電波吸収特性を有している
が、これを要求特性に応じて、これらの吸収体のそれぞ
れの面を電波吸収面として使用するために、特性を切り
替える必要がある。この問題を解決するために本発明の
電波吸収体を、窓に用いるブラインドと同じように構成
し、紐を引いたり、または棒を回転する手段などによ
り、多数の短冊状の電波吸収体板を同時に回転させて表
裏の切り替えを行う手段をとつている。この場合ならび
に以下に述べる方法は、従来のフェライト電波吸収体の
ように、フェライトに導体板を密着したものを電波吸収
体板として用いれば、当然フェライト面が電波入射面側
に現れているときは電波吸収特性を示し、導体板が現れ
ているときは反射特性としての特性を示し、これを応用
することも出来る。もちろん、以上のブラインド構造と
しては、縦型、横型ブラインド、つまり本発明の電波吸
収体を短冊状にしたものを縦に配置したり、横に配置し
て電波吸収体ならびに電波吸収壁を構成することが可能
である。さらに、本発明の電波吸収体面を反転させる方
法として、回転窓の原理と同じように、電波吸収体に回
転軸を設けて、電波吸収体の電波入射面を回転により変
更する手段をとっている。回転軸を取り付ける位置は、
上下、左右どこでもよい。また、本発明の電波吸収体は
柔軟性構造に構成することも出来る。さらに本発明の電
波吸収体を折りたたみ戸構造に構成することもできる。
したがって、これらの構成による電波吸収体をガイドレ
ール等に取り付けて使用し、例えば閉ループ状にレール
を作成する手段で、表裏の電波吸収体面、または電波吸
収体面と反射面を入れ換える手段で電波吸収特性の変更
の問題を解決している。以上の電波吸収体において、例
えば表側の電波吸収体面を必ずしも同一材料だけで構成
する必要はなく、複数の異なった特性をもつ電波吸収体
面の配列で構成してもよい。例えばそれぞれ異なった特
性のフェライトAとフェライトBを交互に配列してブラ
インド状電波吸収体の電波吸収面を構成するという手段
で種々の整合特性を実現している。もちろん、この場
合、フェライトAとフェライトBを交互に配列させるだ
けでなく、フェライトAの集合で一つの面を、フェライ
トBで他の面を構成することも出来る。次に、本発明の
電波吸収体を上述のように構成した上で、さらにこの電
波入射面側前方に他の電波吸収体を取り付けるという手
段で、電波吸収体を構成することが出来る。この方法
は、例えば、電波入射最前面に誘電性電波吸収体を配置
し、これに接するかもしくは離れて、本発明の構成によ
るフェライト電波吸収体を配置するという手段で、電波
吸収特性を変更できる広帯域型電波吸収体や電波吸収
壁、電波暗室などが構成出来る。この場合、本発明の電
波吸収体の前方に配置する電波吸収体、例えば誘電性電
波吸収体の背面の導体板は無くてよい。さらに、この場
合、本発明の電波吸収体とその電波入射側に配置する電
波吸収体の間の間隙部の間隔を変えて整合特性を変更す
る手段をとることも可能である。以上の本発明の電波吸
収体を大きな寸法に構成し、電波吸収壁や電波暗室に応
用できる。また、以上の電波吸収体、電波吸収壁、及び
構成法において、例えば、電波吸収材であるフェライト
に空孔を開け、基板として金網や炭素繊維等を用いて通
気性構造とすることも可能である。 (作用)上述の構成法によれば、複数個の電波吸収面を
もたせることが出来るため、広帯域の電波吸収特性が得
られる。すなわち、一つの面を低周波域で整合特性が優
れるように設計し、他方の面では高周波域で整合特性が
優れるように設計しておけば、この両面を要求特性に応
じて使い分けることにより広帯域特性が得られるという
作用がある。その場台、いかにしてこの両面つまり表側
と裏側を反転させるかが問題となる。また、多面体の各
面を電波入射面に向けることが問題となる。しかし、本
発明のブラインド構造電波吸収体、折りたたみ戸型電波
吸収体、回転窓式電波吸収体等の機構の採用により簡便
かつ迅速に対応出来るという作用がある。 (実施例)以下、本発明の構成を図面に示す実施例に基
づいて詳述する。第1図は、従来の電波吸収体の構成例
を示す斜視図である。これはフェライト電波吸収体の例
で、フェライト(1)に導体板(2)を密着させた構造
である。第2図は、本発明の電波吸収体の一実施例で、
フェライトで構成する例を示している。導体板を基板
(3)として、それぞれ整合特性の異なるフェライトを
同図では、前面にフェライトA(1−A)を1枚、基板
(3)の背面側はフェライトB(1−B)とフェライト
C(1−C)の2板で電波吸収面を構成した例である。
すなわち、第2図のフェライトA(1−A)を電波入射
面としたときと、フェライトC(1−C)側を電波入射
側としたときとでは、電波吸収特性つまり整合特性が異
なるように構成されている。例えばある周波数帯域内に
おいてフェライトA(1−A)側の整合の中心周波数を
高周波側にとり、フェライトC(1−C)側の整合中心
周波数を低周波側にとることにより、要求特性に応じ電
波吸収面を選択することにより1つの電波吸収体で広帯
域化がはかれたことになる。もちろん、整合特性とは整
合の周波数特性のみならず、定在波比や反射減衰量で表
される電波吸収特性なども意味している。また基板
(3)としてサマリウムコバルト磁石やネオジ鉄磁石、
フェライト磁石などの磁石も用いることが出来る。この
場合、導電性のない磁石はメッキ等を施して導電性を付
与しておけばよい。さらに基板(3)として強誘電体な
どの他の材料を用いてもよい。また、第2図の電波吸収
体は基板(3)として導電性ゴムや炭素繊維などの柔軟
性材料を用い、さらに電波吸収材もゴムフェライトのよ
うなものを用いて柔軟性構造とすることもできる。第3
図は、このように構成した電波吸収体を短冊状に作り、
これを横に配列してブラインド状の電波吸収体を構成し
た本発明の一実施例である。紐(4)を交互に引くと短
冊状の電波吸収面A(5)が表側になったり電波吸収面
B(6)が表側になったりして表裏を変更できる。すな
わち、2つの電波吸収特性をもつ電波吸収体を実現でき
る。この場合、ブラインドを固定する取り付け具(7)
も電波吸収材で構成しておく必要があるが、電波吸収面
A(5),C(8)及びB(6)と、この取り付け具
(7)の面積率の関係から、この取り付け具(7)の部
分は全体の電波吸収特性に大きな影響を及ぼさない。こ
の場合、例えば同図の電波吸収面C(8)で示したよう
に電波吸収面A(5)と異なる他の電波吸収材を交互に
配置することにより、種々の整合特性を実現できる。ま
た、このブラインド状電波吸収体はブラインドの動きに
支障がないように間隔を保ち、多重構造、つまり複数個
を重ねて種々の電波吸収特性に対応できるように構成す
ることもできる。これは以下の電波吸収体の構成におい
ても同様である。第4図は、本発明の電波吸収体に回転
軸を設けた電波吸収体の一実施例である。同図のように
電波吸収体固定用柱(9)に差し込める様な回転軸(1
0)を本発明の電波吸収体(11)に取り付け回転ドア
のように回転させて、電波吸収体の表裏を入れ換えるよ
うに構成してある。隣接電波吸収体部は第5図のように
端部(12)を斜めに接合するようにしておくと回転さ
せやすい。この場合、もちろん回転軸は、この例のよう
に上下せず横方向に取り付けてもよい。第6図は、本発
明の電波吸収体を折りたたみ式戸の構造に構成したもの
で、電波吸収体の上下に取り付けた軸(13)にローラ
(14)を取り付けたもので、これを第7図に示すよう
な閉ループ状のガイドレール(15)にはめ込み移動さ
せることにより本発明の電波吸収体(11)の表裏を入
れ換えることが出来る。第8図は、本発明の一実施例
で、本発明の電波吸収体(11)と例えば従来のピラミ
ッド型の誘電性電波吸収体、つまり他の構成法による電
波吸収体(16)を組み合わせて構成した電波吸収体を
上方から見た断面図を示している。本発明の電波吸収体
(11)としては、第4図に示した回転軸を有する電波
吸収体の例である。本発明の電波吸収体(11)とここ
で例示したピラミッド型の誘電性電波吸収体(16)と
の間は可変構造とし、この間隔を開けた状態で必要に応
じて本発明の電波吸収体(11)を回転させて表裏を入
れ換えた後、再びピラミッド型誘電性電波吸収体(1
6)に密着させて、新たな電波吸収特性を実現させるこ
とが出来る。この場合両者の電波吸収体を必ずしも密着
させる必要はなく、この両者の電波吸収体の間隔を調整
して新たな電波吸収特性を実現させることが出来る。第
9図は、第8図の構成によるピラミッド型誘電性電波吸
収体(16)と特性の異なる電波吸収体(17)を反対
側に設置し、第8図の構成原理と同様にしてこの電波吸
収特性を調節して使用する電波吸収体である。すなわ
ち、これらを一体化したものを1つの電波吸収体と見な
し、2つの電波吸収面をもつ電波吸収体を構成した一例
である。このように構成した電波吸収体や電波吸収壁を
ターンテーブル状のものの上において、このターンテー
ブルを回転させて、ピラミッド形の誘電性電波吸収体
(16)側を電波入射面にしたり、またこれと特性の異
なる電波吸収体(17)の側を電波入射面とすることが
出来る。この場合のターンテーブルは電波吸収体で構成
してもよい。このような構成法は可変電波吸収特性をも
つ電波暗室として有効である。第10図は、基板を多角
形に構成し、各面に特性の異なる電波吸収材を取り付け
