JPH0536514A - Composite magnetic material - Google Patents

Composite magnetic material

Info

Publication number
JPH0536514A
JPH0536514A JP3187690A JP18769091A JPH0536514A JP H0536514 A JPH0536514 A JP H0536514A JP 3187690 A JP3187690 A JP 3187690A JP 18769091 A JP18769091 A JP 18769091A JP H0536514 A JPH0536514 A JP H0536514A
Authority
JP
Japan
Prior art keywords
substance
magnetic
composite
electric resistance
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3187690A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sugaya
康博 菅谷
Osamu Inoue
修 井上
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3187690A priority Critical patent/JPH0536514A/en
Publication of JPH0536514A publication Critical patent/JPH0536514A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite magnetic material with high saturation flux density, high electric resistance and high magnetic permeability which is excellent in high frequency characteristics. CONSTITUTION:An operation wherein nitrogen atomized alloy powder (with average particle diameter of 30mumphi) having a composition of Fe-Si-Al is soaked into aqueous solution of NiCl2 and ZnCl2 and oxidized in the air is repeated to cause ferrite-producing reaction to form a soft magnetic Ni-Zn thin ferrite film. Further Al sputtering is performed in a nitrogen atmosphere to form an insulation film mainly containing AlN on a surface of the powder. B2O3 is added by 0.1vol.%, pressure-molding and hot-pressing is performed to obtain a composite sintered body with high density (relative density of 98 to 99%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランスをはじめ磁気
記録ヘッド等磁気回路を利用する電子部品、電子機器等
に有効に使用できる複合磁性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material which can be effectively used for electronic parts, electronic devices and the like which utilize magnetic circuits such as magnetic recording heads such as transformers.

【0002】[0002]

【従来の技術】従来から、電子部品、電子機器に使用す
る磁性材料として、高周波領域で、高透磁率が必要な場
合は、高電気抵抗のフェライトを使用していた。しか
し、フェライトは飽和磁束密度が金属磁性体の約1/2
と小さいものしか得られなかった。
2. Description of the Related Art Conventionally, as a magnetic material used for electronic parts and electronic equipment, ferrite having high electric resistance has been used when high magnetic permeability is required in a high frequency region. However, the saturation magnetic flux density of ferrite is about 1/2 that of metal magnetic materials.
I got only a small one.

【0003】一方,磁性金属と非磁性の絶縁材料を複合
した材料で,金属磁性体の持つ高飽和磁束密度で且つ高
電気抵抗の磁性材料が開発されているが,透磁率は十分
な値が得られていない。また,非磁性の絶縁材料の代わ
りに高電気抵抗の磁性体を用いて,全体の透磁率を向上
させようとする試みも行われているが,この場合は十分
な電気抵抗が得にくく,渦電流損失その他の損失が大き
くなり、良好な高周波特性を有する磁性材料が得られて
いない。
On the other hand, a magnetic material having a high saturation magnetic flux density and a high electric resistance possessed by a metal magnetic material has been developed, which is a composite material of a magnetic metal and a non-magnetic insulating material, but its magnetic permeability has a sufficient value. Not obtained. Attempts have also been made to improve the overall magnetic permeability by using a magnetic material with high electrical resistance instead of a non-magnetic insulating material, but in this case it is difficult to obtain sufficient electrical resistance and Current loss and other losses increase, and a magnetic material having good high frequency characteristics has not been obtained.

【0004】[0004]

【発明が解決しようとする課題】従来の、磁性金属と非
磁性の絶縁材料では、高電気抵抗を得るため、磁性金属
材料部分を、数100nmから数μm以上の厚さの高電
気抵抗の物質の膜によって覆い、磁性金属部分を不連続
体のような構造にしていた。そのため複合体内部を通る
磁束が非磁性の絶縁体により随所で遮断されるため、そ
の複合体の透磁率も著しく低下するという問題があっ
た。一方,磁性金属と高電気抵抗の磁性体の複合材料で
は,十分な電気抵抗が得られない問題があった。
In the conventional magnetic metal and non-magnetic insulating material, in order to obtain high electric resistance, the magnetic metal material portion has a high electric resistance substance having a thickness of several hundred nm to several μm or more. The film was covered with a film of No. 3, and the magnetic metal part had a structure like a discontinuous body. Therefore, the magnetic flux passing through the inside of the composite is cut off at various places by the non-magnetic insulator, so that the magnetic permeability of the composite is significantly reduced. On the other hand, the composite material of magnetic metal and high electric resistance magnetic material has a problem that sufficient electric resistance cannot be obtained.

