JPH053678A - Dc/ac power supply - Google Patents

Dc/ac power supply

Info

Publication number
JPH053678A
JPH053678A JP3152938A JP15293891A JPH053678A JP H053678 A JPH053678 A JP H053678A JP 3152938 A JP3152938 A JP 3152938A JP 15293891 A JP15293891 A JP 15293891A JP H053678 A JPH053678 A JP H053678A
Authority
JP
Japan
Prior art keywords
voltage
current
power supply
control section
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3152938A
Other languages
Japanese (ja)
Other versions
JP3015512B2 (en
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP3152938A priority Critical patent/JP3015512B2/en
Publication of JPH053678A publication Critical patent/JPH053678A/en
Application granted granted Critical
Publication of JP3015512B2 publication Critical patent/JP3015512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To restrict peak factor of current being fed from a DC power supply regardless of fluctuation of AC load by providing a voltage control means for outputting a current reference corresponding with a voltage difference and for varying the limit value of current reference, and means for controlling the current being fed from the DC power supply. CONSTITUTION:A voltage control section 12 compares the voltage Vd of a capacitor 7 detected at a voltage detecting section 16 with a reference voltage VR and outputs a current reference I'. A current control section 25 compares the output current id from a diode bridge 5 detected through a current detector 29 with the current reference I'd and a PWM control section 15 controls MOSFETs 3, 4 to reduce current difference. A limiter 24 limits the output value of the voltage control section 12 and when the current reference I'd exceeds an input signal (f) to the limiter 24, input to the voltage control section 12 is offset to limit the I'd to the value of (f). A function unit 23 outputs a current limit signal (f) corresponding with the difference between the reference voltage VR and a voltage Vdx detected at the voltage detecting section 16, and the current limit signal (f) is fed to the limiter 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

[発明の目的] [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は、直流電源から効率良く
交流電源を得るように改良したDC/AC電源装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC / AC power supply device improved to efficiently obtain an AC power supply from a DC power supply.

【0002】[0002]

【従来の技術】バッテリー等の直流電源から交流電源を
得る装置は計算機の無停電電源装置(UPS)として用
いられているが、近年、自動車のバッテリー(一般にD
C12V又は24V)から交流100Vを得て一般の家
電製品を使用する要求が増加している。この種の従来の
DC/AC電源装置の構成を図5に示し、その動作を説
明する。
2. Description of the Related Art A device for obtaining an AC power source from a DC power source such as a battery is used as an uninterruptible power supply (UPS) for a computer.
There is an increasing demand to use general household appliances by obtaining AC 100V from C12V or 24V). The configuration of a conventional DC / AC power supply device of this type is shown in FIG. 5, and its operation will be described.

【0003】図5において、直流電源1は変圧器2のセ
ンタータップとMOSFET3,4の一端に加えられ、
MOSFET3,4を交互にスイッチすることにより変
圧器2の一次側に交流の高周波電力が供給される。
In FIG. 5, a DC power source 1 is added to the center tap of a transformer 2 and one ends of MOSFETs 3 and 4,
By alternatingly switching the MOSFETs 3 and 4, alternating high frequency power is supplied to the primary side of the transformer 2.

【0004】変圧器2の二次側電圧はダイオードブリッ
ジ5により整流され、リアクトル6、コンデンサ7によ
り平滑化された第2の直流電圧が得られる。この第2の
直流電圧はインバータブリッジ8によりPWM制御さ
れ、正弦波に近い波形で出力され、リアクトル9、コン
デンサ10により高調波を除去した交流出力を得る。な
お、インバータ制御部22はインバータブリッジ8のP
WM制御を行うものであるが本発明に直接関係しないの
で詳細説明は省略する。
The secondary side voltage of the transformer 2 is rectified by the diode bridge 5, and a second DC voltage smoothed by the reactor 6 and the capacitor 7 is obtained. This second DC voltage is PWM-controlled by the inverter bridge 8 and output in a waveform close to a sine wave, and an AC output from which harmonics are removed by the reactor 9 and the capacitor 10 is obtained. In addition, the inverter control unit 22 uses the P of the inverter bridge 8.
Although WM control is performed, it is not directly related to the present invention, and therefore detailed description thereof is omitted.