回転構造にした本発明の一実施例である。同図ではフェ
ライト電波吸収体の例をとり、多角形は正三角形として
いる。正三角形の基板(3)に導体板(2)を介して各
面に異なった特性のフェライトA(18)、フェライト
B(19)、フェライトC(20)が取り付けてある。
回転軸(10)により電波吸収体の電波入射面を容易に
変更し得る。この場合、正三角形とせず第11図のよう
に二等辺三角形として、例えば底辺に相当する面にフェ
ライトA(18)を、他の二等辺に相当する面にフェラ
イトB(19)を取り付けて構成すると、電波吸収面と
して平坦面と鋸歯状面が利用できる電波吸収面を構成す
ることが出来る。さらに、第12図のように平坦面と湾
曲面で回転構造形の電波吸収面を構成すると、平坦面と
湾曲面を利用できる電波吸収面、つまり電波吸収体を構
成できる。もちろん、この場合同一の電波吸収材で各面
を構成してもよく、電波入射面が平坦か否かによって異
なった電波吸収特性を実現することが出来る。第13図
は、本発明の一実施例で、円柱状の基板(3)にフェラ
イトA(18)とフェライトB(19)を二分割して取
り付けた本発明の一実施例を示す斜視図である。この場
合も回転軸(10)を中心に回転させてそれぞれの電波
吸収面を入れ換えることが出来る。第14図は、第13
図と同様な考え方に立ち、球面を二分割し、特性の異な
ったフェライトA(18)、フェライトB(19)で構
成した本発明の一実施例である。回転軸(10)を中心
に回転させると、電波吸収面を変更できる。第15図
は、シャッタ構造に構成した本発明の一実施例を示す斜
視図である。すなわち、同図は柔軟性構造の導電性の基
板(3)の上に、フェライトA(18)の集合体面と、
フェライトB(19)の集合体面を構成し、ローラ(2
1)の回転と共にフェライトA面とフェライトB面を入
れ換える構成である。この方法により電波吸収特性を変
更し得る。以上の発明の特性変更方法は、単に電波吸収
体に限定されず、電子工学、電磁波工学分野の材料特性
の変更方法としても応用できる。特に、反射特性や共
振、共鳴特性の変更に対して有効である。この場台、も
ちろん誘電率の異なる誘電体材料や導電率の異なる導体
や半導体を用いて本発明の特性変更方法により装置やシ
ステム、素子の特性を変更し得る。上述の電波吸収体に
おいても、多層形電波吸収材の中間層の特性変更に本発
明の特性変更を適用することが出来る。この場合の中間
層はそれだけでは十分電波を吸収し得ない特性のもので
あってもよい。また、電磁波的に見て大地と等価な床を
構成するような場台も、種々の特性を有する材料を用い
て本発明の特性変更方法によって、様々な状況つまり雨
天や乾燥時などと等価な床面を構成できる。なお、以上
の実施例は本発明の好適な実施例であるが、これに限定
されるものでなく本発明の要旨を逸脱しない範囲におい
て種々の変形実施が可能である。 (発明の効果)本発明は、従来の一面だけが電波吸収面
であった電波吸収体を表裏両面とも異なった電波吸収特
性をもつ電波吸収体とし、しかも表裏の面を簡便な方法
で電波入射面として切り替える手段を講じたもので、電
波吸収体の性能を大きく拡張したものである。表裏の電
波吸収面を切り替える形式として、本発明のブラインド
構造や回転窓式、折りたたみ戸構造の採用により比較的
容易に表裏の面を反転でき、しかも、これらは電波吸収
体として使用しない場合は、これらの電波吸収ブライン
ドや電波吸収回転窓の角度を調節したり、また、折りた
たみ戸式電波吸収体を開放することにより外光の取り入
れや換気や外部との通話が可能となるという大きな効果
がある。また、本発明の電波吸収ブラインドなどにおい
て、フェライトを用いる場合は基板として磁石材料を用
い、この両側に異なった周波数特性のフェライトを用い
るか、また同一のフェライトでもフェライト厚を換えた
ものを用いるだけで、フェライト厚を薄く構成でき、軽
量化が達成出来るという効果がある。また、本発明の電
波吸収ブラインドを例に取ると、短冊状の電波吸収面に
フェライトを用いる場合、異なった整合特性をもつフェ
ライトを交互にまたは2枚おきに配列させるなどの構成
により、新たな整合特性をもたせることが出来、要求特
性に応じて、新たにフェライトを焼成して製造するとい
う手間が省けるという大きな効果がある。また、これら
のブラインド構造、回転窓構造、折りたたみ戸型電波吸
収体では各電波吸収板の単体(例えば、ブラインド構造
では短冊状の電波吸収面と称しているもの)を容易に脱
着可能な構造とすることが出来るため、要求特性に応じ
これらを交換できるため広範囲の電波吸収特性が得られ
るという効果がある。さらに、最近の電波暗室は広帯域
特性が要求されているが、本発明の採用により特に低周
波域においても劣化しない整合特性の電波暗室が設計出
来、また必要に応じて電波暗室の電波吸収特性を可変出
来るという、きわめて顕著な実用効果を有している。
The present invention relates to an electromagnetic wave absorber, an electromagnetic wave absorbing wall, and a method of changing matching characteristics thereof. More specifically, according to the present invention, materials having different electromagnetic wave absorption characteristics are used for the front and back surfaces of a substrate to be integrated, a polyhedron is used, or a cylindrical or spherical substrate is divided and an electromagnetic wave absorber is attached to the electromagnetic wave absorber. Depending on the required characteristics, the front side can be used as the radio wave incident surface, or the back side can be used as the radio wave incident surface, and each side of the polyhedron can be used as the radio wave absorber surface to provide a wide range of radio wave absorption characteristics, especially frequency characteristics. It is related to the method of configuring so that it can be maintained over. (Prior Art) Conventional electromagnetic wave absorbers have only one surface capable of absorbing electromagnetic waves. For example, a radio wave absorber using ferrite is formed by making ferrite (1) in a plate shape as shown in FIG. 1 and closely adhering it to a conductor plate (2).
Therefore, the electromagnetic wave absorption surface was only on the ferrite plate side.
In this method, the characteristic of this electromagnetic wave absorber is determined by the electromagnetic wave absorption characteristic of ferrite (1), that is, the matching characteristic. However, recently, the electromagnetic wave absorber is required to have a wide band characteristic and the matching characteristic itself to have a low reflection amount. Therefore, the conventional radio wave absorber and the radio wave absorbing wall have a big drawback that only one type of characteristic determined by the constituent material can be obtained because the radio wave absorbing surface is only on one side. (Problems