JPH0537087A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH0537087A
JPH0537087A JP19226491A JP19226491A JPH0537087A JP H0537087 A JPH0537087 A JP H0537087A JP 19226491 A JP19226491 A JP 19226491A JP 19226491 A JP19226491 A JP 19226491A JP H0537087 A JPH0537087 A JP H0537087A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
optical
convex portion
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19226491A
Other languages
Japanese (ja)
Inventor
Keiji Takaoka
圭児 高岡
Fumihiko Kuroda
文彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19226491A priority Critical patent/JPH0537087A/en
Publication of JPH0537087A publication Critical patent/JPH0537087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide an optical semiconductor device which can set with high precision a recess depth for installing a semiconductor laser provided on a semiconductor substrate and accurately optically couple a semiconductor laser and an optical fiber on the semiconductor substrate. CONSTITUTION:A recess 10a and a V-groove 10b are formed in a semiconductor substrate 10, where a semiconductor laser 30 is installed in the recess 10a, and an optical fiber 20 in the V-groove 10b to optically couple the semiconductor laser 30 and the optical fiber 20. The semiconductor substrate 10 is constituted of an adhesive substrate 10 comprising two silicon wafers 11, 13 adhered through a silicon oxide film 12: one wafer 13 of this adhesive substrate 10 is selectively etched until reaching the silicon oxide film 12 to form the recess 10a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上に半導体
レーザ等の光半導体素子と光ファイバ等の光部品とを設
置し、これらを光結合させた光半導体装置に係わり、特
に光半導体素子の基板への実装手段の改良をはかった光
半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device in which an optical semiconductor element such as a semiconductor laser and an optical component such as an optical fiber are installed on a semiconductor substrate and these are optically coupled to each other. The present invention relates to an optical semiconductor device having improved mounting means on a substrate.

【0002】[0002]

【従来の技術】従来、半導体レーザ,発光ダイオード,
フォトダイオード等の光半導体素子を光ファイバに結合
させるには、シリコン基板上に形成した溝に光ファイバ
を固定させ、この光ファイバと光結合されるように光半
導体素子をシリコン基板に取り付けるようにしている。
このようにすると、光ファイバの固定には、シリコン基
板を異方性エッチングで形成したV溝を利用できるの
で、基板に対する光ファイバの位置精度は高いものとな
る。
2. Description of the Related Art Conventionally, semiconductor lasers, light emitting diodes,
To couple an optical semiconductor device such as a photodiode to an optical fiber, fix the optical fiber in a groove formed on the silicon substrate and attach the optical semiconductor device to the silicon substrate so that the optical fiber is optically coupled. ing.
In this way, since the V-groove formed by anisotropic etching of the silicon substrate can be used for fixing the optical fiber, the positional accuracy of the optical fiber with respect to the substrate becomes high.

【0003】一方、光半導体素子を位置決め固定する方
法として、光半導体素子とシリコン基板の一方に凹部、
他方に凸部を形成し、それぞれを組み合わせて一体化す
る方法が知られている(特開昭55−157277号公
報)。このとき、凸部或いは凹部は、異方性エッチング
や異方性エピタキシャル成長等を用いて行うと精度良く
形成できる。
On the other hand, as a method for positioning and fixing the optical semiconductor element, a recess is formed in one of the optical semiconductor element and the silicon substrate.
A method is known in which a convex portion is formed on the other side, and the convex portions are combined and integrated (JP-A-55-157277). At this time, the convex portion or the concave portion can be accurately formed by using anisotropic etching, anisotropic epitaxial growth, or the like.

【0004】図7及び図8はこの種の装置の従来例を示
すもので、図7は全体構成を示す斜視図、図8(a)は
図7のA−A′断面図、図8(b)は図7のB−B′断
面図である。この従来例では、半導体レーザ3に台形状
の凸部3aを形成し、基板1には凸部3aと同じ大きさ
と形をした逆台形状の凹部1aを形成し、凸部3aと凹
部1aを正確に組み合わせることで、基板1と半導体レ
ーザ3の正確な位置合わせを行い、高精度のボンディン
グを行うことが可能である。また、光ファイバ2の位置
を決めるV溝1bと凹部1aの位置関係を正確に決めて
やれば、光ファイバ2と半導体レーザ3の光結合を高精
度に行うことができる。
7 and 8 show a conventional example of this type of apparatus. FIG. 7 is a perspective view showing the overall structure, FIG. 8A is a sectional view taken along the line AA 'of FIG. 7, and FIG. 7B) is a sectional view taken along line BB ′ of FIG. 7. In this conventional example, a trapezoidal convex portion 3a is formed on the semiconductor laser 3, an inverted trapezoidal concave portion 1a having the same size and shape as the convex portion 3a is formed on the substrate 1, and the convex portion 3a and the concave portion 1a are formed. By combining them correctly, it is possible to perform accurate alignment between the substrate 1 and the semiconductor laser 3 and perform highly accurate bonding. Further, if the positional relationship between the V groove 1b that determines the position of the optical fiber 2 and the concave portion 1a is accurately determined, the optical coupling between the optical fiber 2 and the semiconductor laser 3 can be performed with high accuracy.