【0005】電圧制御部12は、電圧検出部16で検出
されたコンデンサ7の電圧Vd と一定の基準電圧VR
を比較しPWM制御部15を介して電圧偏差が減少する
ようにMOSFET3,4を制御する。
[0005] Voltage controller 12, voltage detector 16 as a voltage difference over the voltage V d is compared with a constant reference voltage V R PWM controller 15 of the capacitor 7 detected decreases in MOSFET 3, Control 4

【0006】電流制限部20は、変流器18、ダイオー
ド19を介して検出された変圧器2の出力電流Iaxと電
流制限値IL を比較して所定電流以上のときPWM制御
部15の入力信号を制限して出力電流Iaxを制限する。
The current limiting section 20 compares the output current I ax of the transformer 2 detected via the current transformer 18 and the diode 19 with the current limiting value I L, and when the current is a predetermined current or more, the PWM controlling section 15 Limit the input signal to limit the output current I ax .

【0007】この従来装置が力率100%の負荷に電力
を供給しているときの各部の波形を図6に示す。この場
合、交流の出力電圧Va と出力電流Ia は同相で単相交
流出力のとき、瞬時電力P(t)は sin2 (wt)の関
数となり図2のPa に示すように(1−cos2wt)/2
の波形となる。図5の制御は一般にDC/DCコンバー
タに採用されている方式でダイオードブリッジ5の左側
は電圧源とみなされるような制御となっている。
FIG. 6 shows the waveform of each part when this conventional device is supplying power to a load having a power factor of 100%. In this case, when the AC output voltage V a and the output current I a are in phase and a single-phase AC output is obtained, the instantaneous power P (t) is sin 2 It becomes a function of (wt) and becomes (1-cos2wt) / 2 as shown in P a of FIG.
Becomes the waveform of. The control shown in FIG. 5 is generally adopted in a DC / DC converter, and the left side of the diode bridge 5 is regarded as a voltage source.

【0008】このような制御では負荷の瞬時電力が図6
のPa の波形のように発生すると直流電源1からiDC
ような類似波形の電流を流し直流電圧Vd はほとんど変
化しないように制御される。一般のDC/DCコンバー
タの負荷は直流であるので瞬時電力の変動は少なく従来
の方式に問題はなかった。
In such control, the instantaneous power of the load is shown in FIG.
When it is generated like the waveform of P a , a current having a similar waveform such as i DC is made to flow from the DC power supply 1 and the DC voltage V d is controlled so that it hardly changes. Since the load of a general DC / DC converter is direct current, the fluctuation of the instantaneous power is small and the conventional method has no problem.

【0009】[0009]

【発明が解決しようとする課題】ところがDC/AC電
源装置では交流出力なので負荷の瞬時電力は変化し、力
率100%において変動電力は最大となる。
However, in the DC / AC power supply device, since the AC output is an AC output, the instantaneous power of the load changes, and the variable power becomes maximum at a power factor of 100%.

【0010】この変動電力を直流電源1から供給するた
めにiDCが変動して流れるとその平均値に対する実効
値、すなわち波形率が大きくなり電力損失が増大すると
いう問題である。iDCの実効電流をirms とすると損失
(主に銅損)はi2 rms に比例し平滑直流時の損失に対
して波形率の2乗倍となる。
When i DC fluctuates and flows in order to supply this fluctuating power from the DC power supply 1, the effective value with respect to the average value, that is, the waveform rate becomes large and the power loss increases. When the effective current of i DC is i rms , the loss (mainly copper loss) is proportional to i 2 rms, and is the square rate of the waveform ratio with respect to the loss at smooth DC.

【0011】例えば全波整流波形では波形率は1.1で
あるので平滑直流に対して損失は20%程度増加する。
また、半波整流波形では波形率は2.2であり、損失は
約5倍となる。図6のiDCの波形は半波整流波形に近い
ので損失は約5倍となる。このため、DC/DCコンバ
ータの制御方式をDC/AC電源装置に用いた図5の従
来装置は効率が4〜5%低下する欠点がある。
For example, in the full-wave rectified waveform, the waveform ratio is 1.1, so the loss increases by about 20% with respect to the smooth DC.
In the half-wave rectified waveform, the waveform ratio is 2.2, and the loss is about 5 times. Since the iDC waveform in FIG. 6 is close to a half-wave rectified waveform, the loss is about 5 times. For this reason, the conventional device of FIG. 5, which uses the control system of the DC / DC converter for the DC / AC power supply device, has a drawback that the efficiency is lowered by 4 to 5%.