【0005】本発明は、上記課題を解決するために、高
飽和磁束密度で高電気抵抗且つ高透磁率を有する優れた
特性を有する複合磁性材料を提供する事を目的とする。
In order to solve the above problems, it is an object of the present invention to provide a composite magnetic material having excellent characteristics of high saturation magnetic flux density, high electric resistance and high magnetic permeability.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の発明の複合磁性材料は、磁性金属よ
りなる母相粒子(第1の物質),高電気抵抗で且つ高透
磁率の物質(第2の物質),第2の物質とは異なる高電
気抵抗の物質(第3の物質)の少なくとも3種類以上の
物質からなる微小粒径複合体よりなり,母相粒子の表面
を,第2の物質がほぼ覆っており,さらに第3の物質が
第2の物質をほぼ覆っている少なくとも3層以上の構造
を持ち,且つ前記母相粒子間が前記第2の物質ならびに
前記第3の物質によりほぼ隔離されてなる複合磁性材料
である。
In order to solve the above-mentioned problems, the composite magnetic material of the first invention of the present invention comprises a matrix particle (first substance) made of a magnetic metal, a high electric resistance and a high electric resistance. It is composed of a fine particle size composite consisting of at least three kinds of substances of magnetic permeability (second substance) and high electric resistance different from the second substance (third substance). The surface is covered with at least the second substance, and the third substance has at least three layers of structure substantially covering the second substance, and between the matrix particles, the second substance and It is a composite magnetic material that is substantially isolated by the third substance.

【0007】前記構成においては、第1の物質がFe系
金属磁性体,第2の物質がフェライトよりなる事が好ま
しい。また、本発明の第2の発明の複合磁性材料は、磁
性金属よりなる母相粒子(第1の物質),高電気抵抗の
物質(第3の物質),第3の物質とは異なる高電気抵抗
で且つ高透磁率の物質(第2の物質)の少なくとも3種
類以上の物質からなる微小粒径複合体よりなり,母相粒
子の表面を,第3の物質がほぼ覆っており,さらに第2
の物質が第3の物質をほぼ覆っている少なくとも3層以
上の構造を持ち,且つ前記母相粒子間が前記第3の物質
ならびに前記第2の物質によりほぼ隔離されてなる複合
磁性材料である。
In the above structure, it is preferable that the first substance is an Fe-based metal magnetic material and the second substance is ferrite. The composite magnetic material according to the second aspect of the present invention is a high-electricity material different from the matrix particles (first substance) made of a magnetic metal, the high electric resistance substance (third substance), and the third substance. It consists of a fine particle size composite consisting of at least three kinds of substances of resistance and high magnetic permeability (second substance), and the surface of the matrix phase particles is almost covered with the third substance. Two
Is a composite magnetic material in which the substance has a structure of at least three layers that substantially covers the third substance, and the matrix particles are substantially separated from each other by the third substance and the second substance. .

【0008】前記構成においては、第1の物質がFe系
金属磁性体,第3の物質がフェライトよりなる事が好ま
しい。
In the above structure, it is preferable that the first substance is an Fe-based metal magnetic substance and the third substance is ferrite.

【0009】[0009]

【作用】本発明の第1の発明の複合磁性材料は、磁性金
属よりなる母相粒子(第1の物質),高電気抵抗で且つ
高透磁率の物質(第2の物質),第2の物質とは異なる
高電気抵抗の物質(第3の物質)の少なくとも3種類以
上の物質からなる微小粒径複合体よりなり,母相粒子の
表面を,第2の物質がほぼ覆っており,さらに第3の物
質が第2の物質をほぼ覆っている少なくとも3層以上の
構造を持ち,且つ前記母相粒子間が前記第2の物質なら
びに前記第3の物質によりほぼ隔離された焼結体からな
る構造を有しているので、非磁性の層の膜厚を薄くする
ことができ、従って高電気抵抗の複合磁性体であって、
且つ高飽和磁束密度,高透磁率の磁性材料が得ることが
できる。
The composite magnetic material of the first invention of the present invention comprises a matrix particle (first substance) made of a magnetic metal, a substance having high electric resistance and high magnetic permeability (second substance), and a second magnetic substance. It is composed of a fine particle size composite consisting of at least three kinds of substances having a high electric resistance (third substance) different from the substance, and the second substance almost covers the surface of the matrix phase particles. From a sintered body having a structure in which at least three layers in which the third substance substantially covers the second substance, and the matrix particles are substantially separated by the second substance and the third substance. Since it has such a structure, it is possible to reduce the thickness of the non-magnetic layer, and thus it is a composite magnetic body with high electrical resistance,
Moreover, a magnetic material having a high saturation magnetic flux density and a high magnetic permeability can be obtained.

