JPH0536432B2 - - Google Patents

Info

Publication number
JPH0536432B2
JPH0536432B2 JP13584787A JP13584787A JPH0536432B2 JP H0536432 B2 JPH0536432 B2 JP H0536432B2 JP 13584787 A JP13584787 A JP 13584787A JP 13584787 A JP13584787 A JP 13584787A JP H0536432 B2 JPH0536432 B2 JP H0536432B2
Authority
JP
Japan
Prior art keywords
formula
compound
reaction
compound represented
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13584787A
Other languages
Japanese (ja)
Other versions
JPS63297353A (en
Inventor
Masatoshi Ishikura
Hajime Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO PHARMA KK
Original Assignee
TOYO PHARMA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO PHARMA KK filed Critical TOYO PHARMA KK
Priority to JP13584787A priority Critical patent/JPS63297353A/en
Publication of JPS63297353A publication Critical patent/JPS63297353A/en
Publication of JPH0536432B2 publication Critical patent/JPH0536432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、抗原抗体反応時の白血球からのヒス
タミン遊離、プラウスニツツ・キユストネル反応
(Prausnitz−Ku¨stner反応)、アレルゲン皮内反
応、アレルゲン吸入誘発反応などに対する抑制作
用を有し、アレルギー性疾患治療剤等として知ら
れているN−(3,4−ジメトキシシンナモイル)
アラントラニル酸などの下記一般式(4) (但し、式中R1は低級アルコキシ基、R2は水素
原子又は低級アルコキシ基である。以下、同様。) で示される芳香族カルボン酸アミド誘導体又はそ
の塩の新規な製造方法に関する。 従来の技術 従来より、上記(4)式で示される芳香族カルボン
酸アミド誘導体又はその塩を製造する方法として
は、下記〜の方法等が提案されている。 特開昭49−93335号公報記載の方法 下記一般式(5) で示される芳香族カルボン酸の反応性官能的誘
導体と下記式(3′) で示されるアントラニル酸と反応させる方法。 特開昭50−135046号公報記載の方法 上記(5)式の芳香族カルボン酸の反応性官能的
誘導体とアントラニル酸エステルとを反応さ
せ、得られる反応生成物のエステル基を加水分
解する方法。 特開昭50−140413号公報記載の方法 (5)式の芳香族カルボン酸と(3′)式のアント
ラニル酸又はアントラニル酸エステルとを縮合
剤の存在下で反応させ、次いでアントラニル酸
エステルを使用した場合は反応生成物のエステ
ル基を加水分解する方法。 特開昭52−65279号公報記載の方法 下記式(6) で示される芳香族アルデヒドと2−メチル−
3,1−ベンゾオキサジン−4−オンとを高温
下で反応させ、下記一般式(7) で示されるベンゾオキサジノン誘導体を合成
し、次いでこの(7)式の化合物を加水分解する方
法。 特開昭52−83428号公報記載の方法 (6)式の芳香族アルデヒドと2−メチル−3,
1−ベンゾオキサジン−4−オンとを脱水縮合
剤の存在下に反応させて(7)式のベンゾオキサジ
ノン誘導体を合成し、次いでこの(7)式の化合物
を加水分解する方法。 特開昭52−83429号公報記載の方法 (5)式の芳香族カルボン酸の反応性官能的誘導
体と(3′)式のアントラニル酸とを反応させて
(7)式のベンゾオキサジノン誘導体を合成し、次
いでこの(7)式の化合物を加水分解する方法。 特開昭52−83473号公報記載の方法 (5)式の芳香族カルボン酸と(3′)式のアント
ラニル酸とをピリジン溶媒中、過剰量の縮合剤
の存在下に反応させて(7)式のベンゾオキサジノ
ン誘導体を合成し、次いでこの(7)式の化合物を
加水分解する方法。 特開昭56−135454号公報記載の方法 下記一般式(8) で示されるカルコン誘導体とアジ化水素酸又は
その塩とを水及び酸の存在下に反応させる方
法。 特開昭57−38759号公報記載の方法 (6)式の芳香族アルデヒドと下記式(9) で示されるマロンアントラニル酸とをピリジン
溶媒中塩基性物質の存在下に反応させる方法。 特開昭58−38244号公報記載の方法 (6)式の芳香族アルデヒドと(9)式のマロンアン
トラニル酸とを不活性有機溶媒中、等モル量の
環状アミンの存在下に反応させる方法。 特開昭60−19754号公報記載の方法 下記一般式(10) (但し、式中R5は低級アルキル基、Halはハロ
ゲン原子である。以下、同様。) で示されるN−ハロゲノアセチルアントラニル酸
エステルから下記一般式(11) 〔但し、式中Yは
Industrial Application Field The present invention has an inhibitory effect on histamine release from leukocytes during antigen-antibody reactions, Prausnitz-Ku¨stner reaction, allergen intradermal reaction, allergen inhalation-induced reaction, etc. N-(3,4-dimethoxycinnamoyl), which is known as a therapeutic agent for allergic diseases, etc.
The following general formula (4) such as alanthranilic acid (However, in the formula, R 1 is a lower alkoxy group and R 2 is a hydrogen atom or a lower alkoxy group. The same applies hereinafter.) BACKGROUND ART Conventionally, as a method for producing the aromatic carboxylic acid amide derivative represented by the above formula (4) or a salt thereof, the following methods have been proposed. The method described in JP-A No. 49-93335 The following general formula (5) The reactive functional derivative of aromatic carboxylic acid represented by and the following formula (3') A method of reacting with anthranilic acid shown in Method described in JP-A-50-135046 A method of reacting the reactive functional derivative of the aromatic carboxylic acid of formula (5) with an anthranilic acid ester and hydrolyzing the ester group of the resulting reaction product. The method described in JP-A-50-140413, in which the aromatic carboxylic acid of the formula (5) and the anthranilic acid or anthranilic acid ester of the formula (3') are reacted in the presence of a condensing agent, and then the anthranilic ester is used. In this case, the ester group of the reaction product is hydrolyzed. Method described in JP-A No. 52-65279 The following formula (6) Aromatic aldehyde and 2-methyl-
By reacting with 3,1-benzoxazin-4-one at high temperature, the following general formula (7) is obtained. A method of synthesizing a benzoxazinone derivative represented by formula (7) and then hydrolyzing this compound of formula (7). The method described in JP-A-52-83428, in which an aromatic aldehyde of formula (6) and 2-methyl-3,
A method of synthesizing a benzoxazinone derivative of formula (7) by reacting 1-benzoxazin-4-one in the presence of a dehydration condensation agent, and then hydrolyzing the compound of formula (7). The method described in JP-A No. 52-83429, in which a reactive functional derivative of aromatic carboxylic acid of formula (5) is reacted with anthranilic acid of formula (3').
A method of synthesizing a benzoxazinone derivative of formula (7) and then hydrolyzing this compound of formula (7). The method described in JP-A-52-83473, in which an aromatic carboxylic acid of formula (5) and anthranilic acid of formula (3') are reacted in a pyridine solvent in the presence of an excess amount of a condensing agent (7) A method of synthesizing a benzoxazinone derivative of the formula and then hydrolyzing this compound of formula (7). The method described in JP-A-56-135454 The following general formula (8) A method of reacting a chalcone derivative represented by the formula with hydrazidic acid or a salt thereof in the presence of water and an acid. The method described in JP-A-57-38759 Aromatic aldehyde of formula (6) and the following formula (9) A method of reacting malonic anthranilic acid represented by the formula in a pyridine solvent in the presence of a basic substance. A method described in JP-A-58-38244, in which an aromatic aldehyde of formula (6) and malonic anthranilic acid of formula (9) are reacted in an inert organic solvent in the presence of an equimolar amount of a cyclic amine. The method described in JP-A-60-19754 The following general formula (10) (However, in the formula, R 5 is a lower alkyl group and Hal is a halogen atom. The same applies hereinafter.) From the N-halogenoacetylanthranilate ester represented by the following general formula (11) [However, in the formula, Y is

