JPH0536718B2 - - Google Patents

Info

Publication number
JPH0536718B2
JPH0536718B2 JP57081645A JP8164582A JPH0536718B2 JP H0536718 B2 JPH0536718 B2 JP H0536718B2 JP 57081645 A JP57081645 A JP 57081645A JP 8164582 A JP8164582 A JP 8164582A JP H0536718 B2 JPH0536718 B2 JP H0536718B2
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger tube
flat heat
inlet
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57081645A
Other languages
Japanese (ja)
Other versions
JPS58200997A (en
Inventor
Toshio Hatada
Shigeaki Kuroda
Akira Atsumi
Takao Chiaki
Kensaku Kokuni
Sadatoshi Minagawa
Naoji Ajiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8164582A priority Critical patent/JPS58200997A/en
Publication of JPS58200997A publication Critical patent/JPS58200997A/en
Publication of JPH0536718B2 publication Critical patent/JPH0536718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多流路の扁平伝熱管を用いた熱交換
器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a heat exchanger using flat heat exchanger tubes with multiple channels.

〔従来の技術〕[Conventional technology]

扁平伝熱管を用いた熱交換器は一般に第1図に
示す構造であり、蛇行状に曲折した扁平伝熱管1
の平行管部の間にコルゲートフイン2が配設され
ている。上記扁平伝熱管1の両端部はヘツダ3,
4が接続され、ヘツダを経て扁平伝熱管1内を流
通する熱源流体とフイン2間を矢印5のように流
通する空気との間に熱交換が行なわれる。上記扁
平伝熱管1の断面は第4図に示すように多通路2
9a…29nが形成されている。
A heat exchanger using flat heat exchanger tubes generally has the structure shown in Fig. 1, in which the flat heat exchanger tube 1 is bent in a meandering manner.
A corrugated fin 2 is disposed between the parallel tube portions. Both ends of the flat heat exchanger tube 1 are provided with headers 3,
4 are connected, and heat exchange is performed between the heat source fluid flowing in the flat heat exchanger tube 1 via the header and the air flowing between the fins 2 as shown by the arrow 5. The cross section of the flat heat exchanger tube 1 is as shown in FIG.
9a...29n are formed.

第5図は上記扁平伝熱管1内部の冷媒の状態を
示す。いま蒸発器として用いる場合を考えると、
各通路29a…29nに均一に冷媒を流す場合、
空気流5に対して図中に符号31で示すような冷
媒の過熱ガス領域が形成され、反対に符号30で
示すように気液二相域が形成され熱交換効率が低
下する。この現象を防止し熱交換効率を上げる為
に従来次の様な代表的な二つの例が提案されてい
る。その一つの例を第6図に示す。この提案はヘ
ツダ3に取り付ける扁平伝熱管端部の切り口を傾
斜させたものである。この例はヘツダ3から扁平
伝熱管1の各流路29a…29nに冷媒を分配さ
せる際、入口端部32a,32b…32nの流体
抵抗を変化させることにより、流路29a側に多
く流路29n側に順次少なく分配させるものであ
る。
FIG. 5 shows the state of the refrigerant inside the flat heat exchanger tube 1. Now considering the case of using it as an evaporator,
When the refrigerant flows uniformly through each passage 29a...29n,
A superheated gas region of the refrigerant as shown by 31 in the drawing is formed with respect to the air flow 5, and conversely, a gas-liquid two-phase region is formed as shown by 30, reducing the heat exchange efficiency. In order to prevent this phenomenon and increase heat exchange efficiency, the following two typical examples have been proposed. One example is shown in FIG. In this proposal, the cut end of the flat heat exchanger tube attached to the header 3 is inclined. In this example, when the refrigerant is distributed from the header 3 to each flow path 29a...29n of the flat heat exchanger tube 1, by changing the fluid resistance of the inlet ends 32a, 32b...32n, more flow paths 29n are on the flow path 29a side. The amount is distributed gradually to each side.

