JP4899385B2 - Method for producing 3-aminomethyloxetane compound - Google Patents

Method for producing 3-aminomethyloxetane compound Download PDF

Info

Publication number
JP4899385B2
JP4899385B2 JP2005257335A JP2005257335A JP4899385B2 JP 4899385 B2 JP4899385 B2 JP 4899385B2 JP 2005257335 A JP2005257335 A JP 2005257335A JP 2005257335 A JP2005257335 A JP 2005257335A JP 4899385 B2 JP4899385 B2 JP 4899385B2
Authority
JP
Japan
Prior art keywords
group
aminomethyloxetane
reaction
producing
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005257335A
Other languages
Japanese (ja)
Other versions
JP2007070270A (en
Inventor
健二 弘津
正 村上
庄司 敷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005257335A priority Critical patent/JP4899385B2/en
Publication of JP2007070270A publication Critical patent/JP2007070270A/en
Application granted granted Critical
Publication of JP4899385B2 publication Critical patent/JP4899385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Compounds (AREA)

Description

本発明は、3−置換−3−アミノメチルオキセタン等の3−アミノメチルオキセタン化合物の新規な製法に関する。3−アミノメチルオキセタン化合物は、医薬、農薬、樹脂等の合成原料や中間体として有用な化合物である。   The present invention relates to a novel process for producing 3-aminomethyloxetane compounds such as 3-substituted-3-aminomethyloxetane. A 3-aminomethyl oxetane compound is a compound useful as a raw material for synthesis or an intermediate for pharmaceuticals, agricultural chemicals, resins and the like.

3−置換−3−アミノメチルオキセタン等の3−アミノメチルオキセタン化合物を製造する方法としては、例えば、3−メチル−3−p−トルエンスルホニルオキシメチルオキセタンとフタルイミドカリウム塩から得られる3−メチル−3−フタルイミドメチルオキセタンを過剰のヒドラジンと反応させた後、過剰のヒドラジンをラネーネッケルで分解することにより、3−メチル−3−アミノメチルオキセタンを収率81%(フタルイミド体基準)で得る方法が知られている(非特許文献1及び2)。また、3−フェニル−3−フタルイミドメチルオキセタンから同様にして3−フェニル−3−アミノメチルオキセタンを得る方法も知られている(非特許文献3)。   Examples of a method for producing a 3-aminomethyloxetane compound such as 3-substituted-3-aminomethyloxetane include 3-methyl-3-p-toluenesulfonyloxymethyloxetane and 3-methyl-obtained from phthalimide potassium salt. A method for obtaining 3-methyl-3-aminomethyloxetane in a yield of 81% (based on phthalimide form) by reacting 3-phthalimidomethyloxetane with excess hydrazine and then decomposing excess hydrazine with Raney neckel is known. (Non-Patent Documents 1 and 2). In addition, a method for obtaining 3-phenyl-3-aminomethyloxetane in the same manner from 3-phenyl-3-phthalimidomethyloxetane is also known (Non-patent Document 3).

しかしながら、これらの方法は、過剰のヒドラジンを分解するためにその分解工程を必要とするのみならず、フタルイミド化及びヒドラジン分解の工程では特別の反応試剤や触媒を必要とするなど、工業的な製法としてはプロセス的にも経済的にも不利なものであった。更に、後者の方法では収率(フタルイミド体基準)も54%と低かった。
Chem.Commun.,43(1998) J.Org.Chem.,65,2253(2000) Tetrahedron,58,7065(2002)
However, these methods not only require a decomposition step in order to decompose excess hydrazine, but also require a special reaction reagent or catalyst in the phthalimidization and hydrazine decomposition steps. As a result, it was disadvantageous both in terms of process and economy. Furthermore, in the latter method, the yield (phthalimide body basis) was as low as 54%.
Chem. Commun. 43 (1998) J. et al. Org. Chem. , 65, 2253 (2000) Tetrahedron, 58, 7065 (2002)

本発明は、前記問題を解決して、3−置換−3−アミノメチルオキセタン等の3−アミノメチルオキセタン化合物の工業的に好適な製法を提供することを課題とする。即ち、本発明は、一般的な反応試剤を使用して簡便な方法により、3−アミノメチルオキセタン化合物を高収率で得ることができる、プロセス的及び経済的に有利な3−アミノメチルオキセタン化合物の製法を提供することを課題とする。   This invention solves the said problem, and makes it a subject to provide the industrially suitable manufacturing method of 3-aminomethyl oxetane compounds, such as 3-substituted- 3-aminomethyl oxetane. That is, the present invention provides a process- and economically advantageous 3-aminomethyloxetane compound capable of obtaining a 3-aminomethyloxetane compound in a high yield by a simple method using a general reaction reagent. It is an object to provide a manufacturing method.

本発明の課題は、一般式(1)で表される原料オキセタン化合物とアンモニアを反応させて一般式(2)で表される3−アミノメチルオキセタン化合物を生成させることを特徴とする、3−アミノメチルオキセタン化合物の製法により解決される。但し、式中、Rは反応に関与しない置換基、Xは脱離基を表す。   An object of the present invention is to produce a 3-aminomethyloxetane compound represented by the general formula (2) by reacting a raw material oxetane compound represented by the general formula (1) with ammonia. It is solved by the process for producing aminomethyloxetane compounds. In the formula, R represents a substituent not involved in the reaction, and X represents a leaving group.