【式】又は[Formula] or

【式】(なお、式中X1は炭素数1〜10の アルキル基、フエニル基又は置換フエニル基、
X2は炭素数1〜10のアルコキシル基、Hal′は
塩素原子、臭素原子又はヨウ素原子を示す。)
である。以下、同様。〕 で示されるリン化合物を合成した後、この化合
物を塩基性物質で処理して下記一般式(12) 〔但し、式中Y′は(X13P −又は
[Formula] (In the formula, X 1 is an alkyl group having 1 to 10 carbon atoms, a phenyl group, or a substituted phenyl group,
X 2 represents an alkoxyl group having 1 to 10 carbon atoms, and Hal' represents a chlorine atom, a bromine atom, or an iodine atom. )
It is. Same below. ] After synthesizing the phosphorus compound represented by, this compound is treated with a basic substance to form the following general formula (12). [However, in the formula, Y′ is (X 1 ) 3 P − or

【式】(なお、B は塩基性物質か ら誘導される陽イオンを示す。)である。〕 で示されるリンイリド誘導体を得、次いでこの
上記(12)式のリンイリド誘導体と上記(6)式の芳香
族アルデヒドとを反応させ、更に反応生成物の
エステル基を加水分解する方法。 発明が解決しようとする問題点 しかしながら、上記〜の方法のうち〜
の方法は、反応収率が21〜46%と非常に低く、目
的とする(4)式の化合物を精製し難い上、出発原料
である(5)式の芳香族カルボン酸が高価なため、経
済的に不利である。 また、〜の方法は、いずれも(7)式のベンゾ
オキサジノン誘導体を合成した後、加水分解して
(4)式の化合物を得るものであり、及びの方法
はアントラニル酸を出発原料とし2−メチル−
3,1−ベンゾオキサジン−4−オンを経て、(7)
式のベンゾオキサジノン誘導体を合成するのに数
段階を要し、かつその合成収率も低く、一方及
びの方法は、上記〜の方法と同様、高価な
芳香族カルボン酸を出発原料として用いるため、
(7)式のベンゾオキサジノン誘導体の合成コストが
高いという欠点を有し、しかもこれら〜の方
法は目的物質の総合合成収率が低収率である。 更に、上記の方法においては、出発原料のア
ジ化水素酸が有毒かつ爆発性を有し、危険である
と共に、(8)式のカルコン誘導体合成に数段階を要
し、製造が面倒であること、加えて目的物質の総
合合成収率が低収率であるという問題点がある。 なおまた、上記の方法は、反応終了後、最終
工程として水又は含水アルコール中塩酸で目的物
質を晶析させるが、この際、反応液中に残存する
出発原料や酸性水溶液に難溶性の副生成物が析
出、混入し、目的物質の精製に支障をきたす上、
反応溶媒のピリジンが悪臭及び毒性を有し、人体
に悪影響を及ぼすという問題がある。そこで、
の方法では不活性溶媒中、等モル量の環状アミン
存在下でと同様の反応を行ない、上記の方法
の問題点の大部分を解決している。しかし、及
びの方法は、どちらも出発原料として(9)式のマ
ロンアントラニル酸を使用しており、このマロン
アントラニル酸が下記反応式に示すように数段
階を要して合成されるために両方法とも目的物質
の総合合成収率が低い。 更に、の方法はアントラニル酸を出発原料と
し、(10)式のN−ハロゲノアセチルアントラニル酸
エステルを得、次いで(11)式のリン化合物を経て(12)
式のリンイリド誘導体を得た後、これと(6)式の芳
香族アルデヒドとの反応後、加水分解して(4)式の
目的化合物を得るものであるが、反応段数が多く
総合合成収率が低収率である上、中間物質として
不安定なリン化合物を経るため、工業的合成法と
して好ましくない。 従つて、上記方法はいずれも工業的に不利であ
り、このため従来より、工業的規模において満足
し得る(4)式の化合物又はその塩の製造方法の開発
が要望されていた。 本発明は上記事情に鑑みなされたもので、(4)式
の化合物を少ない反応段数で収率良く、安全かつ
経済的に有利に合成し得、しかも反応混合物から
反応生成物である目的物質を容易に単離、精製す
ることができる工業的に有利な(4)式の化合物又は
その塩の製造方法を提供することを目的とする。 問題点を解決するための手段及び作用 本発明者らは、上記目的を達成するため鋭意検
討を重ねた結果、下記一般式(1) (但し、式中R1は低級アルコキシ基、R2は水素
原子又は低級アルコキシ基である。以下、同様。) で示されるアルコキシベンゼン化合物と、下記式
(2) (但し、式中R3及びR4は低級アルキル基又はア
リール基である。以下、同様。) で示されるホルムアミド化合物とを塩化ホスホリ
ル、塩化チオニル又はホスゲンの存在下に反応さ
せた後、更にこの反応生成物と、下記式(3) (但し、式中Xは水素原子又はアセチル基であ
る。以下、同様。) で示されるアントラニル酸又はN−アセチルアン
トラニル酸とを無水酢酸の存在下に反応させるこ
と、特に上記(1)式のアルコキシベンゼン化合物と
上記(2)式の化合物としてN−メチルホルムアニリ
ドとを塩化ホスホリルの存在下に反応させた後、
更にこの反応生成物と上記(3)式の化合物としてア
ントラニル酸とを無水酢酸の存在下に反応させる
ことにより、下記一般式(4) で示される芳香族カルボン酸アミド誘導体又はそ
の塩を安全かつ比較的安価で入手容易な出発原料
や試薬を用いて、反応容器中連続して二段階反応
で簡単に収率良く合成し得ると共に、この二段階
反応終了後、反応混合物から最終反応生成物であ
る(4)式の化合物を容易に単離、精製することがで
きることを知見し、本発明をなすに至つたもので
ある。 従つて、本発明は、上記(1)式で示されるアルコ
キシベンゼン化合物と、上記(2)式で示されるホル
ムアミド化合物とを塩化ホスホリル、塩化チオニ
ル又はホスゲンの存在下に反応させた後、更にこ
の反応生成物と上記(3)式で示されるアントラニル
酸又はN−アセチルアントラニル酸とを無水酢酸
の存在下に反応させることを特徴とする上記(4)式
で示される芳香族カルボン酸アミド誘導体又はそ
の塩の製造方法を提供する。 以下、本発明につき更に詳述する。 本発明の製造方法は、まず第一段階反応とし
て、(1)式のアルコキシベンゼン化合物と(2)式のホ
ルムアミド化合物とを塩化ホスホリル、塩化チオ
ニル又はホスゲンの存在下に反応させる。この場
合、(1)式のアルコキシベンゼン化合物として具体
的には、置換基R1が低級アルコキシ基、R2が水
素原子であるメトキシベンゼン、エトキシベンゼ
ン、プロピオキシベンゼン、ブトキシベンゼン等
や、R1及びR2が同一の低級アルコキシ基である
1,2−ジメトキシベンゼン、1,2−ジエトキ
シベンゼン、1,2−ジプロポキシベンゼン、
1,2−ジブトキシベンゼン等を挙げることがで
きる。 更に、上記(2)式で示されるホルムアミド化合物
としては、その置換基R3及びR4が同一もしくは
異なる低級アルキル基又はアリール基、例えばメ
チル基、エチル基等の低級アルキル基又はフエニ
ル基等のアリール基であるホルムアミド化合物が
用いられ、具体的にはN,N−ジメチルホルムア
ミドやN−メチルホルムアニリド、特にN−メチ
ルホルムアニリドが好適に使用される。 また、この第1段階反応で使用する塩化ホスホ
リル、塩化チオニル又はホスゲンとしては、いず
れを使用してもよいが、特に反応収率や毒性、操
作性の面から塩化ホスホリルを使用することが好
ましい。 ここで、上記(1)式の化合物として用いられる
1,2−ジメトキシベンゼン(一般名:ベラトロ
ール)、(2)式の化合物として用いられるN−メチ
ルホルムアニリド及びN,N−ジメチルホルムア
ミド、そして塩化ホスホリル及び塩化チオニルは
いずれも公知の化合物であり、市販品として容易
に入手し得る。なお、(1)式のアルコキシベンゼン
化合物及び(2)式のN−メチルホルムアニリドは各
種文献記載の方法でも簡単に製造することがで
き、特にN−メチルホルムアニリドは回収再処理
後有効に再利用できる。 本発明製造方法の第1段階反応では、上述のよ
うに(1)式のアルコキシベンゼン化合物と(2)式のホ
ルムアミド化合物とを塩化ホスホリル、塩化チオ
ニル又はホスゲンの存在下に反応させると、下記
式(13) で示されるインモニウム塩が生成するもので、更
にこのインモニウム塩を中間体として次の第2段
階反応を行なうと、目的とする(4)式の化合物を容
易に収率良く得ることができる。 なお、特にこの第1段階反応においては、(1)式
のアルコキシベンゼン化合物と(2)式のホルムアミ
ド化合物としてN−メチルホルムアニリドとを塩
化ホスホリルの存在下に反応させることが好まし
く、このような化合物を使用して第1段階反応を
進めると、(13)式で示される中間体のインモニウム
塩が高収率で得られ、しかもこの中間体のインモ
ニウム塩を単離、精製することなく次に第2段階
反応を行なうことができる。 次いで、本発明製造方法の第2段階反応では、
第1段階反応で得られた中間体のインモニウム塩
又はこの中間体を含有する反応混合物に無水酢酸
と上記(3)式のアントラニル酸又はN−アセチルア
ントラニル酸とを加えて反応させ、目的とする(4)
式の化合物を製造する。 ここで、(3)式のアントラニル酸又はN−アセチ
ルアントラニル酸は公知の化合物であり、市販品
として容易に入手し得、特にアントラニル酸は安
価に入手することができ、無水酢酸も公知の化合
物で市販品として安価で容易に入手し得る。 なお、この第2段階反応においては、(3)式の化
合物としてアントラニル酸を用いることが好まし
く、特に上述のように第1段階反応で(1)式のアル
コキシベンゼン化合物と(2)式の化合物としてN−
メチルホルムアニリドとを塩化ホスホリルの存在
下に反応させて中間体のインモニウム塩を得た
後、中間体を単離精製せず、第2段階反応として
この中間体を含有する反応混合物に無水酢酸と(3)
式の化合物としてアントラニル酸とを加えて反応
させると、目的とする(4)式の化合物を簡単な反応
操作で収率良く、安全かつ安価で経済的に有利に
得ることができる。 本発明において、出発原料及び試薬のモル配合
比は種々選択され特に制限されないが、(3)式の化
合物1モルに対し、(1)式の化合物を好ましくは1
〜1.5モル、(2)式の化合物を好ましくは1〜1.5モ
ル、塩化ホスホリル、塩化チオニル又はホスゲン
を好ましくは1〜1.5モル、無水酢酸を好ましく
は1〜4.5モル配合することができる。 本発明製造方法に係る反応は、溶媒を用いなく
てもよいが、所望によりベンゼン、クロルベンゼ
ン等の不活性溶媒を使用してもよい。 また、反応条件は適宜選択されるが、第1段階