to be Solved by the Invention) As described above, the conventional electromagnetic wave absorber and electromagnetic wave absorbing wall have only one surface as an electromagnetic wave absorbing surface. For this reason, it is difficult to maintain the wide-band matching characteristic and the low reflection characteristic corresponding to the required characteristic over a wide band. In order to solve such a problem of the conventional electromagnetic wave absorber, the present invention uses a conductive material or another material, that is, a magnet, a dielectric material, a ferroelectric material, or the like as a substrate, and has different surfaces. A material having electromagnetic wave absorption characteristics is attached, or an electromagnetic wave absorber having different characteristics is divided and attached to each surface of a polyhedron or a cylindrical or spherical substrate to form an electromagnetic wave absorber. Furthermore, the present invention provides a structure in which the front and back surfaces of the electromagnetic wave absorber, other surfaces such as a polyhedron, a spherical surface, and a cylindrical surface can be easily used properly. Inventing a construction method for inverting. Thus, the present invention is
The purpose is to realize a plurality of different electromagnetic wave absorption characteristics, that is, matching characteristics. (Means for Solving the Problem) In order to achieve this object, first, in the present invention, a conductive material, a magnet, a dielectric or the like is used as a substrate, and a radio wave absorbing material such as a ferrite material or a carbon material is provided on both sides of the substrate. A radio wave absorber is attached, or a radio wave absorber is attached to each surface of a polyhedron to form a radio wave absorber. In this case, the radio wave absorber is not limited to a single material, and a combination of a plurality of types of materials may be used. The electromagnetic wave absorber configured in this way has different electromagnetic wave absorption characteristics on the front and back surfaces, and on each of the polyhedron, cylindrical surface, and spherical surface. It is necessary to switch the characteristics in order to use the surface of as the electromagnetic wave absorption surface. In order to solve this problem, the electromagnetic wave absorber of the present invention is configured in the same manner as a blind used for a window, and a large number of strip-shaped electromagnetic wave absorber plates are formed by pulling a string or rotating a rod. It has a means to rotate it at the same time to switch between front and back. In this case and in the method described below, if a ferrite conductor and a conductor plate are in close contact, such as a conventional ferrite wave absorber, is used as the wave absorber plate, it is natural that the ferrite surface appears on the side of the wave incident surface. It exhibits electromagnetic wave absorption characteristics, and when a conductor plate appears, it shows characteristics as reflection characteristics, which can also be applied. As a matter of course, as the above blind structure, vertical and horizontal blinds, that is, a strip of the electromagnetic wave absorber of the present invention is vertically arranged, or horizontally arranged to form an electromagnetic wave absorber and an electromagnetic wave absorbing wall. It is possible. Further, as a method of reversing the surface of the radio wave absorber according to the present invention, as in the principle of the rotating window, a means is provided in which the radio wave absorber is provided with a rotating shaft and the radio wave incident surface of the radio wave absorber is changed by rotation. .. The position to attach the rotating shaft is
It can be up, down, left or right. Also, the radio wave absorber of the present invention can be configured to have a flexible structure. Further, the radio wave absorber of the present invention can be configured as a folding door structure.