【0010】前記構成において、第1の物質がFe系金
属磁性体,第2の物質がフェライトよりなる好ましい態
様とすることにより、高電気抵抗の複合磁性体であっ
て、且つ高飽和磁束密度,高透磁率の磁性材料を容易に
提供する事ができる。
In the above structure, the first substance is a Fe-based metal magnetic substance and the second substance is ferrite, so that the composite substance has a high electric resistance and a high saturation magnetic flux density. It is possible to easily provide a magnetic material having high magnetic permeability.

【0011】また、本発明の第2の発明の複合磁性材料
は、磁性金属よりなる母相粒子(第1の物質),高電気
抵抗の物質(第3の物質),第3の物質とは異なる高電
気抵抗で且つ高透磁率の物質(第2の物質)の少なくと
も3種類以上の物質からなる微小粒径複合体よりなり,
母相粒子の表面を,第3の物質がほぼ覆っており,さら
に第2の物質が第3の物質をほぼ覆っている少なくとも
3層以上の構造を持ち,且つ前記母相粒子間が前記第3
の物質ならびに前記第2の物質によりほぼ隔離された焼
結体からなる構造を有しているので、非磁性の層の膜厚
を薄くすることができ、従って高電気抵抗の複合磁性体
であって、且つ高飽和磁束密度,高透磁率の磁性材料が
得ることができる。
The composite magnetic material according to the second aspect of the present invention includes the matrix particles (first substance) made of magnetic metal, the substance having high electrical resistance (third substance), and the third substance. A fine particle size composite body composed of at least three kinds of substances having different electric resistances and high magnetic permeability (second substance),
The surface of the matrix particles is substantially covered with a third substance, and the second substance has a structure of at least three layers or more in which the third substance is substantially covered. Three
Since it has a structure composed of the sintered body and the sintered body substantially isolated by the second substance, the thickness of the non-magnetic layer can be reduced, and thus it is a composite magnetic body with high electric resistance. In addition, a magnetic material having high saturation magnetic flux density and high magnetic permeability can be obtained.

【0012】前記構成においては、第1の物質がFe系
金属磁性体,第3の物質がフェライトよりなる好ましい
態様とすることにより、高電気抵抗の複合磁性体であっ
て、且つ高飽和磁束密度,高透磁率の磁性材料を容易に
提供する事ができる。
In the above structure, the first substance is a Fe-based metal magnetic substance and the third substance is ferrite, so that the composite substance has a high electric resistance and a high saturation magnetic flux density. , It is possible to easily provide a magnetic material having high magnetic permeability.

【0013】[0013]

【実施例】母相粒子(第1の物質)としては,高飽和磁
束密度である特性を有する磁性金属または合金、例え
ば、Fe,Fe-Al,Fe-Si,Fe-Si-Al,Fe-Si-Al-Ni,Fe-Ni,Fe-N
i-Mo等のFe系磁性材料が望ましい。
Examples As the mother phase particles (first substance), magnetic metals or alloys having high saturation magnetic flux density, such as Fe, Fe-Al, Fe-Si, Fe-Si-Al, Fe- Si-Al-Ni, Fe-Ni, Fe-N
Fe-based magnetic materials such as i-Mo are desirable.

【0014】これらの母相粒子(第1の物質)の粒子径
は、通常2〜50μm程度のものが好ましく用いられ
る。高電気抵抗で且つ高透磁率の物質(第2の物質)と
しては,例えば、電気抵抗率が100 Ω・cmのオーダ
ー以上で、比透磁率が10以上のものが好ましく、より
具体的には、Ni-Zn フェライト,Mn-Zn フェライト等が
挙げられる。
The particle size of these matrix particles (first substance) is usually preferably about 2 to 50 μm. The high electrical resistance and high magnetic permeability material (second material), for example, an electrical resistivity of 10 0 Omega · cm in order or more, preferably one having 10 or more relative permeability, more specifically Examples include Ni-Zn ferrite and Mn-Zn ferrite.