反応を通常50〜120℃の温度条件下で5〜20時間
程度行なうと共に、第2段階反応を通常50〜120
℃の温度で5〜20時間程度行なうことが好まし
く、特に80℃前後の温度で第1段階反応を8時間
程度、第2段階反応を6時間程度行なうことが最
も好ましい。 第2段階反応終了後は、反応混合物を氷水中に
移し、水酸化ナトリウム等を加えてアルカリ下で
活性炭処理し、次いで酸性下で析出物をろ取して
メタノール/水等の溶媒で再結晶することによ
り、反応混合物から最終反応生成物である(4)式の
化合物を容易に単離、精製し得る。 なお、得られた(4)式の化合物は、必要に応じそ
の塩に転化し得る。塩への転化は常法に従つて行
なうことができ、例えば(4)式の化合物をアルコー
ルに溶解した後、等モル量の水酸化ナトリウム水
溶液を加え、常温又は加温して転化を進めること
により、(4)式の化合物のナトリウム塩を好適に得
ることができる。 発明の効果 以上説明したように、本発明の製造方法は、上
記(4)式で示される芳香族カルボン酸アミド誘導体
又はその塩を少ない反応段数で簡単に収率良くか
つ安全に製造し得、しかも最終反応生成物である
目的物質を容易に単離、精製することができるの
で、工業的に非常に有利である。 更に、本発明の出発原料や試薬は比較的安価に
入手容易であり、特に(1)式のアルコキシベンゼン
化合物として用いられる1,2−ジメトキシベン
ゼンや(3)式のアントラニル酸は安価に入手できる
上、(2)式のホルムアミド化合物として用いられる
N−メチルホルムアニリドは回収して再利用でき
るので、経済面でも非常に有利である。 以下、実施例を挙げて本発明を具体的に説明す
るが、本発明は下記実施例に制限されるものでは
ない。 なお、下記実施例において、生成物の融点はい
ずれも未補正値である。 実施例 1 上記(1)式で示される1,2−ジメトキシベンゼ
ン2.07g(0.015モル)、上記(2)式で示されるN−
メチルホルムアニリド1.89g(0.014モル)、及び
塩化ホスホリル2.30g(0.015モル)を混合し、
撹拌下、80℃で8時間反応させた後、更に無水酢
酸4.59g(0.045モル)と上記(3)式で示されるア
ントラニル酸1.37g(0.01モル)とを加え、80℃
で6時間撹拌した。 反応終了後、この反応混合物を氷水中に移し、
水酸化ナトリウムを使用し、アルカリ下で活性炭
処理した。次いで、塩酸酸性下で析出物をろ取し
て水洗し、更にメタノール/水で再結晶して上記
(4)式で示される目的化合物N−(3,4−ジメト
キシシンナモイル)アントラニル酸2.34gを得た
(収率71.6%、融点209〜211℃)。 得られた化合物の核磁気共鳴スペクトル、マス
スペクトル及び元素分析結果を以下に示す。 核磁気共鳴スペクトル(d6−DMSO) δ3.81(s、3H)、δ3.84(s、3H)、δ6.61〜8.71
(m、9H)、δ11.27(s、1H) マススペクトル M/e=327、309 元素分析値(C18H17NO5として) C H N 計算値 66.05% 5.24% 4.28% 実測値 65.90% 5.16% 4.36% 実施例 2 1,2−ジメトキシベンゼン2.07g(0.015モ
ル)、N−メチルホルムアニリド1.89g(0.014モ
ル)及び塩化ホスホリル2.30g(0.015モル)を
撹拌下、80℃で8時間反応させた後、無水酢酸
4.59g(0.45モル)と上記(3)式のN−アセチルア
ントラニル酸1.79g(0.01モル)とを加え、80℃
で6時間撹拌した。 反応終了後、実施例1と同様の方法で目的化合
物N−(3,4−ジメトキシシンナモイル)アン
トラニル酸1.84gを得た(収率56.2%)。 なお、得られた化合物の融点、赤外線吸収スペ
クトル、核磁気共鳴スペクトル、マススペクトル
を測定したところ、実施例1で得られた化合物と
同一であることが確認された。 実施例 3 1,2−ジメトキシベンゼン2.07g(0.015モ
ル)、上記(2)式で示されるN,N−ジメチルホル
ムアミド1.10g(0.015モル)及び塩化ホスホリ
ル2.30g(0.015モル)を撹拌下、80℃で8時間
反応させた。以下、実施例1と同様の方法で目的
化合物N−(3,4−ジメトキシシンナモイル)
アントラニル酸1.28gを得た(収率39.1%)。 得られた化合物は、融点、赤外線吸収スペクト
ル、核磁気共鳴スペクトル、マススペクトルの測
定結果から実施例1で得られた化合物と同一であ
ることがわかつた。 実施例 4 上記(1)で示されるメトキシベンゼン1.62g
(0.015モル)、N−メチルホルムアニリド1.89g
(0.014モル)及び塩化ホスホリル2.30g(0.015モ
ル)を撹拌下、80℃で8時間反応させた。以下、
実施例1と同様の方法で目的化合物N−(4−メ
トキシシンナモイル)アントラニル酸1.94gを得
た(収率65.2%、融点195〜197℃)。
[Formula] (B represents a cation derived from a basic substance). ] A method of obtaining a phosphorus ylide derivative represented by the above formula (12), then reacting the phosphorus ylide derivative of the above formula (12) with an aromatic aldehyde of the above formula (6), and further hydrolyzing the ester group of the reaction product. Problems to be solved by the invention However, among the above methods,
The method has a very low reaction yield of 21 to 46%, it is difficult to purify the target compound of formula (4), and the starting material, aromatic carboxylic acid of formula (5), is expensive. Economically disadvantageous. In addition, in all methods ~, after synthesizing the benzoxazinone derivative of formula (7), hydrolysis is performed.
The compound of formula (4) is obtained, and the method of and uses anthranilic acid as a starting material and 2-methyl-
via 3,1-benzoxazin-4-one (7)
Several steps are required to synthesize the benzoxazinone derivative of the formula, and the synthesis yield is also low.On the other hand, methods (1) and (2) use an expensive aromatic carboxylic acid as a starting material, similar to the above methods. ,
The drawback is that the synthesis cost of the benzoxazinone derivative of formula (7) is high, and in addition, these methods have a low overall synthetic yield of the target substance. Furthermore, in the above method, the starting material hydrazoic acid is toxic, explosive, and dangerous, and the synthesis of the chalcone derivative of formula (8) requires several steps, making the production cumbersome. In addition, there is a problem that the overall synthesis yield of the target substance is low. Furthermore, in the above method, after the reaction is completed, the target substance is crystallized with hydrochloric acid in water or aqueous alcohol as the final step, but at this time, the starting materials remaining in the reaction solution and by-products that are poorly soluble in the acidic aqueous solution are substances may precipitate or get mixed in, hindering the purification of the target substance, and
There is a problem that pyridine, which is a reaction solvent, has a bad odor and is toxic, which adversely affects the human body. Therefore,
In this method, the same reaction as in the presence of equimolar amounts of cyclic amines is carried out in an inert solvent, and most of the problems of the above methods are solved. However, both methods and method use malonic anthranilic acid of formula (9) as a starting material, and both methods require several steps to synthesize malonic anthranilic acid as shown in the reaction formula below. The overall synthesis yield of the target substance is low for both methods. Furthermore, the method uses anthranilic acid as a starting material to obtain N-halogenoacetylanthranilic acid ester of formula (10), and then converts it to a phosphorus compound of formula (11) to obtain (12).