【0005】この場合、半導体レーザ3の基板1上での
平面的な前後左右の位置合わせは、それぞれの凸部3a
と凹部1aを形成するための選択エッチングマスク等を
形成する際のリソグラフィの精度で決まるので、その精
度は非常に高い。これに対して、基板1と垂直方向の高
さの位置合わせは、凸部3a或いは凹部1aを形成する
際のエッチング条件やエピタキシャル成長条件によって
決まるが、これらの条件を正確に制御することは困難で
あり、位置合わせ精度は必ずしも高くない。
In this case, the front, rear, left and right alignment of the semiconductor laser 3 on the substrate 1 is performed by aligning the respective convex portions 3a.
The precision is very high because it depends on the precision of lithography when forming a selective etching mask or the like for forming the recess 1a. On the other hand, the vertical alignment with the substrate 1 is determined by the etching conditions and the epitaxial growth conditions when forming the protrusions 3a or the recesses 1a, but it is difficult to control these conditions accurately. Yes, the alignment accuracy is not necessarily high.

【0006】例えば、シリコン基板1に逆台形状の凹部
1aを、半導体レーザ3に台形状の凸部3aをそれぞれ
設けて組み合わせる場合、シリコン基板1の凹部1aが
半導体レーザ3の凸部3aの高さに比べ浅いと、半導体
レーザ3の発光部の高さが設計より高くなってしまう。
また逆に、シリコン基板1の凹部1aが半導体レーザ3
の凸部3aの高さに比べ低いと、凸部3aと凹部1aの
間に隙間ができてボンディングができなくなってしま
う。なお、同様の問題点は、半導体レーザに設ける凸部
の高さ或いは凹部の深さ制御性についても当てはまる。
For example, when the inverted trapezoidal concave portion 1a is provided on the silicon substrate 1 and the trapezoidal convex portion 3a is provided on the semiconductor laser 3, the concave portion 1a of the silicon substrate 1 is higher than the convex portion 3a of the semiconductor laser 3. If it is shallower than that, the height of the light emitting portion of the semiconductor laser 3 will be higher than designed.
On the contrary, the concave portion 1a of the silicon substrate 1 has the semiconductor laser 3
If the height is lower than the height of the convex portion 3a, a gap is formed between the convex portion 3a and the concave portion 1a, and bonding cannot be performed. The same problem applies to the controllability of the height of the convex portion or the depth of the concave portion provided in the semiconductor laser.

【0007】[0007]

【発明が解決しようとする課題】このように従来、半導
体基板上で半導体レーザ等の光半導体素子と光ファイバ
等の光部品とを光結合させた光半導体装置においては、
光半導体素子と半導体基板を組み合わせるために設ける
凸部の高さ或いは凹部の深さの制御性が悪く、光半導体
素子と光部品とを正確に光結合できなかったり、光半導
体素子と半導体基板がうまくボンディングできなかった
りする問題があった。
As described above, in the conventional optical semiconductor device in which an optical semiconductor element such as a semiconductor laser and an optical component such as an optical fiber are optically coupled on a semiconductor substrate,
The controllability of the height of the convex portion or the depth of the concave portion provided for combining the optical semiconductor element and the semiconductor substrate is poor, and the optical semiconductor element and the optical component cannot be accurately optically coupled, or the optical semiconductor element and the semiconductor substrate are There was a problem that bonding could not be done well.

【0008】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、半導体基板に設ける凹
部の深さ又は凸部の高さを高精度に設定することがで
き、半導体基板上で光半導体素子と光部品とを正確に光
結合させることができる光半導体装置を提供することに
ある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to set the depth of a concave portion or the height of a convex portion provided on a semiconductor substrate with high accuracy. An object of the present invention is to provide an optical semiconductor device capable of accurately optically coupling an optical semiconductor element and an optical component on a substrate.

【0009】[0009]

【課題を解決するための手段】本発明の骨子は、半導体
基板として、2枚の半導体ウェハを絶縁膜を介して張り
合わせた接着基板を用いることにある。
The essence of the present invention is to use, as a semiconductor substrate, an adhesive substrate in which two semiconductor wafers are bonded together via an insulating film.

