JP3015512B2 - Dc / ac power supply - Google Patents

Dc / ac power supply

Info

Publication number
JP3015512B2
JP3015512B2 JP15293891A JP15293891A JP3015512B2 JP 3015512 B2 JP3015512 B2 JP 3015512B2 JP 15293891 A JP15293891 A JP 15293891A JP 15293891 A JP15293891 A JP 15293891A JP 3015512 B2 JP3015512 B2 JP 3015512B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15293891A
Other languages
Japanese (ja)
Other versions
JPH053678A (en )
Inventor
千尋 岡土
Original Assignee
東芝エフエーシステムエンジニアリング株式会社
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [The purpose of the invention]

【0001】 [0001]

【産業上の利用分野】本発明は、直流電源から効率良く交流電源を得るように改良したDC/AC電源装置に関する。 The present invention relates to relates to efficiently DC / AC power supply was modified to obtain the AC power from the DC power source.

【0002】 [0002]

【従来の技術】バッテリー等の直流電源から交流電源を得る装置は計算機の無停電電源装置(UPS)として用いられているが、近年、自動車のバッテリー(一般にD Although the apparatus for obtaining an AC power from a DC power source such as the Related Art Battery used as an uninterruptible power supply of the computer (UPS), in recent years, car battery (typically D
C12V又は24V)から交流100Vを得て一般の家電製品を使用する要求が増加している。 Request to use the general home appliances from C12V or 24V) to obtain an AC 100V is increasing. この種の従来のDC/AC電源装置の構成を図5に示し、その動作を説明する。 Shows the structure of a conventional DC / AC power supplies of this type in FIG. 5, the operation thereof will be described.

【0003】図5において、直流電源1は変圧器2のセンタータップとMOSFET3,4の一端に加えられ、 [0003] In FIG. 5, the DC power source 1 is applied to one end of the center tap and MOSFET3,4 transformer 2,
MOSFET3,4を交互にスイッチすることにより変圧器2の一次側に交流の高周波電力が供給される。 A high frequency alternating current power to the primary side of the transformer 2 are supplied by switching alternately MOSFET3,4.

【0004】変圧器2の二次側電圧はダイオードブリッジ5により整流され、リアクトル6、コンデンサ7により平滑化された第2の直流電圧が得られる。 [0004] secondary voltage of the transformer 2 is rectified by the diode bridge 5, the reactor 6, a second DC voltage smoothed is obtained by the capacitor 7. この第2の直流電圧はインバータブリッジ8によりPWM制御され、正弦波に近い波形で出力され、リアクトル9、コンデンサ10により高調波を除去した交流出力を得る。 The second DC voltage is PWM controlled by the inverter bridge 8, are output waveform close to a sine wave, the reactor 9, to obtain an AC output obtained by removing harmonic by capacitor 10. なお、インバータ制御部22はインバータブリッジ8のP The inverter controller 22 P of inverter bridge 8
WM制御を行うものであるが本発明に直接関係しないので詳細説明は省略する。 Since it performs a WM control is not directly related to the present invention will not be described in detail.

【0005】電圧制御部12は、電圧検出部16で検出されたコンデンサ7の電圧V dと一定の基準電圧V Rとを比較しPWM制御部15を介して電圧偏差が減少するようにMOSFET3,4を制御する。 [0005] Voltage controller 12, voltage detector 16 as a voltage difference over the voltage V d is compared with a constant reference voltage V R PWM controller 15 of the capacitor 7 detected decreases in MOSFET 3, 4 to control.

【0006】電流制限部20は、変流器18、ダイオード19を介して検出された変圧器2の出力電流I axと電流制限値I Lを比較して所定電流以上のときPWM制御部15の入力信号を制限して出力電流I axを制限する。 [0006] Current limiting unit 20, current transformer 18, when more than a predetermined current by comparing the output current I ax and the current limit value I L of the transformer 2 detected via the diode 19 of the PWM control unit 15 limiting the input signal to limit the output current I ax.