After obtaining the phosphorus ylide derivative of the formula, this is reacted with the aromatic aldehyde of the formula (6), and then hydrolyzed to obtain the target compound of the formula (4), but the overall synthesis yield is low due to the large number of reaction stages. This method is not preferred as an industrial synthesis method because it has a low yield and involves an unstable phosphorus compound as an intermediate. Therefore, all of the above methods are industrially disadvantageous, and for this reason, there has been a demand for the development of a method for producing the compound of formula (4) or a salt thereof that is satisfactory on an industrial scale. The present invention has been made in view of the above circumstances, and enables the compound of formula (4) to be synthesized in a high yield, safely and economically with a small number of reaction stages, and furthermore, the target substance, which is a reaction product, can be synthesized from the reaction mixture. An object of the present invention is to provide an industrially advantageous method for producing the compound of formula (4) or a salt thereof, which can be easily isolated and purified. Means and Effects for Solving the Problems In order to achieve the above object, the present inventors have made extensive studies and found that the following general formula (1) (However, in the formula, R 1 is a lower alkoxy group, and R 2 is a hydrogen atom or a lower alkoxy group. The same applies hereinafter.) An alkoxybenzene compound represented by the following formula and
(2) (However, in the formula, R 3 and R 4 are lower alkyl groups or aryl groups. The same applies hereinafter.) After reacting with the formamide compound represented by the formula in the presence of phosphoryl chloride, thionyl chloride, or phosgene, The reaction product and the following formula (3) (However, in the formula, X is a hydrogen atom or an acetyl group. The same applies hereinafter.) Reacting the anthranilic acid or N-acetylanthranilic acid represented by the formula in the presence of acetic anhydride, especially the above formula (1). After reacting an alkoxybenzene compound with N-methylformanilide as the compound of formula (2) above in the presence of phosphoryl chloride,
Furthermore, by reacting this reaction product with anthranilic acid as the compound of the above formula (3) in the presence of acetic anhydride, the following general formula (4) is obtained. The aromatic carboxylic acid amide derivative or its salt represented by can be easily synthesized in high yield by continuous two-step reaction in a reaction vessel using safe, relatively inexpensive and easily available starting materials and reagents, and The inventors found that the final reaction product, the compound of formula (4), can be easily isolated and purified from the reaction mixture after completion of this two-step reaction, leading to the present invention. Therefore, the present invention involves reacting an alkoxybenzene compound represented by the above formula (1) with a formamide compound represented by the above formula (2) in the presence of phosphoryl chloride, thionyl chloride, or phosgene, and then reacting the alkoxybenzene compound represented by the above formula (1) with the formamide compound represented by the above formula (2). An aromatic carboxylic acid amide derivative represented by the above formula (4), or an aromatic carboxylic acid amide derivative represented by the above formula (4), characterized in that the reaction product is reacted with anthranilic acid or N-acetylanthranilic acid represented by the above formula (3) in the presence of acetic anhydride. A method for producing the salt is provided. The present invention will be explained in more detail below. In the production method of the present invention, as a first step reaction, an alkoxybenzene compound of formula (1) and a formamide compound of formula (2) are reacted in the presence of phosphoryl chloride, thionyl chloride, or phosgene. In this case, specific examples of the alkoxybenzene compound of formula (1) include methoxybenzene, ethoxybenzene, propioxybenzene, butoxybenzene, etc. in which substituent R 1 is a lower alkoxy group and R 2 is a hydrogen atom, and R 1 and 1,2-dimethoxybenzene, 1,2-diethoxybenzene, 1,2-dipropoxybenzene, in which R 2 is the same lower alkoxy group,