【0010】即ち本発明は、半導体基板と光半導体素子
の一方に凹部を、他方に凸部を形成し、これら凹部と凸
部を嵌め合わせて半導体基板及び光半導体素子一体化
し、且つ半導体基板に形成又は該基板に固定された光部
品と光半導体素子とを光結合した光半導体装置におい
て、半導体基板を2枚の半導体ウェハを絶縁膜を介して
接着した接着基板で構成し、この接着基板の一方のウェ
ハを絶縁膜に達するまで選択エッチングして凹部又は凸
部を形成するようにしたものである。
That is, according to the present invention, a concave portion is formed on one of the semiconductor substrate and the optical semiconductor element, and a convex portion is formed on the other, and the concave portion and the convex portion are fitted together to integrate the semiconductor substrate and the optical semiconductor element, and the semiconductor substrate is formed. In an optical semiconductor device in which an optical component formed or fixed to the substrate and an optical semiconductor element are optically coupled to each other, the semiconductor substrate is composed of an adhesive substrate obtained by adhering two semiconductor wafers with an insulating film interposed therebetween. One of the wafers is selectively etched until it reaches the insulating film to form a concave portion or a convex portion.

【0011】また、本発明の望ましい実施態様として
は、次の (1)〜(3) が上げられる。 (1) 接着基板を構成する2枚の半導体ウェハとしてシリ
コンウェハを用い、絶縁膜としてシリコン酸化膜を用い
る。 (2) 光部品として光ファイバを用い、接着基板上に光フ
ァイバを固定するためのV溝を設ける。 (3) 光半導体素子の構成基板とシリコンウェハとを直接
接着し、素子構成基板の一部をシリコンウェハに達する
まで選択的にエッチングして、凹部又は凸部を設ける。
Further, the following (1) to (3) are mentioned as preferred embodiments of the present invention. (1) Silicon wafers are used as the two semiconductor wafers forming the adhesive substrate, and a silicon oxide film is used as the insulating film. (2) An optical fiber is used as an optical component, and a V groove for fixing the optical fiber is provided on the adhesive substrate. (3) The constituent substrate of the optical semiconductor element and the silicon wafer are directly adhered to each other, and a part of the element constituent substrate is selectively etched until reaching the silicon wafer to provide a concave portion or a convex portion.

【0012】[0012]

【作用】本発明では、光半導体素子と光部品を固定する
半導体基板として、2枚の半導体ウェハを絶縁膜を介し
て直接接着した接着基板を用いているために、凹部或い
は凸部の形成のための半導体のエッチングを絶縁膜の表
面で自動的に停止させることができる。このため、形成
する凹部の深さ或いは凸部の高さを接着する前の半導体
ウェハの厚さのみで決定することができる。従って、光
半導体素子の発光部の高さを設計通りに制御でき、光半
導体素子と光部品の光結合が容易となる。また、凸部と
凹部の間に隙間ができて、光半導体素子と半導体基板が
うまくボンディングできないということもなくなる。
In the present invention, as the semiconductor substrate for fixing the optical semiconductor element and the optical component, the adhesive substrate in which two semiconductor wafers are directly adhered via the insulating film is used. It is possible to automatically stop the etching of the semiconductor on the surface of the insulating film. Therefore, the depth of the concave portion to be formed or the height of the convex portion can be determined only by the thickness of the semiconductor wafer before being bonded. Therefore, the height of the light emitting portion of the optical semiconductor element can be controlled as designed, and the optical coupling between the optical semiconductor element and the optical component becomes easy. Further, there is no possibility that a gap is formed between the convex portion and the concave portion and the optical semiconductor element and the semiconductor substrate cannot be properly bonded.