Therefore, the electromagnetic wave absorber with these configurations is used by attaching it to a guide rail or the like, and, for example, by means of creating a rail in a closed loop shape, by means of the electromagnetic wave absorber surfaces on the front and back, or by exchanging the electromagnetic wave absorber surface and the reflective surface. The change problem has been solved. In the above-mentioned radio wave absorber, for example, the front side radio wave absorber surface does not necessarily have to be made of the same material, but may be made of an array of a plurality of radio wave absorber surfaces having different characteristics. For example, various matching characteristics are realized by means of alternately arranging ferrites A and B having different characteristics to form the electromagnetic wave absorbing surface of the blind electromagnetic wave absorber. Of course, in this case, not only the ferrites A and the ferrites B are alternately arranged, but also one surface can be constituted by the set of the ferrites A and the other surface can be constituted by the ferrites B. Next, the radio wave absorber of the present invention can be constructed by the above-mentioned construction, and then by mounting another radio wave absorber in front of the radio wave incident surface side. In this method, the electromagnetic wave absorption characteristics can be changed by, for example, disposing a dielectric electromagnetic wave absorber on the frontmost surface of the electromagnetic wave and arranging the ferrite electromagnetic wave absorber according to the configuration of the present invention in contact with or away from the dielectric electromagnetic wave absorber. A broadband type electromagnetic wave absorber, an electromagnetic wave absorption wall, an anechoic chamber, etc. can be configured. In this case, the electromagnetic wave absorber disposed in front of the electromagnetic wave absorber of the present invention, for example, the conductor plate on the back surface of the dielectric electromagnetic wave absorber may be omitted. Further, in this case, it is possible to adopt a means for changing the matching characteristic by changing the gap of the gap between the radio wave absorber of the present invention and the radio wave absorber arranged on the radio wave incident side. The electromagnetic wave absorber of the present invention described above can be applied to an electromagnetic wave absorption wall or an anechoic chamber by constructing it in a large size. Further, in the above-mentioned radio wave absorber, radio wave absorption wall, and construction method, for example, it is possible to form a breathable structure by forming holes in ferrite which is a radio wave absorber and using wire mesh or carbon fiber as a substrate. is there. (Operation) According to the above-mentioned configuration method, since a plurality of electromagnetic wave absorption surfaces can be provided, a broadband electromagnetic wave absorption characteristic can be obtained. In other words, if one surface is designed to have excellent matching characteristics in the low frequency range, and the other surface is designed to have excellent matching characteristics in the high frequency area, both sides can be used according to the required characteristics to achieve a wide band. It has an effect of obtaining characteristics. The issue on the spot is how to flip both sides, that is, the front side and the back side. Moreover, it is a problem to direct each surface of the polyhedron to the radio wave incident surface. However, the blind structure type electromagnetic wave absorber, the folding door type electromagnetic wave absorber, the rotating window type electromagnetic wave absorber, and other mechanisms of the present invention have the effect of enabling a simple and quick response. (Embodiment) Hereinafter, the configuration of the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a perspective view showing a configuration example of a conventional radio wave absorber. This is an example of a ferrite electromagnetic wave absorber, which has a structure in which the conductor plate (2) is closely attached to the ferrite (1). FIG. 2 shows an embodiment of the electromagnetic wave absorber of the present invention.
An example in which it is composed of ferrite is shown. With the conductor plate as the substrate (3), ferrites having different matching characteristics are shown in the figure. One ferrite A (1-A) is on the front side, and ferrite B (1-B) is on the back side of the substrate (3). This is an example in which the radio wave absorption surface is composed of two C (1-C) plates.