次に他の例を第7図に示す。この例は入口から
出口に至る通路33a,33b,33c…33n
自身の流路断面積を図示のように順次変化させた
ものである。
Next, another example is shown in FIG. In this example, passages 33a, 33b, 33c...33n lead from the inlet to the outlet.
The cross-sectional area of the flow path is sequentially changed as shown in the figure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のこれらの装置では次のような課題があ
る。熱交換器の入口から出口間の圧力損失を実験
と計算で検討した結果、圧力損失の大半は各流路
の入口から出口間の二相流の圧力損失であり、入
口付近の曲りの損失は極めて少ないことがわかつ
た。即ち、第6図の如き構造を用いたとしても実
際上の効果を得ることはほとんど期待できない。
These conventional devices have the following problems. As a result of examining the pressure loss between the inlet and the outlet of the heat exchanger through experiments and calculations, we found that the majority of the pressure loss is due to the two-phase flow between the inlet and the outlet of each channel, and the loss due to bending near the inlet is It turned out that there were very few. That is, even if the structure shown in FIG. 6 is used, it is hardly expected that any practical effect will be obtained.

本例によれば流量を各流路毎に変えることは可
能であるが、次の二つの課題を有する。まず第1
に性能上の課題であるが、第8図に示したモリエ
ル線図上に示すように、蒸発器の圧力損失が各流
路ともに同じように増加し蒸発線18をたどるこ
とになる。この場合均等分配の場合の蒸発線35
に比較して平均蒸発温度が上昇する。このことは
空気と冷媒の温度差が減少することを意味し、実
際上性能が低下したことに等しい。つまり本例に
よつて大きな性能上の効果は期待できない。18
は飽和液線、19は飽和蒸気線、Pは圧力、iは
エンタルピを示す。第2は生産性の課題である。
本例の如き各流路断面積が変化かる形状の伝熱管
は第7図に示す一般の形態のものに比較して製造
工程が複雑になるとともに、材料費そのものに極
めて無駄が多い。
According to this example, it is possible to change the flow rate for each flow path, but it has the following two problems. First of all
This is a performance issue, but as shown on the Mollier diagram shown in FIG. 8, the pressure loss of the evaporator increases in the same way in each flow path and follows the evaporation line 18. In this case, evaporation line 35 for equal distribution
The average evaporation temperature increases compared to . This means that the temperature difference between the air and the refrigerant is reduced, which is practically equivalent to a reduction in performance. In other words, no significant performance effect can be expected from this example. 18
is a saturated liquid line, 19 is a saturated vapor line, P is pressure, and i is enthalpy. The second issue is productivity.
A heat exchanger tube having a shape in which the cross-sectional area of each flow path changes as in this example has a complicated manufacturing process compared to the general shape shown in FIG. 7, and is extremely wasteful in material costs.

以上のように従来技術は、性能上の効果、生産
性いずれの点においても種々の課題があつた。
As described above, the conventional techniques have various problems in terms of performance effects and productivity.

本発明の目的は上記に鑑みて発明されたもの
で、多通路より成る扁平伝熱管を用いた熱交換器
において、該熱交換器を低コストで容易に製作可
能とし、かつ高効率点で使用するための熱交換器
の製造方法を提供することにある。
The object of the present invention was to provide a heat exchanger using flat heat transfer tubes having multiple passages, which can be easily manufactured at low cost, and which can be used at a high efficiency point. An object of the present invention is to provide a method for manufacturing a heat exchanger for the purpose of manufacturing a heat exchanger.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明は、多通路
を備えた扁平伝熱管の入口端または出口端の両側
壁のうち何れか一方の側壁のみを傾斜状に押し下
げ、各押し下げ側壁の高さ位置を順次ずらして各
通路端部の開口断面積を風上側より風下側方向に
順次減少させることを特徴とする。
In order to achieve the above-mentioned object, the present invention tilts down only one of both side walls of the inlet end or the outlet end of a flat heat exchanger tube equipped with multiple passages, and the height position of each pushed down side wall. The opening cross-sectional area of each passage end is sequentially decreased from the windward side to the leeward side by sequentially shifting the passageways.

〔作用〕[Effect]

本発明は、前記の如く、扁平伝熱管の両側壁の
うち何れか一方の側壁のみをプレスなどにより、
傾斜状に押し下げて各通路端部の開口断面積を風
上側より風下側方向に順次減少させるので、その
押し下げ加工に余分な部品を必要とすることなく
低コストで実施することができ、かつ、扁平伝熱
管を両側壁とも絞り加工するものに比較すると、
安定した信頼性の高い構造体を容易に製作するこ
とができる。
As described above, in the present invention, only one of the both side walls of the flat heat exchanger tube is pressed, etc.
Since the opening cross-sectional area of each passage end is sequentially reduced from the windward side to the leeward side by pressing down in an inclined manner, the pressing down process can be carried out at low cost without requiring any extra parts, and, Compared to a flat heat exchanger tube in which both walls are drawn,
A stable and highly reliable structure can be easily manufactured.