Figure 0004899385
Figure 0004899385

Figure 0004899385
Figure 0004899385

前記発明においては、脱離基Xは、ハロゲン原子又は有機スルホニルオキシ基であることが好ましく、塩素原子、臭素原子、メタンスルホニルオキシ基、又は、p−トルエンスルホニルオキシ基であることが更に好ましい。また、Rはアルキル基であることが好ましい。更に、前記発明においては、アンモニアとしてアンモニア水を使用することが好ましい。   In the invention, the leaving group X is preferably a halogen atom or an organic sulfonyloxy group, more preferably a chlorine atom, a bromine atom, a methanesulfonyloxy group, or a p-toluenesulfonyloxy group. R is preferably an alkyl group. Furthermore, in the said invention, it is preferable to use ammonia water as ammonia.

本発明により、前記問題を解決して、3−置換−3−アミノメチルオキセタン等の3−アミノメチルオキセタン化合物の工業的に好適な製法を提供することができる。即ち、本発明の3−アミノメチルオキセタン化合物の製法は、プロセス的及び経済的に有利なものであり、一般的な反応試剤を使用して簡便な方法により3−置換−3−アミノメチルオキセタン等の3−アミノメチルオキセタン化合物を高収率で得ることができる。   According to the present invention, the above problems can be solved and an industrially suitable process for producing a 3-aminomethyloxetane compound such as 3-substituted-3-aminomethyloxetane can be provided. That is, the method for producing the 3-aminomethyloxetane compound of the present invention is advantageous in terms of process and economy, and a 3-substituted-3-aminomethyloxetane or the like can be produced by a simple method using a general reaction reagent. The 3-aminomethyloxetane compound can be obtained in high yield.

以下、本発明について詳細に説明する。
一般式(1)で表される原料オキセタン化合物において、Rは反応に関与しない置換基であり、例えば、アルキル基(好ましくは炭素数1〜10;メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等)、アラルキル基(好ましくは炭素数7〜10;ベンジル基、フェネチル基、フェニルプロピル基等)、アリール基(好ましくは炭素数6〜12;フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等)、アルコキシル基(好ましくは炭素数1〜10;メトキシ基、エトキシ基等)、アミノ基、ニトロ基、カルボキシル基、シアノ基などが挙げられる。その中では、アルキル基、アラルキル基、アリール基が好ましいが、アルキル基が更に好ましく、メチル基、エチル基が特に好ましい。なお、これらの置換基は各種異性体を含み、反応に関与しない限り、他の置換基(アルキル基、アラルキル基、アリール基、アルコキシル基、アミノ基、ニトロ基、カルボキシル基、シアノ基等)を有していてもよく、二重結合等の不飽和結合や、酸素、窒素、硫黄等のヘテロ原子を炭素鎖に含んでいてもよい。
Hereinafter, the present invention will be described in detail.
In the raw material oxetane compound represented by the general formula (1), R is a substituent not involved in the reaction, for example, an alkyl group (preferably having 1 to 10 carbon atoms; a methyl group, an ethyl group, a propyl group, a butyl group, Pentyl group, hexyl group, heptyl group, etc.), aralkyl group (preferably 7-10 carbon atoms; benzyl group, phenethyl group, phenylpropyl group, etc.), aryl group (preferably 6-12 carbon atoms; phenyl group, tolyl group) , Xylyl group, naphthyl group, anthryl group, etc.), alkoxyl group (preferably having 1 to 10 carbon atoms; methoxy group, ethoxy group, etc.), amino group, nitro group, carboxyl group, cyano group and the like. Among them, an alkyl group, an aralkyl group, and an aryl group are preferable, but an alkyl group is more preferable, and a methyl group and an ethyl group are particularly preferable. These substituents include various isomers, and other substituents (alkyl group, aralkyl group, aryl group, alkoxyl group, amino group, nitro group, carboxyl group, cyano group, etc.) can be used unless they are involved in the reaction. The carbon chain may contain an unsaturated bond such as a double bond or a heteroatom such as oxygen, nitrogen, or sulfur.

また、Xは脱離基であり、例えば、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子等)、有機スルホニルオキシ基(メタンスルホニルオキシ基、エタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基等)が挙げられる。その中では、塩素原子、臭素原子、メタンスルホニルオキシ基、p−トルエンスルホニルオキシ基が好ましく、特にメタンスルホニルオキシ基が好ましい。   X is a leaving group, for example, halogen atom (chlorine atom, bromine atom, iodine atom, etc.), organic sulfonyloxy group (methanesulfonyloxy group, ethanesulfonyloxy group, trifluoromethanesulfonyloxy group, benzenesulfonyloxy group) Group, p-toluenesulfonyloxy group, etc.). Among them, a chlorine atom, a bromine atom, a methanesulfonyloxy group, and a p-toluenesulfonyloxy group are preferable, and a methanesulfonyloxy group is particularly preferable.