【0007】この従来装置が力率100%の負荷に電力を供給しているときの各部の波形を図6に示す。 [0007] showing the waveforms of various portions when supplying power to the conventional apparatus for power factor load of 100% in Fig. この場合、交流の出力電圧V aと出力電流I aは同相で単相交流出力のとき、瞬時電力P(t)は sin 2 In this case, when the output voltage V a and the output current I a of the single-phase AC output in-phase AC, the instantaneous power P (t) is sin 2 (wt)の関数となり図2のP aに示すように(1−cos2wt)/2 As shown in P a function and becomes Figure 2 (wt) (1-cos2wt) / 2
の波形となる。 The waveform. 図5の制御は一般にDC/DCコンバータに採用されている方式でダイオードブリッジ5の左側は電圧源とみなされるような制御となっている。 Control of Figure 5 is generally to the left of the diode bridge 5 in a manner which is adopted in the DC / DC converter has a control may be regarded as a voltage source.

【0008】このような制御では負荷の瞬時電力が図6 [0008] instantaneous power of the load in such control 6
のP aの波形のように発生すると直流電源1からi DCのような類似波形の電流を流し直流電圧V dはほとんど変化しないように制御される。 The DC voltage V d to flow a current of similar waveform as the P a of i DC and generated from the DC power source 1 as shown in a waveform is controlled not substantially change. 一般のDC/DCコンバータの負荷は直流であるので瞬時電力の変動は少なく従来の方式に問題はなかった。 Load general DC / DC converter was not a problem with the conventional system less variation of the instantaneous power since it is a direct current.

【0009】 [0009]

【発明が解決しようとする課題】ところがDC/AC電源装置では交流出力なので負荷の瞬時電力は変化し、力率100%において変動電力は最大となる。 Instantaneous power of the load because the AC output is [0006] However DC / AC power supply varies, power fluctuation in the power factor of 100% is maximum.

【0010】この変動電力を直流電源1から供給するためにi DCが変動して流れるとその平均値に対する実効値、すなわち波形率が大きくなり電力損失が増大するという問題である。 [0010] flowing i DC is varied to provide the power fluctuation from the DC power source 1 rms for the average value, that is, a problem that the waveform factor becomes power loss increases greatly. DCの実効電流をi rmsとすると損失(主に銅損)はi 2 rmsに比例し平滑直流時の損失に対して波形率の2乗倍となる。 the effective current i DC loss and i rms (mainly copper loss) is 2 th power waveform index relative proportional loss during smoothing direct current i 2 rms.

【0011】例えば全波整流波形では波形率は1.1であるので平滑直流に対して損失は20%程度増加する。 [0011] For example loss for smoothing DC Waveform rate is 1.1 in the full-wave rectified waveform is increased about 20%.
また、半波整流波形では波形率は2.2であり、損失は約5倍となる。 The waveform rate is half-wave rectified waveform is 2.2, the loss is about 5 times. 図6のiDCの波形は半波整流波形に近いので損失は約5倍となる。 Loss since the waveform of iDC near half-wave rectified waveform of FIG. 6 is about 5 times. このため、DC/DCコンバータの制御方式をDC/AC電源装置に用いた図5の従来装置は効率が4〜5%低下する欠点がある。 Therefore, the conventional apparatus of FIG. 5 using the DC / DC converter control scheme in DC / AC power supply has the drawback that the efficiency is decreased 4-5%.

【0012】本発明は、上述の問題に鑑みてなされたもので、その目的とするところは、交流負荷の瞬時電力が変動する場合でも、直流電源から供給する電流の波高率が大きくならないように制御して損失を減少させ効率の高いDC/AC電源装置を提供することにある。 [0012] The present invention has been made in view of the above problems, and an object, even if the instantaneous power of the AC load varies, the crest factor of the current supplied from the DC power supply is not increased to provide a control with high DC / AC power supply efficiency to reduce the loss. [発明の構成] Configuration of the invention]

【0013】 [0013]