That is, the radio wave absorption characteristics, that is, the matching characteristics, are different when the ferrite A (1-A) in FIG. 2 is used as the radio wave incident surface and when the ferrite C (1-C) side is used as the radio wave incident side. It is configured. For example, by setting the matching center frequency on the ferrite A (1-A) side to the high frequency side and the matching center frequency on the ferrite C (1-C) side to the low frequency side within a certain frequency band, the radio wave can be adjusted according to the required characteristics. By selecting the absorption surface, it is possible to achieve a wide band with one electromagnetic wave absorber. Of course, the matching characteristics mean not only the matching frequency characteristics but also the electromagnetic wave absorption characteristics represented by the standing wave ratio and the return loss. Also, as the substrate (3), a samarium cobalt magnet or a neodymium iron magnet,
A magnet such as a ferrite magnet can also be used. In this case, the non-conductive magnet may be given conductivity by plating or the like. Further, another material such as a ferroelectric material may be used as the substrate (3). The electromagnetic wave absorber shown in FIG. 2 may be made of a flexible material such as conductive rubber or carbon fiber as the substrate (3), and the electromagnetic wave absorber may be a flexible structure such as rubber ferrite. it can. Third
The figure shows the electromagnetic wave absorber configured in this way made into a strip shape,
This is an embodiment of the present invention in which the blind electromagnetic wave absorbers are arranged side by side. When the string (4) is pulled alternately, the strip-shaped electromagnetic wave absorption surface A (5) becomes the front side and the electromagnetic wave absorption surface B (6) becomes the front side, so that the front and back can be changed. That is, a radio wave absorber having two radio wave absorption characteristics can be realized. In this case, the fittings for fixing the blinds (7)
Also, it is necessary to use the electromagnetic wave absorbing material as well, but in view of the area ratio of the electromagnetic wave absorbing surfaces A (5), C (8) and B (6) and the mounting tool (7), the mounting tool ( The part 7) does not significantly affect the overall electromagnetic wave absorption characteristics. In this case, various matching characteristics can be realized by alternately arranging another wave absorbing material different from the wave absorbing surface A (5) as shown by the wave absorbing surface C (8) in FIG. Further, the blind-shaped electromagnetic wave absorbers may have a multiple structure, that is, a plurality of blind electromagnetic wave absorbers may be arranged so as not to interfere with the movement of the blinds so as to correspond to various electromagnetic wave absorption characteristics. This also applies to the following radio wave absorber configurations. FIG. 4 shows an embodiment of a radio wave absorber according to the present invention in which a rotary shaft is provided on the radio wave absorber. As shown in the figure, the rotating shaft (1
0) is attached to the electromagnetic wave absorber (11) of the present invention and rotated like a revolving door so that the front and back of the electromagnetic wave absorber are interchanged. It is easy to rotate the adjacent electromagnetic wave absorber portion if the end portions (12) are obliquely joined as shown in FIG. In this case, of course, the rotating shaft may be attached laterally without moving up and down as in this example. FIG. 6 shows a structure in which the electromagnetic wave absorber of the present invention is configured as a folding door, in which a roller (14) is attached to a shaft (13) attached to the upper and lower sides of the electromagnetic wave absorber. The electromagnetic wave absorber (11) of the present invention can be exchanged between the front and back sides by fitting and moving it in a closed loop guide rail (15) as shown in the figure. FIG. 8 shows an embodiment of the present invention in which the radio wave absorber (11) of the present invention is combined with, for example, a conventional pyramid-type dielectric radio wave absorber, that is, a radio wave absorber (16) according to another construction method. The sectional view which looked at the constituted electric wave absorber from the upper part is shown. The radio wave absorber (11) of the present invention is an example of the radio wave absorber having the rotation axis shown in FIG. A variable structure is provided between the radio wave absorber (11) of the present invention and the pyramid-type dielectric radio wave absorber (16) exemplified here, and the radio wave absorber of the present invention is provided with this space left as necessary. After rotating (11) to replace the front and back, the pyramid-type dielectric wave absorber (1
It is possible to realize a new electromagnetic wave absorption characteristic by closely adhering to 6). In this case, it is not always necessary to bring the two radio wave absorbers into close contact with each other, and a new radio wave absorption characteristic can be realized by adjusting the distance between the two radio wave absorbers. FIG. 9 shows a radio wave absorber (17) having characteristics different from that of the pyramid-type dielectric wave absorber (16) having the structure shown in FIG. It is a radio wave absorber that is used by adjusting the absorption characteristics. That is, this is an example in which an integrated electromagnetic wave absorber is regarded as one electromagnetic wave absorber, and an electromagnetic wave absorber having two electromagnetic wave absorbing surfaces is configured. The radio wave absorber or the radio wave absorption wall configured in this manner is placed on a turntable-shaped object, and the turntable is rotated to make the side of the pyramidal dielectric radio wave absorber (16) the radio wave incident surface. The side of the radio wave absorber (17) having different characteristics can be used as the radio wave incident surface. The turntable in this case may be formed of a radio wave absorber. Such a construction method is effective as an anechoic chamber having a variable electromagnetic wave absorption characteristic. FIG. 10 shows an embodiment of the present invention in which the substrate is formed in a polygonal shape, and a radio wave absorber having different characteristics is attached to each surface to form a rotating structure. In the figure, an example of a ferrite electromagnetic wave absorber is used, and the polygon is an equilateral triangle. Ferrite A (18), ferrite B (19), and ferrite C (20) having different characteristics are attached to each surface of a regular triangular substrate (3) through a conductor plate (2).