一般式(1)で表される原料オキセタン化合物として、例えば、3−メチル−3−メタンスルホニルオキシメチルオキセタン、3−エチル−3−メタンスルホニルオキシメチルオキセタン、3−メチル−3−p−トルエンスルホニルオキシメチルオキセタン、3−エチル−3−p−トルエンスルホニルオキシメチルオキセタン、3−クロロメチル−3−メチルオキセタン、3−クロロメチル−3−エチルオキセタン、3−ブロモメチル−3−メチルオキセタン、3−ブロモメチル−3−エチルオキセタンなどが具体的に挙げられる。   Examples of the raw material oxetane compound represented by the general formula (1) include 3-methyl-3-methanesulfonyloxymethyloxetane, 3-ethyl-3-methanesulfonyloxymethyloxetane, and 3-methyl-3-p-toluenesulfonyl. Oxymethyloxetane, 3-ethyl-3-p-toluenesulfonyloxymethyloxetane, 3-chloromethyl-3-methyloxetane, 3-chloromethyl-3-ethyloxetane, 3-bromomethyl-3-methyloxetane, 3-bromomethyl Specific examples include -3-ethyloxetane.

一般式(1)で表される原料オキセタン化合物は公知の方法により合成することができる。例えば、3−エチル−3−メタンスルホニルオキシメチルオキセタンは、3−エチル−3−ヒドロキシメチルオキセタンとメタンスルホニルクロライドを反応させて得ることができ(本願参考例1参照)、3−メチル−3−p−トルエンスルホニルオキシメチルオキセタンは、3−メチル−3−ヒドロキシメチルオキセタンとp−トルエンスルホニルクロライドを反応させて得ることができる(本願参考例2参照)。また、3−クロロメチル−3−エチルオキセタンなども、3−エチル−3−メタンスルホニルオキシメチルオキセタンとトリエチルアミン塩酸塩から合成できる(本願参考例3参照)。   The raw material oxetane compound represented by the general formula (1) can be synthesized by a known method. For example, 3-ethyl-3-methanesulfonyloxymethyloxetane can be obtained by reacting 3-ethyl-3-hydroxymethyloxetane and methanesulfonyl chloride (see Reference Example 1 of the present application), and 3-methyl-3- p-Toluenesulfonyloxymethyloxetane can be obtained by reacting 3-methyl-3-hydroxymethyloxetane and p-toluenesulfonyl chloride (see Reference Example 2 of the present application). Also, 3-chloromethyl-3-ethyloxetane can be synthesized from 3-ethyl-3-methanesulfonyloxymethyloxetane and triethylamine hydrochloride (see Reference Example 3 of the present application).

アンモニアとしては、アンモニア水、液体アンモニア、アンモニアガスのいずれでも使用することができ、アンモニアを後述の溶媒に溶解したものであってもよい。この中では、一般的であって簡便に使用できることから、アンモニア水が好ましい。このとき、ガス中や溶液中のアンモニアの濃度は特に制限されないが、反応溶媒を使用する場合は溶媒使用量の範囲内で必要量のアンモニアが溶解されていればよく、例えば、アンモニア水であれば、28質量%アンモニア水が好ましい。アンモニアの使用量は、一般式(1)で表されるオキセタン化合物1モルに対して1〜100モル、更には1.1〜50モル、特に10〜50モルの範囲であることが好ましい。なお、アンモニアとしてアンモニア水を使用する場合は、その水が後述の反応溶媒となるため、特に反応溶媒を添加する必要はなく、反応溶媒の使用量の範囲で必要量の水を添加する程度でよい。   As ammonia, any of ammonia water, liquid ammonia, and ammonia gas can be used, and ammonia dissolved in a solvent described later may be used. Among these, ammonia water is preferable because it is general and can be used easily. At this time, the concentration of ammonia in the gas or solution is not particularly limited. However, when a reaction solvent is used, it is sufficient that a necessary amount of ammonia is dissolved within the range of the solvent use amount. In this case, 28% by mass aqueous ammonia is preferable. The amount of ammonia used is preferably in the range of 1 to 100 mol, more preferably 1.1 to 50 mol, and particularly preferably 10 to 50 mol with respect to 1 mol of the oxetane compound represented by the general formula (1). In addition, when using ammonia water as ammonia, since the water becomes a reaction solvent described later, it is not necessary to add a reaction solvent in particular, and it is only necessary to add a necessary amount of water within the range of the amount of reaction solvent used. Good.

一般式(1)で表される原料オキセタン化合物とアンモニアとの反応において、反応温度は、0〜200℃、更には5〜180℃、特に50〜120℃であることが好ましく、反応圧力は常圧又は加圧であることが好ましい。   In the reaction of the raw material oxetane compound represented by the general formula (1) with ammonia, the reaction temperature is preferably 0 to 200 ° C., more preferably 5 to 180 ° C., particularly 50 to 120 ° C., and the reaction pressure is usually It is preferably a pressure or a pressure.

反応は、例えば、前記原料オキセタン化合物とアンモニアを混合して攪拌しながら反応させる等の方法によって行われる。このとき、必要に応じて反応溶媒を使用することができ、その使用量は、反応液の均一性や攪拌性により適宜調節されるが、前記原料オキセタン化合物1gに対して0〜100g、更には0〜50g、特に2〜15gの範囲であることが好ましい。   The reaction is performed by, for example, a method of mixing the raw material oxetane compound and ammonia and reacting them with stirring. At this time, a reaction solvent can be used as necessary, and the amount used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution. It is preferably in the range of 0 to 50 g, particularly 2 to 15 g.