Examples include 1,2-dibutoxybenzene. Furthermore, the formamide compound represented by the above formula (2) may be a lower alkyl group or an aryl group in which the substituents R 3 and R 4 are the same or different, such as a lower alkyl group such as a methyl group or an ethyl group, or a phenyl group, etc. A formamide compound having an aryl group is used, and specifically N,N-dimethylformamide and N-methylformanilide, particularly N-methylformanilide, are preferably used. Further, as phosphoryl chloride, thionyl chloride, or phosgene used in this first step reaction, any may be used, but it is particularly preferable to use phosphoryl chloride from the viewpoints of reaction yield, toxicity, and operability. Here, 1,2-dimethoxybenzene (generic name: veratrol) used as the compound of formula (1) above, N-methylformanilide and N,N-dimethylformamide used as the compound of formula (2), and chloride Both phosphoryl and thionyl chloride are known compounds and can be easily obtained as commercial products. Note that the alkoxybenzene compound of formula (1) and N-methylformanilide of formula (2) can be easily produced by methods described in various literatures, and in particular, N-methylformanilide can be effectively recycled after recovery and reprocessing. Available. In the first step reaction of the production method of the present invention, as described above, when the alkoxybenzene compound of formula (1) and the formamide compound of formula (2) are reacted in the presence of phosphoryl chloride, thionyl chloride, or phosgene, the following formula (13) The immonium salt shown by is produced, and by further performing the following second step reaction using this immonium salt as an intermediate, the target compound of formula (4) can be easily obtained in good yield. . In particular, in this first step reaction, it is preferable to react the alkoxybenzene compound of formula (1) with N-methylformanilide as the formamide compound of formula (2) in the presence of phosphoryl chloride. When the first step reaction is carried out using the compound, the intermediate immonium salt represented by formula (13) can be obtained in high yield, and this intermediate immonium salt can be obtained without isolation or purification. A second stage reaction can then be carried out. Next, in the second stage reaction of the production method of the present invention,
Acetic anhydride and anthranilic acid or N-acetylanthranilic acid of the above formula (3) are added to the immonium salt of the intermediate obtained in the first step reaction or a reaction mixture containing this intermediate to react, and the desired reaction is achieved. Do(4)
A compound of formula is prepared. Here, anthranilic acid or N-acetylanthranilic acid of the formula (3) is a known compound and can be easily obtained as a commercial product, particularly anthranilic acid can be obtained at low cost, and acetic anhydride is also a known compound. It is inexpensive and easily available as a commercial product. In this second step reaction, it is preferable to use anthranilic acid as the compound of formula (3), and in particular, as mentioned above, in the first step reaction, an alkoxybenzene compound of formula (1) and a compound of formula (2) are used. as N-
After reacting with methylformanilide in the presence of phosphoryl chloride to obtain the immonium salt of the intermediate, the intermediate is not isolated and purified, but acetic anhydride is added to the reaction mixture containing this intermediate as a second step reaction. and(3)
When anthranilic acid is added as a compound of the formula and reacted, the target compound of the formula (4) can be obtained in good yield, safely, inexpensively, and economically by simple reaction operations. In the present invention, the molar blending ratio of the starting materials and reagents is variously selected and is not particularly limited, but preferably 1 mole of the compound of formula (1) is mixed with 1 mole of the compound of formula (3).
~1.5 mol, preferably 1 to 1.5 mol of the compound of formula (2), preferably 1 to 1.5 mol of phosphoryl chloride, thionyl chloride, or phosgene, and preferably 1 to 4.5 mol of acetic anhydride. Although the reaction according to the production method of the present invention does not require the use of a solvent, an inert solvent such as benzene or chlorobenzene may be used if desired. The reaction conditions are appropriately selected, but the first stage reaction is usually carried out at a temperature of 50 to 120°C for about 5 to 20 hours, and the second stage reaction is usually carried out at a temperature of 50 to 120°C.