また、上記のように構成した入口端または出口
端を有するので、断面の異なる各通路に分岐する
冷媒の流量は、入口ヘツダから出口ヘツダまでの
圧力損失が等しくなるように流れ、各断面積を調
整することにより不均一な冷媒過熱域が存在しな
いように出来、かつ、流量の少ない通路では圧力
損失が小さいため、蒸発温度の低い流路が形成で
き、平均蒸発温度は低くなる。また、入口または
出口部が急拡大流路や急縮小流路がないので、圧
力損失を低く抑えることができる。
In addition, since it has the inlet end or outlet end configured as described above, the flow rate of the refrigerant that branches into each passage with a different cross section flows so that the pressure loss from the inlet header to the outlet header is equal, and each cross-sectional area is By adjusting the refrigerant temperature, uneven refrigerant superheating regions can be prevented from existing, and pressure loss is small in passages with a small flow rate, so a passage with a low evaporation temperature can be formed, and the average evaporation temperature can be lowered. Furthermore, since there is no rapidly expanding channel or rapidly contracting channel at the inlet or outlet, pressure loss can be kept low.

〔実施例〕〔Example〕

本発明の一実施例を示す第2図に基づき説明す
る。
An embodiment of the present invention will be explained based on FIG. 2.

この実施例は多通路を有する扁平伝熱管10の
各通路端部を潰して端部通路断面積を順次異なら
しめたもので、均等断面の多通路11a,11
b,11c…11nを有する扁平伝熱管10の端
部を各通路の一側壁12a,12b,12c…1
2nをプレス成形等によつて傾斜状に押し下げ、
各押し下げ側壁12a,12b,12c…12n
の高さ位置を順次ずらし、各通路11a,11
b,11c…11nの端部の開口断面積を風下側
通路方向に順次減少させている。
In this embodiment, the ends of each passage of a flat heat exchanger tube 10 having multiple passages are crushed to make the end passage cross-sectional area sequentially different.
b, 11c...11n, and one side wall 12a, 12b, 12c...1 of each passage.
2n is pressed down in an inclined manner by press molding etc.
Each push-down side wall 12a, 12b, 12c...12n
The height position of each passage 11a, 11 is sequentially shifted.
The opening cross-sectional area of the end portions b, 11c, . . . 11n is sequentially decreased in the direction of the leeward passage.

次に上記実施例の作用について説明する。 Next, the operation of the above embodiment will be explained.