【0015】本発明の複合磁性材料を構成する場合の第
2の物質の膜厚は例えば、20〜1000nm程度が好
ましい。絶縁性の高電気抵抗を有する物質(第3の物
質)としては,Al-O,Si-O,Al-N等の材料が挙げられる。
絶縁層の構成としては,例えばAl-0とAl-Nの2種類から
なる膜も考えられ,この場合は合計4種類の物質からな
る複合体のうち,2種類の物質が第3の物質と同じ機能
をすることになる。
When the composite magnetic material of the present invention is formed, the film thickness of the second substance is preferably about 20 to 1000 nm. Examples of the insulating high electric resistance substance (third substance) include Al—O, Si—O, and Al—N.
As the structure of the insulating layer, for example, a film made of two kinds of Al-0 and Al-N is considered, and in this case, two kinds of materials are the third material in the composite material made of four kinds of materials in total. Will have the same function.

【0016】前記第3の物質の電気抵抗率は例えば、1
3 Ω・cmのオーダー以上のものを用いるのが好まし
く、また、本発明の複合磁性材料を構成する場合の第3
の物質の膜厚は例えば、2〜30nm程度が好ましい。
The electrical resistivity of the third substance is, for example, 1
It is preferable to use one having an order of 0 3 Ω · cm or more, and the third one in the case of constituting the composite magnetic material of the present invention.
The film thickness of the substance is preferably about 2 to 30 nm.

【0017】なお,焼結時に添加物として液相として働
きうる第3の物質と同じ機能を発揮するB2 3 、Bi
2 3 等を加えることも高電気抵抗の焼結体を得るうえ
で有用である。
It should be noted that B 2 O 3 and Bi which have the same function as the third substance which can act as a liquid phase as an additive during sintering.
It is also useful to add 2 O 3 or the like to obtain a sintered body having high electric resistance.

【0018】前記、第1、第2、第3の物質からなる3
層以上の複合体粉末を所定の形状に成型、焼結するに
は、用いる各物質の種類や用途、目的などによって異な
るので明確に規定しかたいが、通常200〜800kg
/cm2 程度で、加圧成型して、この成型体を通常60
0〜1200℃、300〜2000kg/cm2 程度
で、およそ5分〜10時間程度ホットプレスする等の手
段で焼結体とすることができる。
3 comprising the above-mentioned first, second and third substances
In order to mold and sinter the composite powder of more than one layer into a predetermined shape, it is difficult to specify clearly because it depends on the type of each substance used, application, purpose, etc., but usually 200-800 kg
/ Cm 2 and pressure molding, this molded body is usually 60
A sintered body can be formed by means of hot pressing at 0 to 1200 ° C. and about 300 to 2000 kg / cm 2 for about 5 minutes to 10 hours.

【0019】以下、具体的な実施例をあげて本発明をよ
り詳細に説明する。 実施例1 磁性材料として,高透磁率(μ>2000 at 1[MHz]),高
飽和磁束密度(Bs>約1 [T] )で高電気抵抗の磁性材料
を得ることを目的として以下の実験を行った。
Hereinafter, the present invention will be described in more detail with reference to specific examples. Example 1 The following experiment was carried out for the purpose of obtaining a magnetic material having a high magnetic permeability (μ> 2000 at 1 [MHz]) and a high saturation magnetic flux density (Bs> about 1 [T]) and a high electric resistance. I went.

【0020】組成が84wt%Fe-10wt%Si-6wt%Alである窒素
アトマイズ合金粉末(平均粒径30μmφ)を,ph=7 〜
8 に調整した70℃のNiCl2 とZnCl2 の水溶液に浸し,反
応させた。
Nitrogen atomized alloy powder (average particle size 30 μmφ) having a composition of 84 wt% Fe-10 wt% Si-6 wt% Al was used, and ph = 7-
It was immersed in an aqueous solution of NiCl 2 and ZnCl 2 adjusted to 8 at 70 ° C to react.

【0021】溶液中では前記粉末に金属イオンを吸着さ
せ,次に空気中で酸化させてフェライト化反応をおこさ
せた。この2つの反応をおよそ1〜2分間隔で50〜6
0回交互に起こし,厚さ約500nmの軟磁性のNi-Zn
フェライト薄膜を形成させた。これが高透磁率の物質
(第2の物質)の膜に対応する。
In the solution, the powder was adsorbed with metal ions and then oxidized in air to cause a ferritic reaction. These two reactions are performed at intervals of 1 to 2 minutes for 50 to 6
Alternating 0 times, soft magnetic Ni-Zn with a thickness of about 500 nm
A ferrite thin film was formed. This corresponds to a film of a high magnetic permeability material (second material).