It is preferable to carry out the reaction at a temperature of about 80°C for about 5 to 20 hours, and most preferably to carry out the first stage reaction for about 8 hours and the second stage reaction for about 6 hours at a temperature of about 80°C. After the second stage reaction is completed, the reaction mixture is transferred to ice water, sodium hydroxide etc. are added and treated with activated carbon under alkaline conditions, then the precipitate is filtered under acidic conditions and recrystallized with a solvent such as methanol/water. By doing so, the final reaction product, the compound of formula (4), can be easily isolated and purified from the reaction mixture. Note that the obtained compound of formula (4) can be converted into a salt thereof if necessary. Conversion to a salt can be carried out according to a conventional method, for example, by dissolving the compound of formula (4) in alcohol, adding an equimolar amount of an aqueous sodium hydroxide solution, and proceeding with the conversion at room temperature or heating. Thus, the sodium salt of the compound of formula (4) can be suitably obtained. Effects of the Invention As explained above, the production method of the present invention enables the aromatic carboxylic acid amide derivative represented by the above formula (4) or its salt to be produced easily, with a high yield, and safely with a small number of reaction stages. Furthermore, the final reaction product, the target substance, can be easily isolated and purified, which is very advantageous industrially. Furthermore, the starting materials and reagents of the present invention are relatively inexpensive and easily available, especially 1,2-dimethoxybenzene used as the alkoxybenzene compound of formula (1) and anthranilic acid of formula (3) are available at low cost. Since the N-methylformanilide used as the formamide compound in formula (2) above can be recovered and reused, it is very advantageous from an economic standpoint. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples. In addition, in the following examples, all melting points of products are uncorrected values. Example 1 2.07 g (0.015 mol) of 1,2-dimethoxybenzene represented by the above formula (1), N- represented by the above formula (2)
Mix 1.89 g (0.014 mol) of methylformanilide and 2.30 g (0.015 mol) of phosphoryl chloride,
After reacting at 80°C for 8 hours with stirring, 4.59 g (0.045 mol) of acetic anhydride and 1.37 g (0.01 mol) of anthranilic acid represented by the above formula (3) were added, and the mixture was heated at 80°C.
The mixture was stirred for 6 hours. After the reaction was completed, the reaction mixture was transferred to ice water.
Activated carbon treatment was performed using sodium hydroxide under alkaline conditions. Next, the precipitate was collected by filtration under hydrochloric acid, washed with water, and then recrystallized with methanol/water to obtain the above.
2.34 g of the target compound N-(3,4-dimethoxycinnamoyl)anthranilic acid represented by formula (4) was obtained (yield 71.6%, melting point 209-211°C). The results of nuclear magnetic resonance spectrum, mass spectrum, and elemental analysis of the obtained compound are shown below. Nuclear magnetic resonance spectrum ( d6 -DMSO) δ3.81 (s, 3H), δ3.84 (s, 3H), δ6.61-8.71
(m, 9H), δ11.27 (s, 1H) Mass spectrum M/e = 327, 309 Elemental analysis value (as C 18 H 17 NO 5 ) C H N Calculated value 66.05% 5.24% 4.28% Actual value 65.90% 5.16% 4.36% Example 2 2.07 g (0.015 mol) of 1,2-dimethoxybenzene, 1.89 g (0.014 mol) of N-methylformanilide, and 2.30 g (0.015 mol) of phosphoryl chloride were reacted at 80°C for 8 hours with stirring. After that, acetic anhydride
Add 4.59 g (0.45 mol) and 1.79 g (0.01 mol) of N-acetylanthranilic acid of formula (3) above, and heat at 80°C.
The mixture was stirred for 6 hours. After the reaction was completed, 1.84 g of the target compound N-(3,4-dimethoxycinnamoyl)anthranilic acid was obtained in the same manner as in Example 1 (yield 56.2%). In addition, when the melting point, infrared absorption spectrum, nuclear magnetic resonance spectrum, and mass spectrum of the obtained compound were measured, it was confirmed that it was the same as the compound obtained in Example 1. Example 3 2.07 g (0.015 mol) of 1,2-dimethoxybenzene, 1.10 g (0.015 mol) of N,N-dimethylformamide represented by the above formula (2), and 2.30 g (0.015 mol) of phosphoryl chloride were mixed with stirring at 80% The reaction was carried out at ℃ for 8 hours. Hereinafter, the target compound N-(3,4-dimethoxycinnamoyl) was prepared in the same manner as in Example 1.
1.28 g of anthranilic acid was obtained (yield 39.1%). The obtained compound was found to be the same as the compound obtained in Example 1 from the measurement results of melting point, infrared absorption spectrum, nuclear magnetic resonance spectrum, and mass spectrum. Example 4 1.62g of methoxybenzene shown in (1) above
(0.015 mol), N-methylformanilide 1.89 g
(0.014 mol) and 2.30 g (0.015 mol) of phosphoryl chloride were reacted at 80° C. for 8 hours with stirring. below,
1.94 g of the target compound N-(4-methoxycinnamoyl)anthranilic acid was obtained in the same manner as in Example 1 (yield 65.2%, melting point 195-197°C).