前記反応溶媒は反応を阻害しないものであればよく、水、アルコール類(メタノール、エタノール、イソプロピルアルコール、t-ブチルアルコール、メトキシエタノール、エトキシエタノール、ブトキシエタノール等)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等)、尿素類(N,N’−ジメチルイミダゾリジノン等)、スルホキシド類(ジメチルスルホキシド等)、スルホン類(スルホラン等)などが挙げられる。この中では、水、アルコール類(中でもメタノール)が好ましいが、水が特に好ましい。   The reaction solvent is not limited as long as it does not inhibit the reaction. Water, alcohols (methanol, ethanol, isopropyl alcohol, t-butyl alcohol, methoxyethanol, ethoxyethanol, butoxyethanol, etc.), nitriles (acetonitrile, propionitrile) , Benzonitrile, etc.), amides (N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc.), ureas (N, N′-dimethylimidazolidinone, etc.), sulfoxides (dimethyl sulfoxide) Etc.) and sulfones (sulfolane etc.). Among these, water and alcohols (particularly methanol) are preferable, but water is particularly preferable.

本発明の反応により、前記原料オキセタン化合物に対応して3−アミノメチル−3−メチル(又はエチル)オキセタン等の3−アミノメチルオキセタン化合物が生成するが、この生成物は、反応終了後、例えば、濾過、中和、抽出、濃縮、蒸留、カラムクロマトグラフィー等の一般的な方法によって単離精製される。   According to the reaction of the present invention, a 3-aminomethyl oxetane compound such as 3-aminomethyl-3-methyl (or ethyl) oxetane is generated corresponding to the raw material oxetane compound. It is isolated and purified by a general method such as filtration, neutralization, extraction, concentration, distillation, column chromatography and the like.

次に、実施例を挙げて本発明を具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

〔参考例1;3−エチル−3−メタンスルホニルオキシメチルオキセタンの合成〕
攪拌装置、温度計及び滴下漏斗を備えた内容積2000mlのガラス製フラスコに、3−エチル−3−ヒドロキシメチルオキセタン232.2g(2.0mol)、トリエチルアミン243.0g(2.4mol)及びトルエン1000mlを加えた後、液温を5〜10℃に保ちながら、メタンスルホニルクロライド252.0g(2.2mol)をゆるやかに加えて、同温度で3時間、室温で3時間攪拌しながら反応させた。
[Reference Example 1; Synthesis of 3-ethyl-3-methanesulfonyloxymethyloxetane]
To a glass flask having an internal volume of 2000 ml equipped with a stirrer, a thermometer and a dropping funnel, 232.2 g (2.0 mol) of 3-ethyl-3-hydroxymethyloxetane, 243.0 g (2.4 mol) of triethylamine and 1000 ml of toluene Then, 252.0 g (2.2 mol) of methanesulfonyl chloride was slowly added while maintaining the liquid temperature at 5 to 10 ° C., and the reaction was allowed to proceed with stirring at the same temperature for 3 hours and at room temperature for 3 hours.

反応終了後、反応液の洗浄(水500ml×2回)、その水層の抽出操作(トルエン500ml)、全有機層(この有機層+先の有機層)の洗浄(飽和重曹水500ml及び飽和食塩水500ml)を行なった。次いで、得られた有機層を無水硫酸マグネシウムで乾燥して濾過した後、濾液を減圧濃縮して溶媒を留去した。得られた残渣を真空乾燥して3−エチル−3−メタンスルホニルオキシメチルオキセタン306.6gを得た。ガスクロマトグラフィー分析より、このものの純度は84.0質量%で、単離収率は78.9%であった。なお、洗浄溶媒及び抽出溶媒は上記括弧内のものを使用した。   After completion of the reaction, the reaction solution was washed (water 500 ml × twice), the aqueous layer was extracted (toluene 500 ml), and the entire organic layer (this organic layer + the previous organic layer) was washed (saturated aqueous sodium bicarbonate 500 ml and saturated sodium chloride). 500 ml of water). Next, the obtained organic layer was dried over anhydrous magnesium sulfate and filtered, and then the filtrate was concentrated under reduced pressure to distill off the solvent. The obtained residue was vacuum-dried to obtain 306.6 g of 3-ethyl-3-methanesulfonyloxymethyloxetane. According to gas chromatography analysis, the purity of the product was 84.0% by mass and the isolated yield was 78.9%. In addition, the thing in the said parenthesis was used for the washing | cleaning solvent and the extraction solvent.