【課題を解決するための手段】上記の目的を達成するために、 請求項1に係る発明は、直流電源の電圧を高周波電圧に変換して変圧器の一次側に供給するチョッパ手段 To achieve the above object of the Invention The invention according to claim 1, chopper means for supplying to the primary side of the transformer converts the voltage of the DC power supply to the high frequency voltage
と、該変圧器の二次側の高周波電圧を整流する整流手段 If, rectifying means for rectifying the secondary side of the high-frequency voltage of the transformer
とを有し、この整流手段を介して整流された第2の直流電圧から単相交流電圧を得るようにした装置において、 Has the door, in the apparatus to obtain a single-phase AC voltage from the second DC voltage rectified through the rectifying means,
前記第2の直流電圧と基準電圧を比較して電圧偏差に応じて電流基準を出力すると共に、 前記電圧偏差に応じて It outputs a current reference in accordance with the voltage deviation by comparing the second DC voltage and the reference voltage, depending on the voltage deviation
前記電流基準の制限値が変化する電圧制御手段と、 この And voltage control means for limiting values of the current reference is changed, the
電圧制御手段からの電流基準と前記整流手段の出力電流 Output current of the current reference and said rectifying means from the voltage control means
とを比較して電流偏差に応じて制御信号を出力する電流 Current for outputting a control signal in response to the current deviation by comparing the preparative
制御手段と、この電流制御手段からの制御信号に基づい And control means, based on a control signal from the current control means
て、前記電流偏差が減少する方向に前記チョッパ手段を Te, said chopper means a direction in which the current deviation is reduced
制御するチョッパ制御手段とを備えたことを特徴とす It is characterized in that a control for the chopper control unit
That. また、請求項2に係る発明は、直流電源の電圧を高 The invention according to claim 2, high voltage of the DC power supply
周波電圧に変換して変圧器の一次側に供給するチョッパ Chopper supplied to the primary side of the transformer is converted into frequency voltage
手段と、該変圧器の二次側の高周波電圧を整流する整流 Rectifier for rectifying means, the secondary side of the high-frequency voltage of the transformer
手段とを有し、この整流手段を介して整流された第2の And means, a second rectified through the rectifying means
直流電圧から単相交流電圧を得るようにした装置におい Apparatus odor which to obtain a single-phase AC voltage from the DC voltage
て、前記第2の直流電圧と基準電圧を比較して電圧偏差 Te, voltage deviation by comparing the second DC voltage and the reference voltage
に応じて電流基準を出力すると共に、前記電圧偏差に応 It outputs a current reference in accordance with, response to the voltage difference
じて前記電流基準の制限値が変化する電圧制御手段と、 And voltage control means for limiting values of the current reference is changed Flip,
この電圧制御手段からの電流基準と前記変圧器の二次側 Secondary side of the transformer and current reference from the voltage control means
の電流とを比較して電流偏差に応じて制御信号を出力す To output the control signal in accordance with the current deviation by comparing the current
る電流制御手段と、この電流制御手段からの制御信号に A current control unit that, on the control signal from the current control means
基づいて、前記電流偏差が減少する方向に前記チョッパ Based on the chopper in the direction of the current deviation decreases
手段を制御するチョッパ制御手段とを備えたことを特徴 Characterized in that a chopper control means for controlling the means
とする。 To. 更に、請求項3に係る発明は、直流電源の電圧 Furthermore, the invention includes a DC power supply voltage according to claim 3
を高周波電圧に変換して変圧器の一次側に供給するチョ Cho and supplies to the primary side of the transformer is converted into a high frequency voltage
ッパ手段と、該変圧器の二次側の高周波電圧を整流する Rectifies the Tsu path means, the secondary side of the high-frequency voltage of the transformer
整流手段とを有し、この整流手段を介して整流された第 And a rectifying means, the rectified through the rectifying means
2の直流電圧から単相交流電圧を得るようにした装置に The device to obtain a single-phase AC voltage from the second DC voltage
おいて、前記第2の直流電圧と基準電圧を比較して電圧 Oite voltage by comparing said second DC voltage and the reference voltage
偏差に応じて電流基準を出力すると共に、前記電圧偏差 It outputs a current reference in accordance with the deviation, the voltage deviation
に応じて前記電流基準の制限値が変化する電圧制御手段 Voltage control means for limiting values of the current reference is changed in accordance with
と、この電圧制御手段からの電流基準と前記変圧器の一 When one current reference from this voltage control means of said transformer
次側の電流とを比較して電流偏差に応じて制御信号を出 Output a control signal in response to the current deviation is compared with the next side of the current
力する電流 制御手段と、この電流制御手段からの制御信 A current control means for force control signal from the current control means
号に基づいて、前記電流偏差が減少する方向に前記チョ Based on the item, said Cho in a direction in which the current deviation is reduced
ッパ手段を制御するチョッパ制御手段とを備えたことを Further comprising a chopper control means for controlling the Tsu path means
特徴とする。 And features.