【0022】なお,厚さ約500nm のNi-Zn フェライト薄
膜それ自体の磁気特性,及び電気特性をガラス基盤上に
形成した薄膜により評価した。その結果,特性は飽和磁
束密度Bs=3000[G] 、透磁率μ=121(at 1[MHz]), 電気
抵抗ρ=105 〜109[Ωcm] であった。
The magnetic properties and electrical properties of the Ni-Zn ferrite thin film itself having a thickness of about 500 nm were evaluated using a thin film formed on a glass substrate. As a result, characteristics of the saturation magnetic flux density Bs = 3000 [G], the magnetic permeability μ = 121 (at 1 [MHz ]), was electrical resistivity ρ = 10 5 ~10 9 [Ωcm ].

【0023】さらに,絶縁膜を形成するために窒素雰囲
気下,5分でAlをターゲットとしてスパッタリングを行
い,AlN を主成分とする厚さ数nmの絶縁膜を粉体表面上
に形成した。
Further, in order to form an insulating film, sputtering was performed in an atmosphere of nitrogen for 5 minutes with Al as a target to form an insulating film containing AlN as a main component and having a thickness of several nm on the powder surface.

【0024】この複合Fe-Si-Al合金粉体に対して,添加
物としてB2 3 を0.1 vol.% 加えた後,500kg/
cm2 で加圧して,成型体を作製後,1000℃、2 時間、
500kg/cm2 (N 2中) の圧力でホットプレスし,
高密度(相対密度98〜99% )の複合焼結体を作製した。
After adding 0.1 vol.% Of B 2 O 3 as an additive to the composite Fe-Si-Al alloy powder, 500 kg /
After pressurizing with cm 2 to make a molded body, 1000 ℃, 2 hours,
Hot press at a pressure of 500 kg / cm 2 (in N 2 ),
A high density (relative density 98-99%) composite sintered body was produced.

【0025】この複合材料の磁気特性を表1に示す。非
磁性層であるAlN 層及びB2 3 層の膜厚が6nmと薄く
且つ,電気抵抗はρ>108[Ωcm] と高いため,高周波数
域における透磁率は高い値(μ=2008(at 1[MHz]) )を
示し目的とする磁性材料が得られた。
The magnetic properties of this composite material are shown in Table 1. Since the non-magnetic layers, AlN layer and B 2 O 3 layer, are as thin as 6 nm and have high electric resistance ρ> 10 8 [Ωcm], the magnetic permeability in the high frequency range is high (μ = 2008 ( at 1 [MHz])) and the target magnetic material was obtained.

【0026】実施例2 磁性材料として,実施例1と同様に,高透磁率(μ>20
00 at 1[MHz])で飽和磁束密度がBs >約1[T]の高電気
抵抗の磁性材料を得ることを目的として,皮膜の構造を
変えた場合の実験を以下行った。
Example 2 As a magnetic material, as in Example 1, high magnetic permeability (μ> 20)
At the time of 00 at 1 [MHz]), the following experiments were carried out when the structure of the film was changed in order to obtain a magnetic material with a saturation magnetic flux density of Bs> about 1 [T] and a high electric resistance.

【0027】組成が84wt%Fe-10wt%Si-6wt%Alである窒素
アトマイズ合金粉末(平均粒径30μmφ)に対して,窒
素雰囲気下,900 ℃,0.5時間熱処理を行い,膜厚6nmの
絶縁膜を形成した。さらにその粉体を,高透磁率の物質
の膜で覆うために,実施例1と同様に,ph=7 から8 に
調整した70℃のNiCl2 とZnCl2 の水溶液に浸し反応させ
た。
Nitrogen atomized alloy powder (average particle size: 30 μmφ) having a composition of 84 wt% Fe-10 wt% Si-6 wt% Al was heat-treated at 900 ° C. for 0.5 hour in a nitrogen atmosphere, and an insulation film having a thickness of 6 nm was formed. A film was formed. Further, in order to cover the powder with a film of a substance having a high magnetic permeability, the powder was immersed in an aqueous solution of NiCl 2 and ZnCl 2 at 70 ° C. adjusted to ph = 7 to 8 and reacted as in Example 1.

【0028】溶液中では粉末に金属イオンを吸着させ,
次に空気中で酸化させてフェライト化反応をおこさせ
る。この2つの反応を交互に起こし,厚さ約500nm の軟
磁性のNi-Zn フェライト薄膜を形成させた。
In the solution, powder adsorbs metal ions,
Next, it is oxidized in air to cause a ferritic reaction. By alternating these two reactions, a soft magnetic Ni-Zn ferrite thin film with a thickness of about 500 nm was formed.