【0013】同様に、光半導体素子を半導体ウェハに直
接接着した化合物半導体基板に形成すれば、光半導体素
子に設ける凸部或いは凹部についても、その高さ或いは
深さを選択性エッチングを用いて精度良く加工すること
ができる。
Similarly, if the optical semiconductor element is formed on the compound semiconductor substrate directly bonded to the semiconductor wafer, the height or depth of the convex portion or the concave portion provided on the optical semiconductor element can be accurately determined by selective etching. It can be processed well.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の第1の実施例に係わる光半
導体装置の概略構成を示す斜視図、図2は図1のA−
A′断面図である。図中10は2枚のシリコンウェハを
直接接着した接着基板であり、この接着基板10の上面
には、光半導体素子搭載のための凹部10aと光ファイ
バ設置のためのV溝10bが形成されている。接着基板
10の凹部10aには、この凹部10aに対応する凸部
30aが設けられた半導体レーザ(光半導体素子)30
が設置される。また、V溝10bには光ファイバ(光部
品)20が設置され、これにより半導体レーザ30と光
ファイバ20とが光結合されるものとなっている。
FIG. 1 is a perspective view showing a schematic structure of an optical semiconductor device according to the first embodiment of the present invention, and FIG. 2 is a line A- in FIG.
It is an A'sectional view. In the figure, 10 is an adhesive substrate in which two silicon wafers are directly adhered, and a concave portion 10a for mounting an optical semiconductor element and a V groove 10b for installing an optical fiber are formed on the upper surface of the adhesive substrate 10. There is. A semiconductor laser (optical semiconductor element) 30 in which a concave portion 10a of the adhesive substrate 10 is provided with a convex portion 30a corresponding to the concave portion 10a.
Is installed. Further, an optical fiber (optical component) 20 is installed in the V groove 10b so that the semiconductor laser 30 and the optical fiber 20 are optically coupled.

【0016】より具体的には、接着基板10は2枚のシ
リコンウェハ11,13をシリコン酸化膜12を介して
接着されたもので、この接着基板10の上面には凹部1
0aを含めて金・錫合金等の融着材料薄膜(電極)14
が形成されている。
More specifically, the adhesive substrate 10 is formed by adhering two silicon wafers 11 and 13 via a silicon oxide film 12, and the concave portion 1 is formed on the upper surface of the adhesive substrate 10.
Fusing material thin film (electrode) such as gold / tin alloy including 0a 14
Are formed.

【0017】凹部10aを有する接着基板10を形成す
るには、まず図3(a)に示すように、シリコンウェハ
11の上にシリコン酸化膜(SiO2 )12を形成し、
その上に別のシリコンウェハ13を張り合わせて熱処理
することで、接着基板10を作成する。次いで、図3
(b)に示すように、接着基板10上に窒化シリコンマ
スク17を堆積し、リソグラフィ技術で半導体レーザを
固定する部分に穴を開ける。そして、図3(c)に示す
ようにシリコンウェハ13を異方性エッチングする。そ
の後、窒化シリコンマスク17を除去することにより、
図3(d)に示すように、凹部10aを有する接着基板
10を得ることができる。
In order to form the adhesive substrate 10 having the recess 10a, a silicon oxide film (SiO 2 ) 12 is first formed on a silicon wafer 11 as shown in FIG.
Another silicon wafer 13 is bonded thereon and heat-treated to form the adhesive substrate 10. Then, FIG.
As shown in (b), a silicon nitride mask 17 is deposited on the adhesive substrate 10, and a hole is made in a portion where a semiconductor laser is fixed by a lithography technique. Then, as shown in FIG. 3C, the silicon wafer 13 is anisotropically etched. After that, by removing the silicon nitride mask 17,
As shown in FIG. 3D, the adhesive substrate 10 having the recess 10a can be obtained.

【0018】ここで、図3(c)に示すシリコンのエッ
チングは、シリコン酸化膜12に達すると自動的に停止
させることができる。従って、シリコンウェハ13の厚
さを半導体レーザ30の凸部30aの高さと一致するよ
うに調整しておけば、半導体レーザ30の発光部の接着
基板10に対する垂直方向の高さを一意的に決めること
ができる。また、窒化シリコンマスク17に幅の狭い開
口を設けておけば、光ファイバ20を設置するためのV
溝10bを同時に形成することができる。
Here, the etching of silicon shown in FIG. 3C can be automatically stopped when the silicon oxide film 12 is reached. Therefore, if the thickness of the silicon wafer 13 is adjusted to match the height of the convex portion 30a of the semiconductor laser 30, the vertical height of the light emitting portion of the semiconductor laser 30 with respect to the adhesive substrate 10 is uniquely determined. be able to. If a narrow opening is provided in the silicon nitride mask 17, V for installing the optical fiber 20 can be provided.
The groove 10b can be formed at the same time.