【0014】 [0014]

【作用】上記構成により、電圧偏差が小さいときは電流制限値が小さく、電圧偏差が大きいときは電流制限値を大きくするように動作させ、上記電流基準に応じて直流電源から電流が供給され、該電流のピーク付近が電流制限値に制限される。 By the action above-described structure, when the voltage difference small current limit value is small, when the voltage difference larger operated to increase the current limit value, a current is supplied from the DC power supply in accordance with the current reference, near the peak of the current is limited to the current limit value. この作用により該電流の波形率が小さく制御され損失が減少する。 This effect form factor of the current is controlled to be small due to the loss is reduced.

【0015】 [0015]

【実施例】本発明の一実施例を図1に示す。 An example of the embodiment of the present invention shown in FIG. 図5と重複する部分には同一番号を付して説明を省略する。 The portion that overlaps with 5 will not be described are given the same numbers. 図1において、電圧制御部12は電圧検出部16で検出したコンデンサ7の電圧V dと基準電圧V Rを比較し電流基準I d * In Figure 1, the current reference voltage control unit 12 compares the voltage V d and the reference voltage V R of the capacitor 7 detected by the voltage detector 16 I d * を出力する。 To output.

【0016】電流制御部25は電流検出器29で検出したダイオードブリッジ5の出力電流i dと電流基準I d The output current of the current control unit 25 is a diode bridge 5 which is detected by the current detector 29 i d and the current reference I d
* * を比較し電流偏差が減少する方向にPWM制御部15 PWM control section 15 in a direction compared to the current deviation is reduced to
を介してMOSFET3,4をPWM制御する。 PWM control the MOSFET3,4 through.

【0017】リミッタ24は電圧制御部12の出力値を制限するもので、電流基準I d * The limiter 24 restricts the output value of the voltage control unit 12, current reference I d * がリミッタ24に入力される信号fを越えると電圧制御部12の入力を相殺しI d * There offset exceeds a signal f which is inputted to the limiter 24 to the input of the voltage control unit 12 I d * を信号fの値に制限する。 The limits to the value of the signal f. 関数器23は基準電圧V Rと電圧検出部16による検出電圧V dxの偏差値に応じて図2に示すような電流制限信号fを出力しリミッタ24に入力する。 Function 23 is input to the limiter 24 outputs the reference voltage V R and the voltage detection unit 16 by the detection voltage V dx current limit signal f as shown in FIG. 2 in accordance with the deviation of.

【0018】上記構成とすることにより、V R −V dxの偏差値に応じて電流基準I d * [0018] By the above structure, V R -V dx current in accordance with the deviation value of the reference I d * の最大値が制限され、軽負荷で偏差値が小さいときは電流制限値も小さく、また、重負荷で偏差値が大きいときは電流制限値も大きくなる。 Maximum value is limited, and when the deviation value at light load is small current limit value is small, also, the current limit is also increased when a large deviation value at heavy loads. これによりIdcの通電幅は図3に示すように全体的に広がるように作用する。 Thus conducting width of Idc acts to spread generally as shown in FIG.

【0019】すなわち、交流出力の瞬時電力P aは図3 [0019] That is, the instantaneous power P a of the AC output 3
に示すように大きく変動しているが電力のピーク付近は主としてコンデンサ7から電力が供給され、直流電源1 Although greatly varies as shown in the vicinity of the peak of power is mainly supplied with power from the capacitor 7, a DC power source 1
から供給する電流i DCは電力のピーク付近(太線の部分)が制限される。 Current i DC supplied from the vicinity of the power peak of the (thick line portion) is restricted. この作用により、負荷の軽重に無関係にi DCの波形率を小さく(1.1以下)にすることができる。 By this action, it is possible to reduce the form factor of the independent i DC in severity of load (1.1).