Claims (1)

【特許請求の範囲】 1 下記一般式(1) (但し、式中R1は低級アルコキシ基、R2は水素
原子又は低級アルコキシ基である。) で示されるアルコキシベンゼン化合物と下記式(2) (但し、式中R3及びR4は低級アルキル基又はア
リール基である。) で示されるホルムアミド化合物とを塩化ホスホリ
ル、塩化チオニル又はホスゲンの存在下に反応さ
せた後、更にこの反応生成物と下記一般式(3) (但し、式中Xは水素原子又はアセチル基であ
る。) で示されるアントラニル酸又はN−アセチルアン
トラニル酸とを無水酢酸の存在下に反応させるこ
とを特徴とする下記一般式(4) (但し、式中R1及びR2は上記と同じ意味を示
す。) で示される芳香族カルボン酸アミド誘導体又はそ
の塩の製造方法。 2 上記(1)式で示されるアルコキシベンゼン化合
物が、1,2−ジメトキシベンゼンである特許請
求の範囲第1項記載の製造方法。 3 上記(2)式で示されるホルムアミド化合物がN
−メチルホルムアニリドである特許請求の範囲第
1項又は第2項記載の製造方法。 4 上記(1)式で示されるアルコキシベンゼン化合
物と上記(2)式で示されるホルムアミド化合物とを
塩化ホスホリルの存在下に反応させる特許請求の
範囲第1項乃至第3項のいずれか1項に記載の製
造方法。 5 上記(3)式で示される化合物がアントラニル酸
である特許請求の範囲第1項乃至第4項のいずれ
か1項に記載の製造方法。
[Claims] 1 The following general formula (1) (However, in the formula, R 1 is a lower alkoxy group, and R 2 is a hydrogen atom or a lower alkoxy group.) An alkoxybenzene compound represented by the following formula (2) (However, in the formula, R 3 and R 4 are lower alkyl groups or aryl groups.) After reacting the formamide compound represented by the formula in the presence of phosphoryl chloride, thionyl chloride or phosgene, this reaction product is further reacted with General formula (3) below (However, in the formula, X is a hydrogen atom or an acetyl group.) The following general formula (4) is characterized by reacting anthranilic acid or N-acetylanthranilic acid represented by the following in the presence of acetic anhydride. (However, in the formula, R 1 and R 2 have the same meanings as above.) A method for producing an aromatic carboxylic acid amide derivative or a salt thereof. 2. The manufacturing method according to claim 1, wherein the alkoxybenzene compound represented by the above formula (1) is 1,2-dimethoxybenzene. 3 The formamide compound represented by formula (2) above is N
-Methylformanilide The manufacturing method according to claim 1 or 2, which is methylformanilide. 4. According to any one of claims 1 to 3, the alkoxybenzene compound represented by the above formula (1) and the formamide compound represented by the above formula (2) are reacted in the presence of phosphoryl chloride. Manufacturing method described. 5. The manufacturing method according to any one of claims 1 to 4, wherein the compound represented by the above formula (3) is anthranilic acid.
JP13584787A 1987-05-29 1987-05-29 Production of aromatic carboxylic acid amide derivative Granted JPS63297353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13584787A JPS63297353A (en) 1987-05-29 1987-05-29 Production of aromatic carboxylic acid amide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13584787A JPS63297353A (en) 1987-05-29 1987-05-29 Production of aromatic carboxylic acid amide derivative