【0029】今回の3層構造(高透磁率の物質の膜が絶
縁層を覆う構造)を持つ複合Fe-Si-Al合金粉体に対して
も,実施例1と同様のホットプレス条件で高密度の複合
焼結体を作製した。
Even for the composite Fe-Si-Al alloy powder having the three-layer structure (structure in which a film of a substance having a high magnetic permeability covers the insulating layer) this time, the same high pressing conditions as those in Example 1 were used. A composite sintered body of high density was produced.

【0030】表1に,この複合材料の磁気特性を示す。
飽和磁束密度は1[T], 透磁率はμ=2101(at1MHz),電気
抵抗はρ=3.2 ×107[Ωcm] の値を示し,高周波領域で
も実施例1と同様に高透磁率である磁性材料が得られ
た。
Table 1 shows the magnetic characteristics of this composite material.
The saturation magnetic flux density is 1 [T], the magnetic permeability is μ = 2101 (at1MHz), the electric resistance is ρ = 3.2 × 10 7 [Ωcm], and the high magnetic permeability is the same as in Example 1 even in the high frequency region. A magnetic material was obtained.

【0031】実施例1及び2の複合磁性材料が従来の複
合磁性材料(2層構造からなる粉体の焼結体)に対して
優れていることを示すため,比較例を以下に示す。 比較例1 組成が84wt%Fe-10wt%Si-6wt%Alである窒素アトマイズ合
金粉末(平均粒径30μmφ)を,ph=7 から8 に調整し
た70℃のNiCl2 とZnCl2 の水溶液に浸し,反応させた。
Comparative examples are shown below in order to show that the composite magnetic materials of Examples 1 and 2 are superior to the conventional composite magnetic material (sintered body of powder having a two-layer structure). Comparative Example 1 Nitrogen atomized alloy powder (average particle size 30 μmφ) having a composition of 84 wt% Fe-10 wt% Si-6 wt% Al was immersed in 70 ° C. aqueous solution of NiCl 2 and ZnCl 2 adjusted to pH = 7 to 8 , Reacted.

【0032】溶液中では粉末に金属イオンを吸着させ,
次に空気中で酸化させてフェライト化反応をおこさせ
る。この2つの反応を交互に起こし,厚さ約500nm の軟
磁性のNi-Zn フェライト薄膜を形成させた。これが高透
磁率の物質の膜に対応する。
In the solution, the powder is allowed to adsorb metal ions,
Next, it is oxidized in air to cause a ferritic reaction. By alternating these two reactions, a soft magnetic Ni-Zn ferrite thin film with a thickness of about 500 nm was formed. This corresponds to a film of high magnetic permeability material.

【0033】この2層構造を持つ磁性粉体を500 kg/
cm2 で加圧して,成型体を作製後,1000℃,2時間,500
kg/cm2 ( N2 中) の圧力でホットプレスし,高密
度(相対密度98〜99% )の複合焼結体を作製した。
The magnetic powder having this two-layer structure is 500 kg /
After pressurizing with cm 2 to make a molded body, 1000 ℃, 2 hours, 500
Hot pressing was performed at a pressure of kg / cm 2 (in N 2 ) to produce a high density (relative density 98-99%) composite sintered body.

【0034】この複合材料の磁気特性を実施例と同様に
表1に示す。飽和磁束密度は1[T],透磁率はμ=2340(at
100Hz),μ=1241(at1MHz),電気抵抗はρ=2.8[Ωcm]
の値を示した。電気抵抗に関して十分な高電気抵抗の
値が得られなかったため,高周波領域で透磁率が低下し
ていることがわかる。
The magnetic properties of this composite material are shown in Table 1 as in the examples. Saturation magnetic flux density is 1 [T], permeability is μ = 2340 (at
100Hz), μ = 1241 (at1MHz), electric resistance ρ = 2.8 [Ωcm]
The value of was shown. Regarding the electric resistance, it was found that the magnetic permeability decreased in the high frequency region because a sufficiently high electric resistance value was not obtained.

【0035】なお,この比較例に対して,実施例1と同
様にB2 3 を0.1 vol.% 添加したのちホットプレス焼
結させた場合,焼結体の電気抵抗はρ=4.1[Ωcm] の値
を示し十分な値は得られなかった。
In comparison with this comparative example, when 0.1 vol.% Of B 2 O 3 was added and hot press sintering was performed as in Example 1, the electric resistance of the sintered body was ρ = 4.1 [Ωcm. ], And a sufficient value was not obtained.