生成物の物性値は以下の通りであった。
(a)CI−MS(m/e):195(M+1)
(b)H−NMR(CDCl,δ(ppm)):0.94(3H,t,J=7.3Hz)、1.81(3H,q,J=7.3Hz)、3.07(3H,s)、4.42〜4.48(4H,m)
The physical property values of the product were as follows.
(A) CI-MS (m / e): 195 (M + 1)
(B) 1 H-NMR (CDCl 3 , δ (ppm)): 0.94 (3H, t, J = 7.3 Hz), 1.81 (3H, q, J = 7.3 Hz), 3.07 (3H, s), 4.42 to 4.48 (4H, m)

〔参考例2;3−メチル−3−p−トルエンスルホニルオキシメチルオキセタンの合成〕
攪拌装置、温度計、滴下漏斗及び還流冷却器を備えた内容積500mlのガラス製フラスコに、3−メチル−3−ヒドロキシメチルオキセタン51.0g(0.5mol)、トルエン300ml及びp−トルエンスルホニルクロライド114.4g(0.60mol)を加えた後、攪拌しながら0℃まで冷却した。次いで,ピリジン51.4g(0.65mol)を同温度で滴下して、同温度で4時間、50℃で5時間反応させた。
Reference Example 2 Synthesis of 3-methyl-3-p-toluenesulfonyloxymethyl oxetane
In a glass flask having an internal volume of 500 ml equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 51.0 g (0.5 mol) of 3-methyl-3-hydroxymethyloxetane, 300 ml of toluene and p-toluenesulfonyl chloride After adding 114.4 g (0.60 mol), it cooled to 0 degreeC, stirring. Next, 51.4 g (0.65 mol) of pyridine was added dropwise at the same temperature, and the reaction was performed at the same temperature for 4 hours and at 50 ° C. for 5 hours.

反応終了後、反応液の濃縮、濃縮液の抽出処理(酢酸エチル200ml+水200ml)、その水層の抽出処理(酢酸エチル200ml)、全有機層(この有機層+先の有機)の洗浄(水100ml)を行なった。次いで、得られた有機層を濃縮してヘプタン200mlを加えた後、析出した白色結晶を濾取して乾燥し、3−メチル−3−p−トルエンスルホニルオキシメチルオキセタン70.2gを得た(収率54.8%)。   After completion of the reaction, the reaction solution is concentrated, the concentrated solution is extracted (ethyl acetate 200 ml + water 200 ml), the aqueous layer is extracted (ethyl acetate 200 ml), and the entire organic layer (this organic layer + the previous organic) is washed (water 100 ml). Next, the obtained organic layer was concentrated and 200 ml of heptane was added, and then the precipitated white crystals were collected by filtration and dried to obtain 70.2 g of 3-methyl-3-p-toluenesulfonyloxymethyloxetane ( Yield 54.8%).

生成物の物性値は以下の通りであった
(a)CI−MS(m/e):257(M+1)
(b)H−NMR(CDCl,δ(ppm)):1.30(3H,s)、2.46(3H,s)、4.11(2H,s)、4.30〜4.38(4H,m)、7.35〜7.39(2H,m)、7.79〜7.82(2H,m)
The physical properties of the product were as follows: (a) CI-MS (m / e): 257 (M + 1)
(B) 1 H-NMR (CDCl 3 , δ (ppm)): 1.30 (3H, s), 2.46 (3H, s), 4.11 (2H, s), 4.30-4. 38 (4H, m), 7.35 to 7.39 (2H, m), 7.79 to 7.82 (2H, m)

〔参考例3;3−クロロメチル−3−エチルオキセタンの合成〕
攪拌装置、温度計、滴下漏斗及び還流冷却器を備えた内容積1000mlのガラス製フラスコに、3−エチル−3−ヒドロキシメチルオキセタン58.0g(0.5mol)、アセトニトリル300ml及びトリエチルアミン61.0g(0.61mol)を加えた後、攪拌しながら0℃まで冷却した。次いで、メタンスルホニルクロライド63g(0.55mol)を同温度で滴下して3時間反応させた後、室温まで昇温してメタノール200mlを加え、50℃で5時間攪拌した。
[Reference Example 3; Synthesis of 3-chloromethyl-3-ethyloxetane]
To a glass flask having an internal volume of 1000 ml equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 38.0 g (0.5 mol) of 3-ethyl-3-hydroxymethyloxetane, 300 ml of acetonitrile and 61.0 g of triethylamine ( 0.61 mol) was added and the mixture was cooled to 0 ° C. with stirring. Next, 63 g (0.55 mol) of methanesulfonyl chloride was dropped at the same temperature and reacted for 3 hours, and then the temperature was raised to room temperature, 200 ml of methanol was added, and the mixture was stirred at 50 ° C. for 5 hours.

反応終了後、反応液の濃縮、濃縮液の抽出処理(酢酸エチル200ml+水100ml)、その水層の抽出処理(酢酸エチル100ml)、全有機層(この有機層+先の有機層)の洗浄(水100ml)を行なった。次いで、得られた有機層を濃縮し、この濃縮液105.7gに塩化リチウム23.2g(0.545mol))とメタノール200mlを加えて室温で5時間攪拌した後、60℃で6時間反応させた。   After completion of the reaction, the reaction solution is concentrated, the concentrated solution is extracted (ethyl acetate 200 ml + water 100 ml), the aqueous layer is extracted (ethyl acetate 100 ml), and the entire organic layer (this organic layer + the previous organic layer) is washed ( 100 ml of water). Next, the obtained organic layer was concentrated, and 23.2 g (0.545 mol) of lithium chloride and 200 ml of methanol were added to 105.7 g of this concentrated liquid and stirred for 5 hours at room temperature, followed by reaction at 60 ° C. for 6 hours. It was.