【0012】本発明は、上述の問題に鑑みてなされたも
ので、その目的とするところは、交流負荷の瞬時電力が
変動する場合でも、直流電源から供給する電流の波高率
が大きくならないように制御して損失を減少させ効率の
高いDC/AC電源装置を提供することにある。 [発明の構成]
The present invention has been made in view of the above problems, and its object is to prevent the crest factor of the current supplied from the DC power supply from increasing even when the instantaneous power of the AC load changes. An object of the present invention is to provide a highly efficient DC / AC power supply device that is controlled to reduce loss. [Constitution of Invention]

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、直流電源の電圧を高周波電圧に変換し
て変圧器の一次側に供給するチョッパ手段を備え、該変
圧器の二次側の高周波電圧を整流して第2の直流電圧を
得、この第2の直流電圧から単相交流電圧を得るように
した装置において、該第2の直流電圧と基準電圧を比較
して電圧偏差に応じて電流基準を出力すると共に、該電
圧偏差に応じて該電流基準の制限値が変化する電圧制御
手段と、該電流基準に応じて該直流電源から供給される
電流を制御する電流制御手段を設けてDC/AC電源装
置を構成する。
In order to achieve the above object, the present invention comprises a chopper means for converting the voltage of a DC power supply into a high frequency voltage and supplying the high frequency voltage to the primary side of the transformer. In a device in which a high frequency voltage on the secondary side is rectified to obtain a second direct current voltage and a single-phase alternating current voltage is obtained from the second direct current voltage, the second direct current voltage is compared with a reference voltage. A voltage control unit that outputs a current reference according to the voltage deviation and changes the limit value of the current reference according to the voltage deviation, and a current that controls the current supplied from the DC power supply according to the current reference. A DC / AC power supply device is configured by providing control means.

【0014】[0014]

【作用】上記構成により、電圧偏差が小さいときは電流
制限値が小さく、電圧偏差が大きいときは電流制限値を
大きくするように動作させ、上記電流基準に応じて直流
電源から電流が供給され、該電流のピーク付近が電流制
限値に制限される。この作用により該電流の波形率が小
さく制御され損失が減少する。
With the above configuration, when the voltage deviation is small, the current limit value is small, and when the voltage deviation is large, the current limit value is increased, and the current is supplied from the DC power supply according to the current reference. The vicinity of the peak of the current is limited to the current limit value. Due to this action, the waveform ratio of the current is controlled to be small and the loss is reduced.

【0015】[0015]

【実施例】本発明の一実施例を図1に示す。図5と重複
する部分には同一番号を付して説明を省略する。図1に
おいて、電圧制御部12は電圧検出部16で検出したコ
ンデンサ7の電圧Vd と基準電圧VR を比較し電流基準
d * を出力する。
FIG. 1 shows an embodiment of the present invention. The same parts as those in FIG. 5 are designated by the same reference numerals and the description thereof will be omitted. In FIG. 1, the voltage control unit 12 compares the voltage V d of the capacitor 7 detected by the voltage detection unit 16 with the reference voltage V R and compares the current reference I d *. Is output.

【0016】電流制御部25は電流検出器29で検出し
たダイオードブリッジ5の出力電流id と電流基準Id
* を比較し電流偏差が減少する方向にPWM制御部15
を介してMOSFET3,4をPWM制御する。
The current controller 25 detects the output current i d of the diode bridge 5 detected by the current detector 29 and the current reference I d.
* PWM control section 15 in the direction of decreasing the current deviation
The MOSFETs 3 and 4 are PWM-controlled via.