【0036】比較例2 組成が84wt%Fe-10wt%Si-6wt%Alである窒素アトマイズ合
金粉末(平均粒径30μmφ)に対して,窒素雰囲気下,
900 ℃,2.5 時間熱処理を行い,膜厚11nmの絶縁膜を形
成した。
Comparative Example 2 A nitrogen atomized alloy powder (average particle size 30 μmφ) having a composition of 84 wt% Fe-10 wt% Si-6 wt% Al was used in a nitrogen atmosphere.
Heat treatment was performed at 900 ° C for 2.5 hours to form an insulating film with a thickness of 11 nm.

【0037】この2層構造を持つ複合Fe-Si-Al合金粉体
に対して,比較例1と同様のホットプレス条件で高密度
の複合焼結体を作製した。この複合材料の磁気特性を表
1に示す。飽和磁束密度は1[T], 透磁率はμ=1322(at
100Hz), μ=844 (at1MHz),電気抵抗はρ=3.2 ×10-1
[ Ωcm] の値を示した。高透磁率を得るために必要な膜
厚は,10nm以下のレベルであり,単にその膜厚で覆われ
た粉体を焼結しても,高電気抵抗が得られず,高周波領
域で急激に透磁率が低下していることがわかる。
With respect to the composite Fe-Si-Al alloy powder having the two-layer structure, a high density composite sintered body was produced under the same hot pressing conditions as in Comparative Example 1. The magnetic properties of this composite material are shown in Table 1. Saturation magnetic flux density is 1 [T], permeability is μ = 1322 (at
100Hz), μ = 844 (at1MHz), electric resistance is ρ = 3.2 × 10 -1
The value of [Ωcm] is shown. The film thickness required to obtain a high magnetic permeability is at a level of 10 nm or less, and even if the powder covered with that film thickness is simply sintered, a high electric resistance cannot be obtained, and it rapidly increases in the high frequency region. It can be seen that the magnetic permeability has decreased.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明の複合磁性材料は、高電気抵抗の
複合磁性体であって、且つ高飽和磁束密度,高透磁率の
磁性材料とすることができ、高周波特性の優れた磁性材
料を提供できる。
Industrial Applicability The composite magnetic material of the present invention is a composite magnetic material having a high electric resistance and can be a magnetic material having a high saturation magnetic flux density and a high magnetic permeability, and is a magnetic material excellent in high frequency characteristics. Can be provided.

【0040】また、第1の物質がFe系金属磁性体,第
2の物質がフェライトよりなる好ましい態様とすること
により、高電気抵抗の複合磁性体であって、且つ高飽和
磁束密度,高透磁率の高周波特性の優れた磁性材料を容
易に提供する事ができる。
Further, by adopting a preferable mode in which the first substance is an Fe-based metal magnetic substance and the second substance is ferrite, it is a composite magnetic substance having high electric resistance, high saturation magnetic flux density and high permeability. It is possible to easily provide a magnetic material having excellent high frequency characteristics of magnetic susceptibility.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁性金属よりなる母相粒子(第1の物
質),高電気抵抗で且つ高透磁率の物質(第2の物
質),第2の物質とは異なる高電気抵抗の物質(第3の
物質)の少なくとも3種類以上の物質からなる微小粒径
複合体よりなり,母相粒子の表面を,第2の物質がほぼ
覆っており,さらに第3の物質が第2の物質をほぼ覆っ
ている少なくとも3層以上の構造を持ち,且つ前記母相
粒子間が前記第2の物質ならびに前記第3の物質により
ほぼ隔離されてなる複合磁性材料。
1. A matrix particle made of a magnetic metal (first substance), a substance having high electric resistance and high magnetic permeability (second substance), and a substance having high electric resistance different from the second substance (first substance). (3 substance), which is composed of at least three kinds of fine particle size composites, the second substance substantially covers the surface of the matrix phase particles, and the third substance almost covers the second substance. A composite magnetic material having a structure of at least three layers covering the parent phase particles, and the matrix particles are substantially separated from each other by the second substance and the third substance.
【請求項2】 第1の物質がFe系金属磁性体,第2の
物質がフェライトよりなる請求項1に記載の複合材料。
2. The composite material according to claim 1, wherein the first substance is an Fe-based metal magnetic body and the second substance is ferrite.
【請求項3】 磁性金属よりなる母相粒子(第1の物
質),高電気抵抗の物質(第3の物質),第3の物質と
は異なる高電気抵抗で且つ高透磁率の物質(第2の物
質)の少なくとも3種類以上の物質からなる微小粒径複
合体よりなり,母相粒子の表面を,第3の物質がほぼ覆
っており,さらに第2の物質が第3の物質をほぼ覆って
いる少なくとも3層以上の構造を持ち,且つ前記母相粒
子間が前記第3の物質ならびに前記第2の物質によりほ
ぼ隔離されてなる複合磁性材料。
3. A matrix particle (first substance) made of a magnetic metal, a substance having high electric resistance (third substance), and a substance having high electric resistance and high magnetic permeability different from the third substance (first substance). 2 substance), which is composed of at least three kinds of fine particle size composites, the surface of the matrix particles is almost covered with the third substance, and the second substance almost covers the third substance. A composite magnetic material having a structure of at least three layers or more and covering the matrix particles substantially separated from each other by the third substance and the second substance.
【請求項4】 第1の物質がFe系金属磁性体,第3の
物質がフェライトよりなる請求項3に記載の複合材料。
4. The composite material according to claim 3, wherein the first substance is a Fe-based metal magnetic body and the third substance is ferrite.
JP3187690A 1991-07-26 1991-07-26 Composite magnetic material Pending JPH0536514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3187690A JPH0536514A (en) 1991-07-26 1991-07-26 Composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3187690A JPH0536514A (en) 1991-07-26 1991-07-26 Composite magnetic material