ヘツダより扁平伝熱管に流入する冷媒はまず断
面の異なる各通路に分岐する冷媒の流量は入口ヘ
ツダから出口ヘツダまでの圧力損失が等しくなる
ように流れる。即ち、入口付近の流路断面の大き
い流路は該流路断面の小さい流路に比較して、入
口部分の損失が少ないので、流量が多くなる。そ
の状態をモリエル線図上で説明すると第3図のよ
うになる。熱交換器の圧力損失は入口ヘツダ部2
7から出口ヘツダ部28の間の損失であるが、流
路8aから8nに対応する蒸発線は第3図の20
〜26という形で表わされる。この図からわかる
ように、本実施例による蒸発器は、蒸発温度の高
い流路と低い流路が存在し、平均蒸発温度は第4
図に示すもとの一般的伝熱管に冷媒を均等に流し
た場合と大差はない。しかも本件実施例によれば
空気の温度差に応じて冷媒量を変えることができ
るので、第9図ですでに説明したような、不均一
な冷媒過熱域31は存在しない。このことは、熱
交換効率の高い二相流部の面積割合を増すことが
できるということである。また、本実施例では、
入口または出口部が急拡大流路や急縮小流路がな
いので圧力損失を低く抑えることができる。以上
のように、本実施例による蒸発器は空気と冷媒と
の温度差を減少させないで且つ熱交換効率を増加
させることができ、しかも圧力損失を低く抑える
ことができるので、熱交換量を大幅に増加させる
ことができる。また、製作に当つては、扁平伝熱
管の両側壁のうち、何れか一方の側壁のみをプレ
スなどにより傾斜状に押し下げるだけで、余分な
部品を必要としないので、低コストであり、か
つ、扁平伝熱管を両側壁とも絞り加工するものに
比較すると、安定した信頼性の高い構造体を容易
に製作することができる。
The refrigerant flowing into the flat heat transfer tube from the header first branches into passages having different cross sections, and the flow rate of the refrigerant flows so that the pressure loss from the inlet header to the outlet header is equal. That is, a flow path with a large cross section near the inlet has less loss at the inlet than a flow path with a small cross section, so the flow rate increases. This state can be explained using a Mollier diagram as shown in FIG. 3. The pressure loss of the heat exchanger is at the inlet header section 2.
7 and the outlet header section 28, the evaporation line corresponding to the flow paths 8a to 8n is 20 in FIG.
It is expressed in the form ~26. As can be seen from this figure, the evaporator according to this example has a flow path with a high evaporation temperature and a flow path with a low evaporation temperature, and the average evaporation temperature is the fourth.
There is not much difference from the case where the refrigerant was uniformly flowed through the conventional heat exchanger tube shown in the figure. Moreover, according to the present embodiment, since the amount of refrigerant can be changed according to the temperature difference of the air, there is no non-uniform refrigerant overheating region 31 as already explained in FIG. 9. This means that the area ratio of the two-phase flow section with high heat exchange efficiency can be increased. Furthermore, in this example,
Since there are no rapidly expanding channels or rapidly contracting channels at the inlet or outlet, pressure loss can be kept low. As described above, the evaporator according to this embodiment can increase the heat exchange efficiency without reducing the temperature difference between the air and the refrigerant, and can also keep the pressure loss low, so the amount of heat exchange can be significantly increased. can be increased to In addition, when manufacturing, only one of the side walls of the flat heat exchanger tube is pressed down in an inclined manner using a press or the like, and no extra parts are required, so the cost is low, and Compared to a flat heat exchanger tube in which both side walls are drawn, a stable and highly reliable structure can be easily manufactured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、扁平伝
熱管の両側壁のうち何れか一方の側壁のみを傾斜
状に押し下げるだけで、余分な部品を使用しない
ので低コストであり、かつ、扁平伝熱管を両側壁
とも絞り加工するものと比較すると、安定した信
頼性の高い構造体を容易に製作することができ
る。
As explained above, according to the present invention, only one of the side walls of the flat heat exchanger tube is pressed down in an inclined manner, and no extra parts are used, so the cost is low and the flat heat exchanger tube is not required. Compared to a heat tube in which both walls are drawn, a stable and highly reliable structure can be easily produced.

また、多通路を備えた扁平伝熱管にて形成され
る熱交換器の各通路の入口または出口部が急拡大
流路や急縮小流路がないので、圧力損失を低く抑
え、かつ熱交換率が高くなるように冷媒を分配流
入させることができ、熱交換量を大幅に向上する
ことができる。
In addition, the inlet or outlet of each passage of the heat exchanger, which is formed by flat heat exchanger tubes with multiple passages, has no rapidly expanding or rapidly contracting passages, so pressure loss can be kept low and the heat exchange rate can be reduced. The refrigerant can be distributed and inflowed so that the heat exchange rate is high, and the amount of heat exchange can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする熱交換器の外観
図、第2図は本発明の一実施例を示す伝熱管部の
斜視図、第3図は本発明の熱交換器のモリエル線
図上の圧力変化を示す図、第4図は第1図の−
線矢視断面図、第5図は従来の熱交換器の管内
流モデル、第6図は従来の伝熱管を示す断面図、
第7図は従来の伝熱管を示す断面図、第8図は従
来の伝熱管のモリエル線図上の圧力変化を示す図
である。 1……扁平管、2……コルゲートフイン、3,
4……ヘツダ、5……流入空気、10……扁平伝
熱管、11a〜11n……通路、12a〜12n
……側壁、13……ヘツダ。
Fig. 1 is an external view of a heat exchanger to which the present invention is applied, Fig. 2 is a perspective view of a heat exchanger tube section showing an embodiment of the present invention, and Fig. 3 is a Mollier diagram of the heat exchanger of the present invention. The diagram showing the pressure change above, Figure 4 is the − of Figure 1.
5 is a cross-sectional view of a conventional heat exchanger tube, FIG. 6 is a cross-sectional view of a conventional heat exchanger tube,
FIG. 7 is a sectional view showing a conventional heat exchanger tube, and FIG. 8 is a diagram showing pressure changes on a Mollier diagram of the conventional heat exchanger tube. 1...Flat tube, 2...Corrugated fin, 3,
4... Header, 5... Incoming air, 10... Flat heat exchanger tube, 11a to 11n... Passage, 12a to 12n
...Side wall, 13...Hetsuda.