The rotary shaft (10) can easily change the radio wave incident surface of the radio wave absorber. In this case, not an equilateral triangle but an isosceles triangle as shown in FIG. 11, for example, ferrite A (18) is attached to the surface corresponding to the base and ferrite B (19) is attached to the surface corresponding to the other isosceles. Then, it is possible to configure a radio wave absorption surface that can use a flat surface and a sawtooth surface as the radio wave absorption surface. Further, as shown in FIG. 12, if the flat structure and the curved surface constitute the rotating structure type electromagnetic wave absorption surface, the electromagnetic wave absorption surface that can utilize the flat surface and the curved surface, that is, the electromagnetic wave absorber can be configured. Of course, in this case, each surface may be made of the same electromagnetic wave absorbing material, and different electromagnetic wave absorption characteristics can be realized depending on whether the electromagnetic wave incident surface is flat or not. FIG. 13 is a perspective view showing an embodiment of the present invention in which a ferrite A (18) and a ferrite B (19) are divided and attached to a columnar substrate (3) in an embodiment of the present invention. is there. Also in this case, it is possible to rotate the rotary shaft (10) as a center and replace the respective radio wave absorption surfaces. FIG. 14 shows
This is an embodiment of the present invention in which a spherical surface is divided into two parts and ferrite A (18) and ferrite B (19) having different characteristics are used based on the same idea as shown in the figure. Rotation around the rotation axis (10) can change the electromagnetic wave absorption surface. FIG. 15 is a perspective view showing an embodiment of the present invention having a shutter structure. That is, the figure shows that on the conductive substrate (3) having a flexible structure, the aggregate surface of the ferrite A (18),
The aggregate surface of the ferrite B (19) is formed, and the roller (2
With the rotation of 1), the ferrite A surface and the ferrite B surface are interchanged. This method can change the radio wave absorption characteristics. The property changing method of the above invention is not limited to the electromagnetic wave absorber, and can be applied as a method of changing the material property in the fields of electronic engineering and electromagnetic wave engineering. In particular, it is effective for changing the reflection characteristics, resonance, and resonance characteristics. The characteristics of the device, system or element can be changed by the characteristic changing method of the present invention using this platform, of course, using dielectric materials having different permittivities or conductors or semiconductors having different conductivities. Also in the above-mentioned electromagnetic wave absorber, the characteristic change of the present invention can be applied to the characteristic change of the intermediate layer of the multilayer type electromagnetic wave absorber. In this case, the intermediate layer may have a characteristic that it cannot sufficiently absorb the radio wave. Also, a platform that constitutes a floor equivalent to the earth in terms of electromagnetic waves is equivalent to various situations, that is, rainy weather or dry weather, by using the material having various characteristics by the characteristic changing method of the present invention. The floor surface can be configured. The above embodiment is a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. (Effects of the Invention) The present invention uses a radio wave absorber having only one surface as a radio wave absorption surface, and a radio wave absorber having different radio wave absorption characteristics on both front and back surfaces, and the front and back surfaces are incident by a simple method. This means that the surface of the electromagnetic wave absorber is greatly expanded by taking measures to switch the surface. As a form of switching the front and back of the electromagnetic wave absorption surface, the blind structure, the rotating window type, and the folding door structure of the present invention can relatively easily reverse the front and back surfaces, and when these are not used as electromagnetic wave absorbers, By adjusting the angle of these radio wave absorption blinds and radio wave absorption rotating windows, and by opening the folding door type radio wave absorber, it is possible to take in external light, ventilate and make a call with the outside. . Further, in the radio wave absorbing blind of the present invention, when ferrite is used, a magnet material is used as the substrate, and ferrites having different frequency characteristics are used on both sides of the substrate, or the same ferrite having different ferrite thickness is used. Thus, there is an effect that the ferrite thickness can be made thin and weight reduction can be achieved. Further, taking the electromagnetic wave absorbing blind of the present invention as an example, when ferrite is used for the strip-shaped electromagnetic wave absorbing surface, a new structure is adopted in which ferrites having different matching characteristics are alternately or alternately arranged. The matching characteristic can be provided, and there is a great effect that the labor of newly firing and manufacturing the ferrite according to the required characteristic can be saved. In addition, in the blind structure, the rotating window structure, and the folding door type electromagnetic wave absorber, a simple structure of each electromagnetic wave absorbing plate (for example, what is called a strip-shaped electromagnetic wave absorbing surface in the blind structure) can be easily attached and detached. Therefore, since these can be exchanged according to the required characteristics, there is an effect that a wide range of electromagnetic wave absorption characteristics can be obtained. Further, although the recent anechoic chamber is required to have a wide band characteristic, by adopting the present invention, it is possible to design an anechoic chamber having a matching characteristic that is not deteriorated even in a low frequency range, and if necessary, to improve the anechoic chamber's anechoic absorption characteristic. It has a very remarkable practical effect that it can be changed.