反応終了後、反応液の冷却及び濾過、濾液の濃縮、濃縮液の抽出処理(酢酸エチル200ml+水100ml)、その水層の抽出処理(酢酸エチル100m)、全有機層(この有機層+先の有機層)の洗浄(水100ml)を行なった。次いで、得られた有機層を濃縮した後、蒸留(3.5kPa、79〜80℃)により、3−クロロメチル−3−エチルオキセタン44.2gを得た(収率65.4%)。ガスクロマトグラフィー分析より、このものの純度は面積百分率で99.6%であった。   After completion of the reaction, the reaction solution is cooled and filtered, the filtrate is concentrated, the concentrate is extracted (ethyl acetate 200 ml + water 100 ml), the aqueous layer is extracted (ethyl acetate 100 m), the entire organic layer (this organic layer + the previous layer) The organic layer) was washed (100 ml of water). Next, after the obtained organic layer was concentrated, 44.2 g of 3-chloromethyl-3-ethyloxetane was obtained by distillation (3.5 kPa, 79 to 80 ° C.) (yield 65.4%). According to gas chromatographic analysis, the purity of this product was 99.6% in area percentage.

生成物の物性値は以下の通りであった。
(a)CI−MS(m/e):135(M+1)
(b)H−NMR(CDCl,δ(ppm)):0.90(3H,t,J=7.4Hz)、1.85(2H,q,J=7.4Hz)、3.79(2H,s)、4.42(4H,s)
The physical property values of the product were as follows.
(A) CI-MS (m / e): 135 (M + 1)
(B) 1 H-NMR (CDCl 3 , δ (ppm)): 0.90 (3H, t, J = 7.4 Hz), 1.85 (2H, q, J = 7.4 Hz), 3.79 (2H, s), 4.42 (4H, s)

〔参考例4;3−ブロモメチル−3−エチルオキセタンの合成〕
塩化リチウムを臭化リチウム一水和物57.1(0.545mol)に代え、反応終了後の蒸留条件を2.0kPa/75〜80℃に変えた以外は、参考例3と同様に反応と生成物の単離生成を行なって、3−ブロモメチル−3−エチルオキセタン65.1gを得た(収率72.0%)。ガスクロマトグラフィー分析より、このものの純度は面積百分率で99.0%であった。
Reference Example 4 Synthesis of 3-bromomethyl-3-ethyloxetane
The reaction was performed in the same manner as in Reference Example 3 except that lithium chloride was replaced with lithium bromide monohydrate 57.1 (0.545 mol) and the distillation conditions after the reaction were changed to 2.0 kPa / 75 to 80 ° C. The product was isolated and produced to obtain 65.1 g of 3-bromomethyl-3-ethyloxetane (yield 72.0%). According to gas chromatographic analysis, the purity of this product was 99.0% as an area percentage.

生成物の物性値は以下の通りであった。
(a)CI−MS(m/e):180(M+1)、183(M+1)
(b)H−NMR(CDCl,δ(ppm)):0.88(3H,t,J=7.6Hz)、1.87(2H,q,J=7.6Hz)、3.69(2H,s)、4.40(4H,m)
The physical property values of the product were as follows.
(A) CI-MS (m / e): 180 (M + 1), 183 (M + 1)
(B) 1 H-NMR (CDCl 3 , δ (ppm)): 0.88 (3H, t, J = 7.6 Hz), 1.87 (2H, q, J = 7.6 Hz), 3.69 (2H, s), 4.40 (4H, m)

〔実施例1;3−アミノメチル−3−エチルオキセタンの製造〕
攪拌装置、温度計及び圧力ゲージを備えた内容積1000mlの耐圧反応器に、参考例1で得られた3−エチル−3−メタンスルホニルオキシメチルオキセタン89.0g(385mmol)と28質量%アンモニア水703g(11.55mol)を加え、攪拌しながら80〜90℃で6時間反応させた。
[Example 1; Production of 3-aminomethyl-3-ethyloxetane]
In a pressure-resistant reactor having an internal volume of 1000 ml equipped with a stirrer, a thermometer, and a pressure gauge, 89.0 g (385 mmol) of 3-ethyl-3-methanesulfonyloxymethyloxetane obtained in Reference Example 1 and 28% by mass aqueous ammonia 703g (11.55mol) was added and it was made to react at 80-90 degreeC for 6 hours, stirring.