Claims (1)

【特許請求の範囲】[Claims] 1 多通路を備えた扁平伝熱管を蛇行状に曲折
し、この扁平伝熱管の平行直管部の間にコルゲー
ト状ラインを配置してなる熱交換器の製造方法に
おいて、上記扁平伝熱管の入口端または出口端の
両側壁のうち何れか一方の側壁のみを傾斜状に押
し下げ、各押し下げ側壁の高さ位置を順次ずらし
て各通路端部の開口断面積を風上側より風下側方
向に順次減少させることを特徴とする熱交換器の
製造方法。
1. A method for manufacturing a heat exchanger in which a flat heat exchanger tube with multiple passages is bent in a meandering manner and a corrugated line is arranged between the parallel straight pipe portions of the flat heat exchanger tube, wherein the inlet of the flat heat exchanger tube is Only one of the side walls at the end or outlet end is pushed down in an inclined manner, and the height position of each pushed-down side wall is sequentially shifted to sequentially reduce the opening cross-sectional area of each passage end from the windward side to the leeward side. A method of manufacturing a heat exchanger, characterized in that:
JP8164582A 1982-05-17 1982-05-17 Heat exchanger Granted JPS58200997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8164582A JPS58200997A (en) 1982-05-17 1982-05-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8164582A JPS58200997A (en) 1982-05-17 1982-05-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS58200997A JPS58200997A (en) 1983-11-22
JPH0536718B2 true JPH0536718B2 (en) 1993-05-31

Family

ID=13752072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8164582A Granted JPS58200997A (en) 1982-05-17 1982-05-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS58200997A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163790U (en) * 1983-04-13 1984-11-02 三菱重工業株式会社 Heat exchanger
FR2754047B1 (en) * 1996-09-30 1998-12-11 Valeo Climatisation HEAT EXCHANGER WITH CONTROLLED FLUID DISTRIBUTION
CA2678331A1 (en) * 2007-01-30 2008-08-07 Bradley University A heat transfer apparatus and method
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP5053153B2 (en) * 2008-04-04 2012-10-17 シャープ株式会社 Heat exchanger
US10126065B2 (en) * 2015-06-17 2018-11-13 Mahle International Gmbh Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
US11525618B2 (en) * 2019-10-04 2022-12-13 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126452U (en) * 1976-03-24 1977-09-26
JPS58107475U (en) * 1982-01-11 1983-07-21 カルソニックカンセイ株式会社 Deformed tube evaporator

Also Published As

Publication number Publication date
JPS58200997A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
JP3107597U (en) Tube structure of micro multi-channel heat exchanger
KR950007282B1 (en) Condenser with small hydraulic diameter flow path
US5137082A (en) Plate-type refrigerant evaporator
US7607473B2 (en) Heat exchanger
US5172759A (en) Plate-type refrigerant evaporator
US5076354A (en) Multiflow type condenser for car air conditioner
CN100439821C (en) Heat exchanger with flat tubes
AU2002238890B2 (en) Layered heat exchanger, layered evaporator for motor vehicle air conditioners and refrigeration system
JP2004144460A (en) Heat exchanger
KR20110083996A (en) Double-piped heat exchanger
US8002024B2 (en) Heat exchanger with inlet having a guide
CN110579130A (en) Multiport extrusion (MPE) design
KR100497847B1 (en) Evaporator
WO2013084508A1 (en) Fin tube-type heat exchanger
JP5545160B2 (en) Heat exchanger
JPH0536718B2 (en)
EP3786565B1 (en) Microchannel flat tube and microchannel heat exchanger
WO2014137217A1 (en) Heat exchanger inlet and outlet design
CA2893104C (en) Tubing element for a heat exchanger means
US20010006105A1 (en) Flat heat exchange tubes
JPH03140795A (en) Lamination type heat exchanger
JP2005180714A (en) Heat exchanger and inner fin used by it
CN210051023U (en) Heat exchanger and air conditioner
KR100213778B1 (en) Heat exchanger
JPH02106697A (en) Lamination type heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term