【0020】本実施例によれば、電圧制御の応答を早くしても電流i DCのピーク値が制限され波形率が小さく制御され、抵抗損が1/4〜1/5に減少し、高効率化したDC/AC電源装置を提供することができる。 According to this embodiment, the peak value of the current i DC is controlled limited waveform rate smaller in early response of the voltage control, resistance loss is reduced to 1 / 4-1 / 5, high it is possible to provide a more efficient the DC / AC power supply. 本発明は、図4に示す第2実施例の構成に変形することができる。 The present invention can be modified to the configuration of the second embodiment shown in FIG.

【0021】図4において、比例増幅器30は基準電圧V Rとコンデンサ7の検出電圧V dxの偏差値を比例増幅して誤差電圧ΔVを出力する。 [0021] In FIG. 4, the proportional amplifier 30 outputs an error voltage ΔV in proportion amplifies the difference value of the detection voltage V dx of the reference voltage V R and a capacitor 7. 制御増幅器12は比例積分の増幅機能を有しその出力I d * Control amplifier 12 whose output has an amplification function of the proportional integral I d * はリミッタ24により電流制限値fの値に制限される。 It is limited to the value of the current limit value f by the limiter 24. 関数器23は誤差電圧ΔVを入力偏差値として図2のような関数値fを出力しこれを電流制限値として動作する。 Function unit 23 operates it outputs the function value f as shown in FIG. 2 the error voltage ΔV as the input deviation value as a current limit value. これにより図1の場合と同様の効果が得られる。 Thus the same effect as the case of FIG. 1 can be obtained. なお、以上の説明では、 It should be noted that, in the above description,
ダイオードブリッジ5の出力電流を検出する例で示したが、変圧器2の二次側あるいは一次側の電流を検出するようにしてもよい。 Although shown in the example of detecting the output current of the diode bridge 5, it may be detected current of the secondary side or the primary side of the transformer 2.

【0022】 [0022]

【発明の効果】本発明によれば、負荷に供給する瞬時電力が変動するDC/AC電源装置において、直流電源側から供給する電流の波形率を小さく抑えることができ、 According to the present invention, the DC / AC power supply instantaneous power varies supplied to the load, it is possible to reduce the form factor of the current supplied from the DC power supply side,
損失が少ない効率の向上したDC/AC電源装置を提供することができる。 It is possible to provide an improved DC / AC power supply loss is small efficiency.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による第1実施例の構成図。 Block diagram of a first embodiment according to the invention; FIG.

【図2】第1実施例の関数器23の特性図。 [Figure 2] characteristic diagram of the function unit 23 of the first embodiment.

【図3】第1実施例の動作を説明するための波形図。 Figure 3 is a waveform chart for explaining an operation of the first embodiment.

【図4】本発明による第2実施例の要部構成図。 Main configuration diagram of a second embodiment according to the present invention; FIG.

【図5】従来装置の構成図。 Figure 5 is a configuration diagram of a conventional apparatus.

【図6】従来装置の問題点を説明するための波形図。 Figure 6 is a waveform chart for explaining the problems of the conventional apparatus.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…直流電源、2…変圧器、3,4…MOSFET、5 1 ... DC power source, 2 ... transformer, 3, 4 ... MOSFET, 5
…ダイオードブリッジ、6…リアクトル、7…コンデンサ、8…インバータブリッジ、12…電圧制御部、15 ... diode bridge, 6 ... reactors, 7 ... capacitors, 8 ... inverter bridge, 12 ... voltage control unit, 15
…PWM制御部、16…電圧検出部、22…インバータ制御部、23…関数器、24…リミッタ、25…電流制御部、27…電流検出器、30…比例増幅器。 ... PWM control unit, 16 ... voltage detection unit, 22 ... inverter control unit, 23 ... function unit, 24 ... Limiter 25 ... current controller, 27 ... current detector, 30 ... linear amplifier.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−285473(JP,A) 特開 平3−218266(JP,A) 特開 平2−51360(JP,A) 特開 昭62−210866(JP,A) 特開 昭62−217859(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) H02M 7/42 - 7/98 H02M 3/00 - 3/44 ────────────────────────────────────────────────── ─── of the front page continued (56) reference Patent flat 4-285473 (JP, a) JP flat 3-218266 (JP, a) JP flat 2-51360 (JP, a) JP Akira 62- 210866 (JP, a) JP Akira 62-217859 (JP, a) (58 ) investigated the field (Int.Cl. 7, DB name) H02M 7/42 - 7/98 H02M 3/00 - 3/44