【0017】リミッタ24は電圧制御部12の出力値を
制限するもので、電流基準Id * がリミッタ24に入力
される信号fを越えると電圧制御部12の入力を相殺し
d * を信号fの値に制限する。関数器23は基準電圧
R と電圧検出部16による検出電圧Vdxの偏差値に応
じて図2に示すような電流制限信号fを出力しリミッタ
24に入力する。
The limiter 24 limits the output value of the voltage controller 12, and the current reference I d *. Exceeds the signal f input to the limiter 24, the input of the voltage control unit 12 is canceled and I d * Is limited to the value of signal f. The function unit 23 outputs the current limiting signal f as shown in FIG. 2 according to the deviation value between the reference voltage V R and the detection voltage V dx by the voltage detection unit 16 and inputs it to the limiter 24.

【0018】上記構成とすることにより、VR −Vdx
偏差値に応じて電流基準Id * の最大値が制限され、軽
負荷で偏差値が小さいときは電流制限値も小さく、ま
た、重負荷で偏差値が大きいときは電流制限値も大きく
なる。これによりIdcの通電幅は図3に示すように全体
的に広がるように作用する。
With the above configuration, the current reference I d * is set according to the deviation value of V R -V dx . Is limited, and the current limit value is small when the deviation value is small under a light load, and the current limit value is large when the deviation value is large under a heavy load. As a result, the energization width of Idc acts so as to broaden as shown in FIG.

【0019】すなわち、交流出力の瞬時電力Pa は図3
に示すように大きく変動しているが電力のピーク付近は
主としてコンデンサ7から電力が供給され、直流電源1
から供給する電流iDCは電力のピーク付近(太線の部
分)が制限される。この作用により、負荷の軽重に無関
係にiDCの波形率を小さく(1.1以下)にすることが
できる。
That is, the instantaneous electric power P a of the AC output is shown in FIG.
Although it fluctuates greatly as shown in, power is supplied mainly from the capacitor 7 near the peak of the power, and the DC power supply 1
The current i DC supplied from is limited near the peak of power (thick line portion). By this action, the waveform ratio of i DC can be made small (1.1 or less) regardless of whether the load is light or heavy.

【0020】本実施例によれば、電圧制御の応答を早く
しても電流iDCのピーク値が制限され波形率が小さく制
御され、抵抗損が1/4〜1/5に減少し、高効率化し
たDC/AC電源装置を提供することができる。本発明
は、図4に示す第2実施例の構成に変形することができ
る。
According to this embodiment, the peak value of the current i DC is limited and the waveform ratio is controlled to be small even if the response of the voltage control is accelerated, and the resistance loss is reduced to ¼ to ⅕, It is possible to provide an efficient DC / AC power supply device. The present invention can be modified into the configuration of the second embodiment shown in FIG.

【0021】図4において、比例増幅器30は基準電圧
R とコンデンサ7の検出電圧Vdxの偏差値を比例増幅
して誤差電圧ΔVを出力する。制御増幅器12は比例積
分の増幅機能を有しその出力Id * はリミッタ24によ
り電流制限値fの値に制限される。関数器23は誤差電
圧ΔVを入力偏差値として図2のような関数値fを出力
しこれを電流制限値として動作する。これにより図1の
場合と同様の効果が得られる。なお、以上の説明では、
ダイオードブリッジ5の出力電流を検出する例で示した
が、変圧器2の二次側あるいは一次側の電流を検出する
ようにしてもよい。
In FIG. 4, the proportional amplifier 30 proportionally amplifies the deviation value between the reference voltage V R and the detection voltage V dx of the capacitor 7 and outputs the error voltage ΔV. The control amplifier 12 has a proportional-integral amplification function, and its output I d * Is limited to the value of the current limit value f by the limiter 24. The function unit 23 outputs the function value f as shown in FIG. 2 with the error voltage ΔV as the input deviation value and operates with the function value f as the current limit value. As a result, the same effect as in the case of FIG. 1 can be obtained. In the above explanation,
Although the example in which the output current of the diode bridge 5 is detected has been shown, the current on the secondary side or the primary side of the transformer 2 may be detected.

【0022】[0022]

【発明の効果】本発明によれば、負荷に供給する瞬時電
力が変動するDC/AC電源装置において、直流電源側
から供給する電流の波形率を小さく抑えることができ、
損失が少ない効率の向上したDC/AC電源装置を提供
することができる。
According to the present invention, in the DC / AC power supply device in which the instantaneous power supplied to the load fluctuates, the waveform rate of the current supplied from the DC power supply side can be suppressed to a small value.
It is possible to provide a DC / AC power supply device with reduced loss and improved efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment according to the present invention.