【図面の簡単な説明】 第1図は、従来のフェライト電波吸収体の基本構成を示
す斜視図。 第2図は、本発明の両面使用型電波吸収体の一実施例を
示す斜視図。 第3図は、本発明のブラインド構造の電波吸収体の一実
施例を示す斜視図。 第4図は、本発明の回転構造の電波吸収体の一実施例を
示す斜視図。 第5図は、回転構造の電波吸収体単板の斜視図。 第6図は、本発明の折りたたみ構造の電波吸収体の一実
施例を示す斜視図。 第7図は、ガイドレールの一実施例を示す正面図。 第8図は、本発明の電波吸収体と従来のピラミッド型電
波吸収体を組み合わせて構成した電波吸収体の一実施例
を示す断面図。 第9図は、本発明の電波吸収体を中心に配置し、他の電
波吸収体をその両側に配置した一実施例の断面図。 第10図は、本発明の他の実施例で、電波吸収体面を正
三角形で構成した回転形電波吸収体の断面図。 第11図は、電波吸収体面を二等辺三角形とした本発明
の回転形電波吸収体の一実施例の断面図。 第12図は、平坦面と湾曲面で電波吸収体面を構成する
本発明の回転形電波吸収体の一実施例の断面図。 第13図は、円柱面を分割して異なった特性の電波吸収
体面を構成した回転形電波吸収体の一実施例の断面図。 第14図は、球面を分割して異なった特性の電波吸収体
面を構成した回転形電波吸収体の一実施例の断面図。 第15図は、電波吸収体面をシャッタ構造とし、電波吸
収体面を変更可能にした本発明の一実施例の斜視図。 1…フェライト、 1−A…フェライトA 1−B…フェライトB、1−C…フェライトC 2…導体板、 3…基板、 4…ひも 5…電波吸収面A、 6…電波吸収面B 7…取り付け具、 8…電波吸収面C 9…固定用柱、 10…回転軸 11…本発明の電波吸収体 12…端部、 13…軸 14…ローラ、 15…ガイドレール 16…他の構成法による電波吸収体 17…特性の異なる電波吸収体 18…フェライトA 19…フェライトB 20…フェライトC 21…ローラ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing the basic configuration of a conventional ferrite electromagnetic wave absorber. FIG. 2 is a perspective view showing an embodiment of the double-sided use type electromagnetic wave absorber of the present invention. FIG. 3 is a perspective view showing an embodiment of a radio wave absorber having a blind structure of the present invention. FIG. 4 is a perspective view showing an embodiment of a radio wave absorber having a rotating structure according to the present invention. FIG. 5 is a perspective view of a single wave absorber having a rotating structure. FIG. 6 is a perspective view showing an embodiment of a radio wave absorber having a folding structure according to the present invention. FIG. 7 is a front view showing an embodiment of the guide rail. FIG. 8 is a sectional view showing an embodiment of a radio wave absorber formed by combining the radio wave absorber of the present invention and a conventional pyramid type radio wave absorber. FIG. 9 is a sectional view of an embodiment in which the electromagnetic wave absorber of the present invention is arranged at the center and other electromagnetic wave absorbers are arranged on both sides thereof. FIG. 10 is a cross-sectional view of a rotary electromagnetic wave absorber in which the surface of the electromagnetic wave absorber is an equilateral triangle in another embodiment of the present invention. FIG. 11 is a sectional view of an embodiment of the rotary electromagnetic wave absorber of the present invention in which the surface of the electromagnetic wave absorber is an isosceles triangle. FIG. 12 is a cross-sectional view of an embodiment of the rotary electromagnetic wave absorber of the present invention in which the electromagnetic wave absorber surface is composed of a flat surface and a curved surface. FIG. 13 is a cross-sectional view of an embodiment of a rotary electromagnetic wave absorber in which a cylindrical surface is divided to form electromagnetic wave absorber surfaces having different characteristics. FIG. 14 is a sectional view of an embodiment of a rotary electromagnetic wave absorber in which a spherical surface is divided to form electromagnetic wave absorber surfaces having different characteristics. FIG. 15 is a perspective view of an embodiment of the present invention in which the electromagnetic wave absorber surface has a shutter structure and the electromagnetic wave absorber surface can be changed. DESCRIPTION OF SYMBOLS 1 ... Ferrite, 1-A ... Ferrite A 1-B ... Ferrite B, 1-C ... Ferrite C 2 ... Conductor plate, 3 ... Board, 4 ... String 5 ... Radio wave absorption surface A, 6 ... Radio wave absorption surface B 7 ... Fixture, 8 ... Electromagnetic wave absorption surface C 9 ... Fixing column, 10 ... Rotation shaft 11 ... Radio wave absorber 12 of the present invention ... End portion, 13 ... Shaft 14 ... Roller, 15 ... Guide rail 16 ... Other construction method Radio wave absorber 17 ... Radio wave absorber 18 having different characteristics ... Ferrite A 19 ... Ferrite B 20 ... Ferrite C 21 ... Roller

Claims (1)

【特許請求の範囲】 ( 1) 導電性材料の両側に異なる特性をもつ電波吸
収材料を取り付けて電波吸収体を構成し、要求特性に応
じて、どちらの面も使用出来るように構成した両面型電
波吸収体。 ( 2) 導電性材料で構成した多面体に電波吸収材を
取り付けて電波吸収体を構成し、要求特性に応じて、ど
の面も使用出来るように構成した電波吸収体。 ( 3) 導電性材料で構成した円筒状のものの表面に
異なる特性の電波吸収材料を分割して取り付けて電波吸
収体を構成し、要求特性に応じどの面も使用できるよう
に構成した電波吸収体。 ( 4) 導電性材料で構成した球状のものの表面に異
なる特性の電波吸収材料を分割して取り付けて電波吸収
体を構成し、要求特性に応じどの面も使用できるように
構成した電波吸収体。 ( 5) 請求項(1)ないし(4)記載の電波吸収体
における導電性材料の代わりに、他の材料を用いて構成
することを特徴とした電波吸収体。 ( 6) 請求項(1)ないし(4)記載の電波吸収体
における電波吸収材料として、複数の材料を複合して使
用することを特徴とする電波吸収体。 ( 7) 請求項(1)ないし(6)いずれか記載の電
波吸収体を寄せ集めて構成した電波吸収壁。 ( 8) 請求項(1)及びこれと関連する(5)、
(6)記載の電波吸収体をブラインド状に構成し、要求
特性に応じ、電波入射面を変更出来るようにすることを
特徴とする電波吸収体。 ( 9) 請求項(1)ないし(6)の電波吸収体と回
転軸による構成で、要求特性に応じて電波入射面を回転
させて使えるように構成した電波吸収体。 (10) 請求項(1)ないし(6)の電波吸収体を柔
軟性構造に構成した電波吸収体。 (11) 請求項(1)及びこれと関連する(5)、
(6)記載の電波吸収体を折りたたみ戸構造に構成した
電波吸収体。 (12) 請求項(10)及び(11)記載の電波吸収
体とガイドレールとを組み合わせて、この電波吸収体の
表と裏を入れ換えられるように構成し、要求電波吸収特
性に応ずることが出来るようにする方法。 (13) 請求項(1)ないし(12)記載の電波吸収
体およびその構成法において、電波入射面側の前面に、
さらに別の電波吸収体を密着するように配置して成る電
波吸収体。 (14) 請求項(13)記載の電波吸収体の構成法に
おいて、別の電波吸収体を配置する際に、必ずしも密着
せず、空隙部を設けて、その間隔を変えて、整合特性を
調整する構成の電波吸収体。 (15) 請求項(8)ないし(14)記載の電波吸収
体の基本構成をさらに大きくして構成した電波吸収壁。 (16) 請求項(1)ないし(15)記載の電波吸収
体、電波吸収壁、ならびにそれらの構成法において、通
気性構造とすることを特徴とするもの。 (17) 請求項(1)ないし(16)記載の電波吸収
体、電波吸収壁、ならびにそれらの構成法に基づいて設
計される電波暗室。
(1) A double-sided type in which a radio wave absorber having different characteristics is attached to both sides of a conductive material to form a radio wave absorber, and either side can be used depending on required characteristics. Radio wave absorber. (2) A radio wave absorber constructed by attaching a radio wave absorber to a polyhedron made of a conductive material to form a radio wave absorber so that any surface can be used according to required characteristics. (3) Electromagnetic wave absorber configured so that electromagnetic wave absorbers having different characteristics are divided and attached to the surface of a cylindrical object made of a conductive material, and any surface can be used according to required characteristics. .. (4) A radio wave absorber configured such that a radio wave absorber having different characteristics is divided and attached to the surface of a spherical material made of a conductive material to form a radio wave absorber, and any surface can be used according to required characteristics. (5) A radio wave absorber characterized by comprising another material in place of the conductive material in the radio wave absorber according to any one of claims (1) to (4). (6) A radio wave absorber comprising a composite of a plurality of materials as the radio wave absorption material in the radio wave absorber according to any one of claims (1) to (4). (7) A radio wave absorption wall configured by collecting radio wave absorbers according to any one of claims (1) to (6). (8) Claim (1) and related (5),