Claims (3)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 直流電源の電圧を高周波電圧に変換して変圧器の一次側に供給するチョッパ手段と、該変圧器の 1. A chopper means for supplying to the primary side of the transformer converts the voltage of the DC power supply to a high frequency voltage, the transformer
    二次側の高周波電圧を整流する整流手段とを有し、この And a rectifying means for rectifying a high frequency voltage on the secondary side, the
    整流手段を介して整流された第2の直流電圧から単相交流電圧を得るようにした装置において、 前記第2の直流電圧と基準電圧を比較して電圧偏差に応じて電流基準を出力すると共に、 前記電圧偏差に応じて前記電流基準の制限値が変化する電圧制御手段と、 この電圧制御手段か In the apparatus so as to obtain a single-phase AC voltage from the second DC voltage rectified through the rectifying means, and outputs a current reference in accordance with the voltage deviation by comparing the second DC voltage and the reference voltage and voltage control means for limiting values of the current reference is changed depending on the voltage deviation, or the voltage control unit
    らの電流基準と前記整流手段の出力電流とを比較して電 Electrostatic compared to al current reference and an output current of said rectifier means
    流偏差に応じて制御信号を出力する電流制御手段と、こ A current control means for outputting a control signal in response to the flow deviation, this
    の電流制御手段からの制御信号に基づいて、前記電流偏 Based on a control signal from the current control means, said current-polarized
    差が減少する方向に前記チョッパ手段を制御するチョッ Chopper for controlling said chopper means in the direction of the difference is reduced
    パ制御手段とを具備したことを特徴とするDC/AC電源装置。 DC / AC power supply, characterized by comprising a path control unit.
  2. 【請求項2】 直流電源の電圧を高周波電圧に変換して 2. A converts the voltage of the DC power supply to the high frequency voltage
    変圧器の一次側に供給するチョッパ手段と、該変圧器の A chopper means for supplying to the primary side of the transformer, said transformer
    二次側の高周波電圧を整流する整流手段とを有し、この And a rectifying means for rectifying a high frequency voltage on the secondary side, the
    整流手段を介して整流された第2の直流電圧から単相交 Single-phase exchange from the second DC voltage rectified through the rectifier means
    流電圧を得るようにした装置において、前記第2の直流 In the apparatus so as to obtain the flow voltage, the second DC
    電圧と基準電圧を比較して電圧偏差に応じて電流基準を The current reference in accordance with the voltage deviation by comparing the voltage with a reference voltage
    出力すると共に、前記電圧偏差に応じて前記電流基準の And outputting, of the current reference in accordance with the voltage deviation
    制限値が変化する電圧制御手段と、この電圧制御手段か And voltage control means for limiting value is changed, or the voltage control unit
    らの電流基準と前記変圧器の二次側の電流とを比較して By comparing the secondary side current of the al current reference said transformer
    電流偏差に応じて制御信号を出力する電流制御手段と、 A current control means for outputting a control signal in response to the current deviation,
    この電流制御手段からの制御信号に基づいて、前記電流 Based on a control signal from the current control means, said current
    偏差が減少する方向に前記チョッパ手段を制御するチョ Cho the deviation to control the chopper means in a direction to decrease
    ッパ制御手段とを具備したことを特徴とするDC/AC Tsu, characterized by comprising a path control unit DC / AC
    電源装置。 Power supply.
  3. 【請求項3】 直流電源の電圧を高周波電圧に変換して 3. A converts the voltage of the DC power supply to the high frequency voltage
    変圧器の一次側に供給するチョッパ手段と、該変圧器の A chopper means for supplying to the primary side of the transformer, said transformer
    二次側の高周波電圧を整流する整流手段とを有し、この And a rectifying means for rectifying a high frequency voltage on the secondary side, the
    整流手段を介して整流された第2の直流電圧から単相交 Single-phase exchange from the second DC voltage rectified through the rectifier means
    流電圧を得るようにした装置において、前記第2の直流 In the apparatus so as to obtain the flow voltage, the second DC
    電圧と基準電圧を比較して電圧偏差に応じて電流基準を The current reference in accordance with the voltage deviation by comparing the voltage with a reference voltage
    出力すると共に、前記電圧偏差に応じて前記電流基準の And outputting, of the current reference in accordance with the voltage deviation
    制限値が変化する電圧制御手段と、この電圧制御手段か And voltage control means for limiting value is changed, or the voltage control unit
    らの電流基準と前記変圧器の一次側の電流とを比較して By comparing the primary side current of the al current reference said transformer
    電流偏差に応じて制御信号を出力する電流制御手段と、 A current control means for outputting a control signal in response to the current deviation,
    この電流制御手段からの制御信号に基づいて、前記電流 Based on a control signal from the current control means, said current
    偏差が減少する方向に前 記チョッパ手段を制御するチョ Cho for controlling the pre-Symbol chopper means in the direction in which the deviation is reduced
    ッパ制御手段とを具備したことを特徴とするDC/AC Tsu, characterized by comprising a path control unit DC / AC
    電源装置。 Power supply.
JP15293891A 1991-06-25 1991-06-25 Dc / ac power supply Expired - Lifetime JP3015512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15293891A JP3015512B2 (en) 1991-06-25 1991-06-25 Dc / ac power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15293891A JP3015512B2 (en) 1991-06-25 1991-06-25 Dc / ac power supply