反応終了後、反応液を室温まで冷却し、50質量%の水酸化ナトリウム水溶液30.8g(385mmol)と塩化ナトリウム135gを加えて30分間攪拌した。反応液をガスクロマトグラフィーにより分析したところ、3−アミノメチル−3−エチルオキセタン41.1gが生成していた(収率93%)。次いで、反応液の抽出処理(2−ブタノール300ml×3回)及び有機層の減圧濃縮を行なって得られた残渣にテトラエチレンペンタミン15gを加えた後、蒸留(200〜400kPa、75〜85℃)により、3−アミノメチル−3−エチルオキセタン34.8gを得た(単離収率78%)。ガスクロマトグラフィー分析より、このものの純度は面積百分率で99%であった。   After completion of the reaction, the reaction solution was cooled to room temperature, 30.8 g (385 mmol) of a 50 mass% sodium hydroxide aqueous solution and 135 g of sodium chloride were added, and the mixture was stirred for 30 minutes. When the reaction solution was analyzed by gas chromatography, 41.1 g of 3-aminomethyl-3-ethyloxetane was produced (yield 93%). Next, 15 g of tetraethylenepentamine was added to the residue obtained by extracting the reaction solution (2-butanol 300 ml × 3 times) and concentrating the organic layer under reduced pressure, followed by distillation (200 to 400 kPa, 75 to 85 ° C. ) Gave 34.8 g of 3-aminomethyl-3-ethyloxetane (isolation yield 78%). According to gas chromatographic analysis, the purity of this product was 99% in area percentage.

生成物の物性値は以下の通りであった。
(a)CI−MS(m/e):116(M+1)
(b)H−NMR(CDCl,δ(ppm)):0.89(3H,t,J=7.6Hz)、1.30(1H,brs)、1.71(2H,q,J=7.6Hz)、2.93(2H,s)、4.39(4H,s)
The physical property values of the product were as follows.
(A) CI-MS (m / e): 116 (M + 1)
(B) 1 H-NMR (CDCl 3 , δ (ppm)): 0.89 (3H, t, J = 7.6 Hz), 1.30 (1H, brs), 1.71 (2H, q, J = 7.6 Hz), 2.93 (2H, s), 4.39 (4H, s)

〔実施例2;3−アミノメチル−3−エチルオキセタンの製造〕
攪拌装置、温度計及び圧力ゲージを備えた内容積50mlの耐圧反応器に、3−エチル−3−メタンスルホニルオキシメチルオキセタン1.0g(5.15mmol)と28質量%アンモニア水9.4g(155mmol)を加え、攪拌しながら60〜70℃で6時間反応させた。反応終了後、室温まで冷却して反応液をガスクロマトグラフィーで分析したところ、3−アミノメチル−3−エチルオキセタン540mgが生成していた(収率92%)。
[Example 2; Production of 3-aminomethyl-3-ethyloxetane]
To a pressure-resistant reactor having an internal volume of 50 ml equipped with a stirrer, a thermometer and a pressure gauge, 1.0 g (5.15 mmol) of 3-ethyl-3-methanesulfonyloxymethyloxetane and 9.4 g (155 mmol) of 28% by mass aqueous ammonia were added. ) And reacted at 60 to 70 ° C. for 6 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by gas chromatography. As a result, 540 mg of 3-aminomethyl-3-ethyloxetane was produced (yield 92%).

〔実施例3;3−アミノメチル−3−メチルオキセタンの製造〕
実施例2と同様の反応器に、参考例2で得られた3−メチル−3−p−トルエンスルホニルオキシメチルオキセタン5.12g(20.0mmol)と28質量%アンモニア水36.5g(600mmol)を加え、攪拌しながら100〜110℃で12時間反応させた。反応終了後、室温まで冷却して反応液をガスクロマトグラフィーで分析したところ、3−アミノメチル−3−メチルオキセタン1.72gが生成していた(収率85%)。
Example 3 Production of 3-aminomethyl-3-methyloxetane
In the same reactor as in Example 2, 5.12 g (20.0 mmol) of 3-methyl-3-p-toluenesulfonyloxymethyl oxetane obtained in Reference Example 2 and 36.5 g (600 mmol) of 28% by mass aqueous ammonia. Was added and reacted at 100-110 ° C. for 12 hours with stirring. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by gas chromatography. As a result, 1.72 g of 3-aminomethyl-3-methyloxetane was produced (yield 85%).

生成物の物性値は以下の通りであった。
(a)CI−MS(m/e):102(M+1)
(b)H−NMR(CDCl,δ(ppm)):1.28(3H,s)、1.30〜1.60(1H,brs)、2.89(2H,s)、4.38(2H,d,J=5.9Hz)、4.44(2H,d,J=5.9Hz)
The physical property values of the product were as follows.
(A) CI-MS (m / e): 102 (M + 1)
(B) 1 H-NMR (CDCl 3 , δ (ppm)): 1.28 (3H, s), 1.30 to 1.60 (1H, brs), 2.89 (2H, s), 4. 38 (2H, d, J = 5.9 Hz), 4.44 (2H, d, J = 5.9 Hz)

〔実施例4;3−アミノメチル−3−エチルオキセタンの製造〕
実施例2と同様の反応器に、参考例3で得られた3−クロロメチル−3−エチルオキセタン1.35g(10.0mmol)と28質量%アンモニア水18.2g(300mmol)を加え、攪拌しながら100〜110℃で6時間反応させた。反応終了後、室温まで冷却して反応液をガスクロマトグラフィーで分析したところ、3−アミノメチル−3−エチルオキセタン1.0gが生成していた(収率87%)。
Example 4 Production of 3-aminomethyl-3-ethyloxetane
To the same reactor as in Example 2, 1.35 g (10.0 mmol) of 3-chloromethyl-3-ethyloxetane obtained in Reference Example 3 and 18.2 g (300 mmol) of 28% by mass aqueous ammonia were added and stirred. The reaction was carried out at 100 to 110 ° C. for 6 hours. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by gas chromatography. As a result, 1.0 g of 3-aminomethyl-3-ethyloxetane was produced (yield 87%).