【0019】一方、半導体レーザ30は、ダブルヘテロ
構造を有するInGaAsP系のレーザ(発振波長 1.3
μm)であり、n−InP基板31上にn−InPクラ
ッド層32,ノンドープInGaAsP活性層33,p
−InPクラッド層34及びInGaAsコンタクト層
35からなる凸部30aを形成し、この凸部30a側に
ストライプ開口を有するシリコン酸化膜(SiO2 )3
6及びAu/AuZnからなるp側電極37を形成し、
さらに基板31の下面にAu/AuGeからなるn側電
極38を形成して構成されている。なお、この半導体レ
ーザ30の各層32〜35は、n−InP基板31上に
ストライプ状の開口を有するSiO2 マスク(図示せ
ず)を設け、有機金属気相成長法を用いて選択的に結晶
成長した。そして、半導体レーザ30はその凸部30a
側を下にし、接着基板10の凹部10aに凸部30aが
嵌め込まれるようにして固定され、半導体レーザ30側
のの電極37と接着基板10側の電極14とがボンディ
ング接続されるものとなってる。
On the other hand, the semiconductor laser 30 is an InGaAsP type laser (oscillation wavelength 1.3
μm) on the n-InP substrate 31, the n-InP clad layer 32, the non-doped InGaAsP active layer 33, p.
A silicon oxide film (SiO 2 ) 3 having a convex portion 30a formed of the InP clad layer 34 and the InGaAs contact layer 35 and having a stripe opening on the convex portion 30a side.
6 and Au / AuZn to form a p-side electrode 37,
Further, an n-side electrode 38 made of Au / AuGe is formed on the lower surface of the substrate 31. Each of the layers 32 to 35 of the semiconductor laser 30 is selectively crystallized by using a metal organic chemical vapor deposition method by providing a SiO 2 mask (not shown) having a stripe-shaped opening on the n-InP substrate 31. grown. The semiconductor laser 30 has a convex portion 30a.
With the side facing down, the convex portion 30a is fixed so as to be fitted into the concave portion 10a of the adhesive substrate 10, and the electrode 37 on the semiconductor laser 30 side and the electrode 14 on the adhesive substrate 10 side are bonded and connected. .

【0020】このように本実施例によれば、半導体基板
として2枚のシリコンウェハ11,13をシリコン酸化
膜12を介して接着した接着基板10を用い、一方のシ
リコンウェハ13をシリコン酸化膜12に達するまで選
択エッチングして凹部10aを設けているので、この凹
部10aの深さを制御性良く設定することができる。こ
のため、基板10に対して半導体レーザ30を、水平方
向の位置合わせ精度と共に、垂直方向の位置合わせ精度
も極めて高くすることができる。従って、基板10上で
光結合させた光ファイバ20と半導体レーザ30を有す
る光半導体装置を容易に製造できると共に、製造歩留り
を著しく向上させることができる。
As described above, according to this embodiment, as the semiconductor substrate, the adhesive substrate 10 in which the two silicon wafers 11 and 13 are adhered via the silicon oxide film 12 is used, and one silicon wafer 13 is attached to the silicon oxide film 12. Since the recesses 10a are provided by selective etching until the depth reaches, it is possible to set the depth of the recesses 10a with good controllability. For this reason, the semiconductor laser 30 with respect to the substrate 10 can have extremely high alignment accuracy in the vertical direction as well as alignment accuracy in the horizontal direction. Therefore, an optical semiconductor device having the optical fiber 20 and the semiconductor laser 30 optically coupled on the substrate 10 can be easily manufactured, and the manufacturing yield can be remarkably improved.

【0021】図4は、本発明の第2の実施例に係わる光
半導体装置の概略構成を示す断面図である。なお、図2
と同一部分には同一符号を付して、その詳しい説明は省
略する。
FIG. 4 is a sectional view showing a schematic structure of an optical semiconductor device according to the second embodiment of the present invention. Note that FIG.
The same parts as those of the above are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0022】この実施例が、先に説明した第1の実施例
と異なる点は、基板10側に凸部10cを設け、半導体
レーザ30側に凹部30bを設けたことにある。接着基
板10上に凸部10cを形成するには第1の実施例と同
様にして行えばよい。一方半導体レーザ30に凹部30
bを形成するには、通常の半導体レーザ構造ウェハ(本
実施例の場合は31〜35)の上にInP層39を成長
し、ストライプ状の開口部を有するSiO2 マスクを形
成し、開口部のInP層39を異方性選択エッチングす
ることで作成できる。
This embodiment is different from the first embodiment described above in that the convex portion 10c is provided on the substrate 10 side and the concave portion 30b is provided on the semiconductor laser 30 side. The protrusion 10c may be formed on the adhesive substrate 10 in the same manner as in the first embodiment. On the other hand, the recess 30 is formed in the semiconductor laser 30.
To form b, an InP layer 39 is grown on a normal semiconductor laser structure wafer (31 to 35 in this embodiment), an SiO 2 mask having stripe-shaped openings is formed, and the openings are formed. The InP layer 39 can be formed by anisotropic selective etching.