Publications (2)

Publication Number Publication Date
JPH053678A true JPH053678A (en) 1993-01-08
JP3015512B2 true JP3015512B2 (en) 2000-03-06

Family

ID=15551435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15293891A Expired - Lifetime JP3015512B2 (en) 1991-06-25 1991-06-25 Dc / ac power supply

Country Status (1)

Country Link
JP (1) JP3015512B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9979280B2 (en) 2016-06-16 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
GB2434490B (en) * 2006-01-13 2009-04-01 Enecsys Ltd Power conditioning unit
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
CN102386780A (en) * 2011-09-14 2012-03-21 深圳航天科技创新研究院 Push-pull circuit of DC/DC (Direct Current/Direct Current) part

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9979280B2 (en) 2016-06-16 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters

Also Published As

Publication number Publication date Type
JPH053678A (en) 1993-01-08 application

Similar Documents

Publication Publication Date Title
US6906503B2 (en) Power supply controller for exercise equipment drive motor
US6055167A (en) Pulse width modulated boost converter integrated with power factor correction circuit
CN1122905C (en) Power supply unit
US6538909B2 (en) Universal high efficiency power converter
US20070145956A1 (en) Switching power supply device
US5519306A (en) Constant voltage circuit and a stabilized power supply unit
JP2002270876A (en) Solarlight power generator
US6023416A (en) DC power supply apparatus including boosting/lowering converter unit and control
JPH08228484A (en) Phase control smr converter
US20030161169A1 (en) Single-stage converter compensating power factor
JPH07115774A (en) Power supply
EP0496529A2 (en) Boost switching preregulator and controller therefor
JP2004072806A (en) Power converter
JP3015512B2 (en) Dc / ac power supply
JPH08251947A (en) Regenerative controller for power converter
JP2001314085A (en) Power supply apparatus, inverter apparatus and air conditioner
CN1578077A (en) Opposed current converter power factor correcting power supply
JP2004343826A (en) Uninterruptible power system
CN1135155A (en) Multi-Resonant boost high power factor circuit
JPH11235040A (en) Power supply with three-phase high power factor converter
Piepenbreier et al. Regenerative drive converter with line-frequency switched rectifier and without DC link components
GB2168829A (en) Apparatus for controlling the speed of an elevator
CN1284777A (en) Multi-mode power converter with equalizer circuit and its operational method
JP4275223B2 (en) Power Supply
JPH07131984A (en) Dc power supply equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12