Publications (2)

Publication Number Publication Date
JPS63297353A JPS63297353A (en) 1988-12-05
JPH0536432B2 true JPH0536432B2 (en) 1993-05-31

Family

ID=15161153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13584787A Granted JPS63297353A (en) 1987-05-29 1987-05-29 Production of aromatic carboxylic acid amide derivative

Country Status (1)

Country Link
JP (1) JPS63297353A (en)

Also Published As

Publication number Publication date
JPS63297353A (en) 1988-12-05

Similar Documents

Publication Publication Date Title
JPH0536432B2 (en)
JP3002791B2 (en) Benzyl phenyl ketone derivative
JPS63258442A (en) Production of tetrafluorophthalic acid
JP4899385B2 (en) Method for producing 3-aminomethyloxetane compound
JPH0533945B2 (en)
JP3796280B2 (en) Process for producing 1- (2-chlorophenyl) -5 (4H) -tetrazolinone
JP3563424B2 (en) Method for producing 4H-pyran-4-one
WO2003080555A1 (en) Process for producing chromone compound
JP2002179612A (en) Method for producing 2,3-dibromosuccinic acid compound
KR950001632B1 (en) N-(3',4'-dimethoxycinnamoyl)anthranilic acid
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JP2001048826A (en) Production of 1-phenyl-1,3-butanedione
JP2743198B2 (en) Cyclopentanes
JPH0128013B2 (en)
JP2853929B2 (en) Method for producing 2-chloro-4,5-difluoro-3-methoxybenzoic acid
JPH04224525A (en) Production of 9,9-dialkylfluorene
JP2001055360A (en) Production of nitrophenylphenol
JPH0812658A (en) Production of sydnones
JPH10237084A (en) Production of acetyl derivative of saccharide
JP2500316B2 (en) 1,4,5,8-Tetrakis (halogenomethyl) naphthalene derivative and method for producing the same
JPH0527617B2 (en)
JPH101451A (en) Production of 3,4-dihydroxybenzaldehyde or 3-alkyloxy-4-hydroxybenzaldehyde
JPH0759557B2 (en) Method for producing 1,3-dialkylpyrazole-4-aldehyde derivative
JPH0713041B2 (en) Halogenonitrobenzene derivative and method for producing the same
JPH06166655A (en) Production of tetramethoxymethylbenzaldehyde