A radio wave absorber characterized in that the radio wave absorber described in (6) is configured in a blind shape, and the radio wave incident surface can be changed according to required characteristics. (9) A radio wave absorber comprising a radio wave absorber according to any one of claims (1) to (6) and a rotating shaft, the radio wave incident surface being rotated according to required characteristics. (10) A radio wave absorber comprising the radio wave absorber according to any one of claims (1) to (6) in a flexible structure. (11) Claim (1) and related (5),
(6) A radio wave absorber having a folding door structure. (12) The electromagnetic wave absorber according to claims (10) and (11) is combined with a guide rail so that the front and the back of the electromagnetic wave absorber can be interchanged to meet the required electromagnetic wave absorption characteristics. How to do. (13) In the radio wave absorber according to any one of claims (1) to (12) and the method for constructing the same, the front surface on the radio wave incident side is
A radio wave absorber that is arranged so that another radio wave absorber is closely attached. (14) In the method of constructing a radio wave absorber according to claim (13), when another radio wave absorber is arranged, it does not necessarily adhere to each other, and a gap portion is provided and the spacing is changed to adjust the matching characteristics. A radio wave absorber configured to (15) A radio wave absorbing wall formed by further increasing the basic configuration of the radio wave absorber according to any one of claims (8) to (14). (16) The radio wave absorber, the radio wave absorption wall, and their construction method according to any one of claims (1) to (15), characterized by having a breathable structure. (17) A radio wave absorber, a radio wave absorbing wall according to any one of claims (1) to (16), and an anechoic chamber designed based on the construction method thereof.
JP40745190A 1990-10-15 1990-12-05 Radio wave absorber, radio wave absorbing structure, radio wave absorbing wall, and radio wave anechoic chamber Expired - Fee Related JP2941436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40745190A JP2941436B2 (en) 1990-10-15 1990-12-05 Radio wave absorber, radio wave absorbing structure, radio wave absorbing wall, and radio wave anechoic chamber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27588290 1990-10-15
JP2-275882 1990-10-15
JP40745190A JP2941436B2 (en) 1990-10-15 1990-12-05 Radio wave absorber, radio wave absorbing structure, radio wave absorbing wall, and radio wave anechoic chamber

Publications (2)

Publication Number Publication Date
JPH0537175A true JPH0537175A (en) 1993-02-12
JP2941436B2 JP2941436B2 (en) 1999-08-25

Family

ID=26551656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40745190A Expired - Fee Related JP2941436B2 (en) 1990-10-15 1990-12-05 Radio wave absorber, radio wave absorbing structure, radio wave absorbing wall, and radio wave anechoic chamber

Country Status (1)

Country Link
JP (1) JP2941436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811595A (en) * 2012-07-31 2012-12-05 深圳光启创新技术有限公司 Broadband wave-absorbing material
US9837725B2 (en) 2012-07-31 2017-12-05 Kuang-Chi Innovative Technology Ltd. Wide-frequency wave-absorbing metamaterial, electronic device and method for obtaining wide-frequency wave-absorbing metamaterial

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811595A (en) * 2012-07-31 2012-12-05 深圳光启创新技术有限公司 Broadband wave-absorbing material
CN102811595B (en) * 2012-07-31 2014-06-04 深圳光启创新技术有限公司 Broadband wave-absorbing material
US9837725B2 (en) 2012-07-31 2017-12-05 Kuang-Chi Innovative Technology Ltd. Wide-frequency wave-absorbing metamaterial, electronic device and method for obtaining wide-frequency wave-absorbing metamaterial

Also Published As

Publication number Publication date
JP2941436B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
Farooq et al. Polarization insensitive dual band frequency selective surface for RF shielding through glass windows
CN107240778B (en) Metamaterial antenna housing
KR101311212B1 (en) Eletromagnetic wave absorption device
KR101299223B1 (en) Opening and clossing type electromagnetic wave absorption device
US6538596B1 (en) Thin, broadband salisbury screen absorber
Unal et al. Effective electromagnetic shielding
CN107994353A (en) A kind of broadband Meta Materials Terahertz wave absorbing device
CN107834194B (en) Filtering antenna housing
CN207967319U (en) A kind of broadband Meta Materials Terahertz wave absorbing device
CN110581365B (en) Dislocation type three-dimensional metamaterial transparent wave absorber
JPH1168374A (en) Electromagnetic-wave shielding body, panel and blind
Sanz-Izquierdo et al. Wideband FSS for electromagnetic architecture in buildings
JP2006049354A (en) Electromagnetic wave absorber and building interior construction method
CN105789363B (en) It is a kind of based on the tunable absorption-type sensor construction of the super surface texture of Graphene and its application
JPH0537175A (en) Method for changing matching characteristics of electromagnetic wave absorber and electromagnetic wave absorbing wall employing its method
Hamid et al. Design and oblique incidence performance of a planar radome absorber
Murugan et al. Dual frequency selective transparent front doors for microwave oven with different opening areas
US20080160851A1 (en) Textiles Having a High Impedance Surface
KR101756816B1 (en) Scalable frequency selective surface with miniaturized unit cell
Ibrahim et al. Tunable FSS using PIN diodes and microcontroller
Ayad et al. Performances of low profile dipole antenna AMC-based surface using metamaterials structures
JP4004096B2 (en) Radio wave absorber
JP4259078B2 (en) Building materials
CN205960169U (en) Be applied to in RFID scheme frequency selective surface structure that reinforcing crowd read rate of accuracy
Kiani Passive, active and absorbing frequency selective surfaces for wireless communication applications

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090618

LAPS Cancellation because of no payment of annual fees