【0023】このような構成であっても、2枚のシリコ
ンウェハ11,13をシリコン酸化膜12を介して接着
した接着基板10を用いることにより、接着基板10に
設ける凸部10cの高さを制御性良く設定することがで
きる。従って、先の第1の実施例と同様の効果が得られ
る。
Even with such a structure, by using the adhesive substrate 10 in which two silicon wafers 11 and 13 are adhered via the silicon oxide film 12, the height of the convex portion 10c provided on the adhesive substrate 10 can be increased. It can be set with good controllability. Therefore, the same effect as that of the first embodiment can be obtained.

【0024】図5は、本発明の第3の実施例に係わる光
半導体装置の製造工程を示す断面図である。なお、この
実施例では光半導体素子の細部については図示しない
が、図2に示すものとほぼ同様である。
FIG. 5 is a sectional view showing a manufacturing process of an optical semiconductor device according to the third embodiment of the present invention. Although details of the optical semiconductor element are not shown in this embodiment, they are almost the same as those shown in FIG.

【0025】まず、図5(a)に示すように、Siウェ
ハ51上に直接接着されたInP基板31上に、第1の
実施例と同様にしてダブルヘテロ接合を形成して、半導
体レーザ30を作成する。この構造だと、半導体レーザ
30の凸部30aをエッチングによって形成することが
できる。即ち、図5(b)に示すように、InP基板3
1(より正確には、基板31,この上に形成された各層
32〜35,シリコン酸化膜36及び電極37)をスト
ライプ状に残すように選択的にエッチングし、残ったI
nP基板31からなる凸部30aを形成する。
First, as shown in FIG. 5A, a double heterojunction is formed on the InP substrate 31 directly bonded on the Si wafer 51 in the same manner as in the first embodiment, and the semiconductor laser 30 is formed. To create. With this structure, the convex portion 30a of the semiconductor laser 30 can be formed by etching. That is, as shown in FIG. 5B, the InP substrate 3
1 (more accurately, the substrate 31, the layers 32 to 35, the silicon oxide film 36, and the electrode 37 formed on the substrate 31) are selectively etched so as to leave a stripe shape.
The convex portion 30a made of the nP substrate 31 is formed.

【0026】この場合、InP/Siの界面でエッチン
グを自動的に停止させることができるので、半導体レー
ザ30中での発光部の高さをInP基板31の厚さを調
整することで正確に制御することができる。なお、半導
体レーザ30を作成するためのエピタキシャル成長工程
は、上記のエッチング工程の前後どちらででも可能であ
る。
In this case, since the etching can be automatically stopped at the InP / Si interface, the height of the light emitting portion in the semiconductor laser 30 can be accurately controlled by adjusting the thickness of the InP substrate 31. can do. The epitaxial growth process for producing the semiconductor laser 30 can be performed either before or after the etching process.

【0027】このようにして作成された、凸部30aを
有する半導体レーザ30を、図5(c)に示すように接
着基板10の凹部10aに設置することにより、第1の
実施例と同様に光半導体装置が完成する。
The semiconductor laser 30 having the convex portion 30a thus formed is placed in the concave portion 10a of the adhesive substrate 10 as shown in FIG. 5C, so that the same operation as in the first embodiment is performed. The optical semiconductor device is completed.

【0028】図6は、本発明の第4の実施例に係わる光
半導体装置の製造工程を示す断面図である。この実施例
が第3の実施例と異なる点は、半導体レーザ側に凹部を
設けたことにある。
FIG. 6 is a sectional view showing a manufacturing process of an optical semiconductor device according to the fourth embodiment of the present invention. This embodiment differs from the third embodiment in that a recess is provided on the semiconductor laser side.

【0029】まず、図6(a)に示すように、Siウェ
ハ51に直接接着されたInP基板31上にレーザ素子
を作成する。次いで、図6(b)に示すように、InP
基板31の一部を選択エッチングして凹部30bを形成
する。次いで、凹部30bを有する半導体レーザ30を
図6(c)に示すように、接着基板10の凸部10cに
設置することにより、第2の実施例と同様に光半導体装
置が完成する。
First, as shown in FIG. 6A, a laser element is formed on the InP substrate 31 directly bonded to the Si wafer 51. Then, as shown in FIG.
Part of the substrate 31 is selectively etched to form the recess 30b. Next, as shown in FIG. 6C, the semiconductor laser 30 having the concave portion 30b is placed on the convex portion 10c of the adhesive substrate 10 to complete the optical semiconductor device as in the second embodiment.