【図2】第1実施例の関数器23の特性図。FIG. 2 is a characteristic diagram of a function unit 23 according to the first embodiment.

【図3】第1実施例の動作を説明するための波形図。FIG. 3 is a waveform diagram for explaining the operation of the first embodiment.

【図4】本発明による第2実施例の要部構成図。FIG. 4 is a configuration diagram of a main part of a second embodiment according to the present invention.

【図5】従来装置の構成図。FIG. 5 is a configuration diagram of a conventional device.

【図6】従来装置の問題点を説明するための波形図。FIG. 6 is a waveform diagram for explaining problems of the conventional device.

【符号の説明】[Explanation of symbols]

1…直流電源、2…変圧器、3,4…MOSFET、5
…ダイオードブリッジ、6…リアクトル、7…コンデン
サ、8…インバータブリッジ、12…電圧制御部、15
…PWM制御部、16…電圧検出部、22…インバータ
制御部、23…関数器、24…リミッタ、25…電流制
御部、27…電流検出器、30…比例増幅器。
1 ... DC power supply, 2 ... transformer, 3, 4 ... MOSFET, 5
... diode bridge, 6 ... reactor, 7 ... capacitor, 8 ... inverter bridge, 12 ... voltage controller, 15
... PWM control section, 16 ... Voltage detection section, 22 ... Inverter control section, 23 ... Function unit, 24 ... Limiter, 25 ... Current control section, 27 ... Current detector, 30 ... Proportional amplifier.

Claims (1)

【特許請求の範囲】 【請求項1】 直流電源の電圧を高周波電圧に変換して
変圧器の一次側に供給するチョッパ手段を備え、該変圧
器の二次側の高周波電圧を整流して第2の直流電圧を
得、この第2の直流電圧から単相交流電圧を得るように
した装置において、該第2の直流電圧と基準電圧を比較
して電圧偏差に応じて電流基準を出力すると共に、該電
圧偏差に応じて該電流基準の制限値が変化する電圧制御
手段と、該電流基準に応じて該直流電源から供給される
電流を制御する電流制御手段を設けたことを特徴とする
DC/AC電源装置。
Claim: What is claimed is: 1. A chopper means for converting the voltage of a DC power supply into a high frequency voltage and supplying the high frequency voltage to the primary side of the transformer, and rectifying the high frequency voltage on the secondary side of the transformer. In a device that obtains a DC voltage of 2 and obtains a single-phase AC voltage from the second DC voltage, compares the second DC voltage with a reference voltage and outputs a current reference according to a voltage deviation. A DC control means for controlling a current supplied from the DC power supply according to the current reference, and a voltage control means for changing a limit value of the current reference according to the voltage deviation. / AC power supply.
JP3152938A 1991-06-25 1991-06-25 DC / AC power supply Expired - Lifetime JP3015512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152938A JP3015512B2 (en) 1991-06-25 1991-06-25 DC / AC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152938A JP3015512B2 (en) 1991-06-25 1991-06-25 DC / AC power supply

Publications (2)

Publication Number Publication Date
JPH053678A true JPH053678A (en) 1993-01-08
JP3015512B2 JP3015512B2 (en) 2000-03-06

Family

ID=15551435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152938A Expired - Lifetime JP3015512B2 (en) 1991-06-25 1991-06-25 DC / AC power supply

Country Status (1)