Publications (1)

Publication Number Publication Date
JPH0536514A true JPH0536514A (en) 1993-02-12

Family

ID=16210446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3187690A Pending JPH0536514A (en) 1991-07-26 1991-07-26 Composite magnetic material

Country Status (1)

Country Link
JP (1) JPH0536514A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010782A1 (en) * 2001-07-23 2003-02-06 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
JP2006186072A (en) * 2004-12-27 2006-07-13 Fuji Electric Holdings Co Ltd Manufacturing method of compound magnetic component
US7179337B2 (en) 2002-10-25 2007-02-20 Denso Corporation Method for producing a soft magnetic material
US7270718B2 (en) 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
JP2016058732A (en) * 2014-09-08 2016-04-21 株式会社豊田中央研究所 Dust core, powder for magnetic core, method for producing dust core, and method for producing powder for magnetic core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010782A1 (en) * 2001-07-23 2003-02-06 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
WO2003015109A1 (en) * 2001-08-09 2003-02-20 The Circle For The Promotion Of Science And Engineering Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof
US7179337B2 (en) 2002-10-25 2007-02-20 Denso Corporation Method for producing a soft magnetic material
US7270718B2 (en) 2003-11-20 2007-09-18 Denso Corporation Method for manufacturing a soft magnetic powder material
JP2006186072A (en) * 2004-12-27 2006-07-13 Fuji Electric Holdings Co Ltd Manufacturing method of compound magnetic component
JP2016058732A (en) * 2014-09-08 2016-04-21 株式会社豊田中央研究所 Dust core, powder for magnetic core, method for producing dust core, and method for producing powder for magnetic core

Similar Documents

Publication Publication Date Title
EP1808242B1 (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
US7498080B2 (en) Ferromagnetic powder for dust core
JP5358562B2 (en) Method for producing composite magnetic material and composite magnetic material
EP1077454B1 (en) Composite magnetic material
EP2219195A1 (en) High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JPH0421739A (en) Composite and its manufacture
JP2001011563A (en) Manufacture of composite magnetic material
JP2010062424A (en) Manufacturing method of electronic component
JPH05109520A (en) Composite soft magnetic material
JPWO2010073590A1 (en) Composite soft magnetic material and manufacturing method thereof
JP4903101B2 (en) High specific resistance and low loss composite soft magnetic material and manufacturing method thereof
JPH11238613A (en) Compound magnetic material and its manufacture
JP5049845B2 (en) High-strength, high-resistivity, low-loss composite soft magnetic material, manufacturing method thereof, and electromagnetic circuit component
JPH04346204A (en) Compound material and manufacture thereof
JP2002121601A (en) Soft magnetic metal powder particle and treating method thereof, and soft magnetic compact and its manufacturing method
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JPH0536514A (en) Composite magnetic material
JP2005187918A (en) Insulating coated iron powder for powder compact magnetic core
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
US5993729A (en) Treatment of iron powder compacts, especially for magnetic applications
JP2000232014A (en) Manufacture of composite magnetic material
JP2009141346A (en) High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JPH06204021A (en) Composite magnetic material and its manufacture