【0030】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では、光半導体素子として半
導体レーザを用いたが、これに限らず、発光ダイオー
ド,フォトダイオード等を用いることもできる。また、
光部品としては、光ファイバに限らず、半導体基板上に
固定する他の光半導体素子を用いることもでき、さらに
は半導体基板自体に形成する光導波路に適用することも
可能である。また、接着基板を構成する半導体ウェハは
シリコンに限るものではなく、直接接着可能な半導体で
あればよい。さらに、半導体ウェハ間に介在する絶縁膜
はSiO2 に限らず、SiON,Si3 4 等でもよ
い。その他、本発明の要旨を逸脱しない範囲で、種々変
形して実施することができる。
The present invention is not limited to the above embodiments. In the embodiment, the semiconductor laser is used as the optical semiconductor element, but the present invention is not limited to this, and a light emitting diode, a photodiode or the like may be used. Also,
The optical component is not limited to the optical fiber, but other optical semiconductor elements fixed on the semiconductor substrate can be used, and further, it can be applied to an optical waveguide formed on the semiconductor substrate itself. The semiconductor wafer forming the adhesive substrate is not limited to silicon, and any semiconductor that can be directly adhered may be used. Further, the insulating film interposed between the semiconductor wafers is not limited to SiO 2 and may be SiON, Si 3 N 4 or the like. In addition, various modifications can be made without departing from the scope of the present invention.

【0031】[0031]

【発明の効果】以上詳述したように本発明によれば、光
半導体素子及びこれに光結合する光部品を搭載する半導
体基板として、2枚の半導体ウェハを絶縁膜を介して張
り合わせた接着基板を用いることにより、半導体基板に
設ける凹部の深さ又は凸部の高さを高精度に設定するこ
とができ、光半導体素子と光部品とを正確に光結合させ
ることが可能となる。
As described above in detail, according to the present invention, as a semiconductor substrate on which an optical semiconductor element and an optical component optically coupled to the optical semiconductor element are mounted, two semiconductor wafers are bonded to each other with an insulating film interposed therebetween. By using, it is possible to set the depth of the concave portion or the height of the convex portion provided on the semiconductor substrate with high accuracy, and it is possible to accurately optically couple the optical semiconductor element and the optical component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係わる光半導体装置の
概略構成を示す斜視図、
FIG. 1 is a perspective view showing a schematic configuration of an optical semiconductor device according to a first embodiment of the present invention,

【図2】図1のA−A′断面図、2 is a sectional view taken along the line AA ′ of FIG.

【図3】第1の実施例に用いた接着基板の製造工程を示
す断面図、
FIG. 3 is a cross-sectional view showing a manufacturing process of the adhesive substrate used in the first embodiment,

【図4】本発明の第2の実施例に係わる光半導体装置の
概略構成を示す断面図、
FIG. 4 is a sectional view showing a schematic configuration of an optical semiconductor device according to a second embodiment of the present invention,

【図5】本発明の第3の実施例に係わる光半導体装置の
製造工程を示す断面図、
FIG. 5 is a sectional view showing a manufacturing process of an optical semiconductor device according to a third embodiment of the present invention,

【図6】本発明の第4の実施例に係わる光半導体装置の
製造工程を示す断面図、
FIG. 6 is a sectional view showing a manufacturing process of an optical semiconductor device according to a fourth embodiment of the present invention,

【図7】従来の光半導体装置の概略構成を示す斜視図、FIG. 7 is a perspective view showing a schematic configuration of a conventional optical semiconductor device,

【図8】図7のA−A′断面及びB−B′断面を示す
図。
FIG. 8 is a view showing a cross section taken along the line AA ′ and the cross section taken along the line BB ′ of FIG. 7;

【符号の説明】[Explanation of symbols]

10…接着基板、 10a…凹部、 10b…V溝、 10c…凸部、 11,13,51…シリコンウェハ(半導体ウェハ)、 12…シリコン酸化膜、 17…窒化シリコンマスク、 20…光ファイバ(光部品)、 30…半導体レーザ(光半導体素子)、 30a…凸部、 30b…凹部。 10 ... Adhesive substrate, 10a ... Recessed portion, 10b ... V groove, 10c ... Convex portion, 11, 13, 51 ... Silicon wafer (semiconductor wafer), 12 ... Silicon oxide film, 17 ... Silicon nitride mask, 20 ... Optical fiber (optical Parts), 30 ... semiconductor laser (optical semiconductor element), 30a ... convex portion, 30b ... concave portion.