Country Link
JP (1) JP3015512B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595868B1 (en) * 2002-07-09 2006-07-03 로무 가부시키가이샤 Dc/dc converter
GB2434490A (en) * 2006-01-13 2007-07-25 Enecsys Ltd Power conditioning unit
WO2011114161A2 (en) 2010-03-19 2011-09-22 Enecsys Limited Power conditioning units
WO2011154720A2 (en) 2010-06-07 2011-12-15 Enecsys Limited Solar photovoltaic systems
CN102386780A (en) * 2011-09-14 2012-03-21 深圳航天科技创新研究院 Push-pull circuit of DC/DC (Direct Current/Direct Current) part
US8369113B2 (en) 2004-11-08 2013-02-05 Enecsys Limited Power conditioning unit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12027970B2 (en) 2019-01-09 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8111052B2 (en) 2008-03-24 2012-02-07 Solaredge Technologies Ltd. Zero voltage switching
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP2779251B1 (en) 2013-03-15 2019-02-27 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595868B1 (en) * 2002-07-09 2006-07-03 로무 가부시키가이샤 Dc/dc converter
US8369113B2 (en) 2004-11-08 2013-02-05 Enecsys Limited Power conditioning unit
US9831794B2 (en) 2004-11-08 2017-11-28 Solarcity Corporation Power conditioning unit with voltage converters
US9473038B2 (en) 2004-11-08 2016-10-18 Solarcity Corporation Power conditioning unit with voltage converters
US8971082B2 (en) 2004-11-08 2015-03-03 Enecsys Limited Power conditioning unit with voltage converters
US10033292B2 (en) 2004-11-08 2018-07-24 Solarcity Corporation Power conditioning unit with voltage converters
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
DE202007019355U1 (en) 2006-01-13 2011-12-09 Enecsys Ltd. Inverter unit
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
US8461809B2 (en) 2006-01-13 2013-06-11 Enecsys Limited Power conditioning unit
US10193467B2 (en) 2006-01-13 2019-01-29 Tesla, Inc. Power conditioning units
US8811047B2 (en) 2006-01-13 2014-08-19 Enecsys Limited Solar power conditioning unit
US9812980B2 (en) 2006-01-13 2017-11-07 Solarcity Corporation Power conditioning units
GB2434490B (en) * 2006-01-13 2009-04-01 Enecsys Ltd Power conditioning unit
GB2434490A (en) * 2006-01-13 2007-07-25 Enecsys Ltd Power conditioning unit
US9812985B2 (en) 2006-01-13 2017-11-07 Solarcity Corporation Solar power conditioning unit
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
WO2011114161A2 (en) 2010-03-19 2011-09-22 Enecsys Limited Power conditioning units
US9496803B2 (en) 2010-06-07 2016-11-15 Solarcity Corporation Solar photovoltaic system with maximized ripple voltage on storage capacitor
WO2011154720A2 (en) 2010-06-07 2011-12-15 Enecsys Limited Solar photovoltaic systems
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
CN102386780A (en) * 2011-09-14 2012-03-21 深圳航天科技创新研究院 Push-pull circuit of DC/DC (Direct Current/Direct Current) part
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US12032080B2 (en) 2012-04-05 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US12027849B2 (en) 2017-07-18 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US12027970B2 (en) 2019-01-09 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Also Published As

Publication number Publication date
JP3015512B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
JP3015512B2 (en) DC / AC power supply
JP2680494B2 (en) Single-phase AC power converter
US6055167A (en) Pulse width modulated boost converter integrated with power factor correction circuit
JPS6137864B2 (en)
JPH11127576A (en) Dc power supply device
WO2019003270A1 (en) Power conversion device, motor drive control device, fan, compressor, and air conditioner
JP4411845B2 (en) Parallel AC-DC converter
WO2006098000A1 (en) Converter
JPH11235040A (en) Power supply with three-phase high power factor converter
JP3196554B2 (en) Current mode switching stabilized power supply
JPH10174477A (en) Motor drive and air-conditioner employing it
JP6123371B2 (en) AC power supply device
JP3433412B2 (en) Regenerative energy processing method and regenerative energy processing device for inverter
TW494611B (en) Power circuit with smoothing choke coil inductance varying circuit
JP2990867B2 (en) Forward converter
JPH09247944A (en) Pwm control self-excited rectifier
JPH0783605B2 (en) Rectifier circuit controller
JP2572433B2 (en) Power supply for arc welding and cutting
KR102076588B1 (en) Multi-channel inverter type power conversion device for heater temperature control
JPH0715971A (en) Power conversion device
JPH0789742B2 (en) Power converter
JPH10127046A (en) Control circuit for step-up converter
JP2628059B2 (en) DC power supply
JP2726355B2 (en) Switching regulator
JPH062477Y2 (en) Power converter controller

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12