Claims (1)

【特許請求の範囲】 【請求項1】2枚の半導体ウェハを絶縁膜を介して接着
してなり、一方のウェハを絶縁膜に達するまで選択エッ
チングして凹部又は凸部が形成された接着基板と、この
接着基板の凹部又は凸部に対応する凸部又は凹部を有
し、凹部と凸部を嵌め合わせて該基板と一体化された光
半導体素子と、前記基板に形成又は該基板に固定され、
前記光半導体素子と光結合された光部品とを具備してな
ることを特徴とする光半導体装置。
Claim: What is claimed is: 1. An adhesive substrate comprising two semiconductor wafers bonded together via an insulating film, one wafer being selectively etched until reaching the insulating film to form a concave portion or a convex portion. And an optical semiconductor element which has a convex portion or a concave portion corresponding to the concave portion or the convex portion of the adhesive substrate and which is integrated with the substrate by fitting the concave portion and the convex portion, and formed on the substrate or fixed to the substrate Was
An optical semiconductor device comprising the optical semiconductor element and an optical component optically coupled.
JP19226491A 1991-07-31 1991-07-31 Optical semiconductor device Pending JPH0537087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19226491A JPH0537087A (en) 1991-07-31 1991-07-31 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19226491A JPH0537087A (en) 1991-07-31 1991-07-31 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH0537087A true JPH0537087A (en) 1993-02-12

Family

ID=16288395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19226491A Pending JPH0537087A (en) 1991-07-31 1991-07-31 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0537087A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334274A (en) * 1993-05-07 1994-12-02 Xerox Corp Multi-diode laser array
WO1995013638A1 (en) * 1993-11-08 1995-05-18 International Business Machines Corporation Hybrid external coupled cavity semiconductor laser device
WO1998015995A1 (en) * 1996-10-09 1998-04-16 The Furukawa Electric Co., Ltd. Optical semiconductor module
JP2002076498A (en) * 2000-09-01 2002-03-15 Kyocera Corp Optical components mounting substrate and optical module using the same
US7679097B2 (en) 2004-10-21 2010-03-16 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
US8383182B2 (en) 2007-07-11 2013-02-26 Marie B. Kraft Tofu prepper
GB2526329A (en) * 2014-05-21 2015-11-25 Tofuture Ltd A tofu press and method of removing liquid from tofu

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334274A (en) * 1993-05-07 1994-12-02 Xerox Corp Multi-diode laser array
WO1995013638A1 (en) * 1993-11-08 1995-05-18 International Business Machines Corporation Hybrid external coupled cavity semiconductor laser device
WO1998015995A1 (en) * 1996-10-09 1998-04-16 The Furukawa Electric Co., Ltd. Optical semiconductor module
JP2002076498A (en) * 2000-09-01 2002-03-15 Kyocera Corp Optical components mounting substrate and optical module using the same
US7679097B2 (en) 2004-10-21 2010-03-16 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
USRE44163E1 (en) 2004-10-21 2013-04-23 Nichia Corporation Semiconductor light emitting device and method for manufacturing the same
US8383182B2 (en) 2007-07-11 2013-02-26 Marie B. Kraft Tofu prepper
GB2526329A (en) * 2014-05-21 2015-11-25 Tofuture Ltd A tofu press and method of removing liquid from tofu
GB2526329B (en) * 2014-05-21 2016-07-20 Tofuture Ltd A tofu press and method of removing liquid from tofu

Similar Documents

Publication Publication Date Title
JP3117107B2 (en) Assembly structure of optical integrated circuit device
US5434939A (en) Optical fiber module with surface emitting laser
EP3308206B1 (en) Self-alignment for apparatus comprising photonic device
US6300151B1 (en) Method for manufacturing laser diode chip, optical transmitting/receiving module and method for aligning positions thereof
US20230261432A1 (en) Techniques for laser alignment in photonic integrated circuits
US8563342B2 (en) Method of making semiconductor optical integrated device by alternately arranging spacers with integrated device arrays
JPH06334274A (en) Multi-diode laser array
JP2539089B2 (en) Semiconductor laser amplifier and semiconductor laser amplifier
JPH0537087A (en) Optical semiconductor device
US5422905A (en) Closely spaced dual diode lasers
JP2019134058A (en) Optical semiconductor element and optical module
JP2009543368A (en) Surface emitting device implementation
JPH08110446A (en) Light transmission module
EP1057060A1 (en) On-chip alignment fiducials for surface emitting devices
JPH06160676A (en) Manufacture of semiconductor laser module
JP2002289959A (en) Semiconductor optical element and manufacturing method therefor
JPS6119187A (en) Optical integrated circuit element
JP2000292822A (en) Optical module
JPS6375711A (en) Optical coupling structure
JPS6150387A (en) Semiconductor light emitting device
JPH06250049A (en) Optical transmission module and its production