〔実施例5;3−アミノメチル−3−エチルオキセタンの製造〕
実施例2と同様の反応器に、参考例4で得られた3−ブロモメチル−3−エチルオキセタン1.81g(10.0mmol)と28質量%アンモニア水18.2g(300mmol)を加え、攪拌しながら100〜110℃で6時間反応させた。反応終了後、室温まで冷却して反応液をガスクロマトグラフィーで分析したところ、3−アミノメチル−3−エチルオキセタン1.03gが生成していた(収率89%)。
Example 5 Production of 3-aminomethyl-3-ethyloxetane
To the same reactor as in Example 2, 1.81 g (10.0 mmol) of 3-bromomethyl-3-ethyloxetane obtained in Reference Example 4 and 18.2 g (300 mmol) of 28 mass% aqueous ammonia were added and stirred. The reaction was carried out at 100 to 110 ° C. for 6 hours. After completion of the reaction, the reaction solution was cooled to room temperature and analyzed by gas chromatography. As a result, 1.03 g of 3-aminomethyl-3-ethyloxetane was produced (yield 89%).

本発明により、3−アミノメチル−3−メチル(又はエチル)オキセタン等の3−アミノメチルオキセタン化合物を工業的に好適な製法によって高収率で製造できる。このような3−アミノメチルオキセタン化合物は、医薬、農薬、樹脂等の合成原料や中間体として有用な化合物である。   According to the present invention, a 3-aminomethyloxetane compound such as 3-aminomethyl-3-methyl (or ethyl) oxetane can be produced in a high yield by an industrially suitable production method. Such a 3-aminomethyl oxetane compound is a useful compound as a raw material for synthesis or an intermediate for pharmaceuticals, agricultural chemicals, resins and the like.

Claims (5)

一般式(1)で表される原料オキセタン化合物とアンモニアを反応させて一般式(2)で表される3−アミノメチルオキセタン化合物を生成させる製法であって、アンモニアとしてアンモニア水を使用することを特徴とする、3−アミノメチルオキセタン化合物の製法。(式中、Rは反応に関与しない置換基、Xは脱離基を表す。)
Figure 0004899385


Figure 0004899385

A process for producing a 3-aminomethyloxetane compound represented by the general formula (2) by reacting a raw material oxetane compound represented by the general formula (1) with ammonia, and using ammonia water as ammonia. A method for producing a 3-aminomethyloxetane compound, which is characterized. (In the formula, R represents a substituent not involved in the reaction, and X represents a leaving group.)
Figure 0004899385


Figure 0004899385

脱離基Xがハロゲン原子又は有機スルホニルオキシ基である、請求項1記載の3−アミノメチルオキセタン化合物の製法。 The process for producing a 3-aminomethyloxetane compound according to claim 1, wherein the leaving group X is a halogen atom or an organic sulfonyloxy group. 脱離基Xが、塩素原子、臭素原子、メタンスルホニルオキシ基、又は、p−トルエンスルホニルオキシ基である、請求項1記載の3−アミノメチルオキセタン化合物の製法。 The method for producing a 3-aminomethyloxetane compound according to claim 1, wherein the leaving group X is a chlorine atom, a bromine atom, a methanesulfonyloxy group, or a p-toluenesulfonyloxy group. Rがアルキル基である、請求項1記載の3−アミノメチルオキセタン化合物の製法。 The process for producing a 3-aminomethyloxetane compound according to claim 1, wherein R is an alkyl group. 反応温度が50〜120℃である、請求項1〜4のいずれか1つに記載の3−アミノメチルオキセタン化合物の製法。The manufacturing method of the 3-aminomethyl oxetane compound as described in any one of Claims 1-4 whose reaction temperature is 50-120 degreeC.
JP2005257335A 2005-09-06 2005-09-06 Method for producing 3-aminomethyloxetane compound Expired - Fee Related JP4899385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257335A JP4899385B2 (en) 2005-09-06 2005-09-06 Method for producing 3-aminomethyloxetane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257335A JP4899385B2 (en) 2005-09-06 2005-09-06 Method for producing 3-aminomethyloxetane compound

Publications (2)

Publication Number Publication Date
JP2007070270A JP2007070270A (en) 2007-03-22
JP4899385B2 true JP4899385B2 (en) 2012-03-21

Family

ID=37932034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257335A Expired - Fee Related JP4899385B2 (en) 2005-09-06 2005-09-06 Method for producing 3-aminomethyloxetane compound

Country Status (1)

Country Link
JP (1) JP4899385B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376409B2 (en) 2012-05-09 2016-06-28 Boehringer Ingelheim International Gmbh Methods for making oxetan-3-ylmethanamines
AR099134A1 (en) * 2014-01-24 2016-06-29 Hoffmann La Roche PROCEDURE FOR THE PREPARATION OF N - [(3-AMINOOXETAN-3-IL) METHYL] -2- (1,1-DIOXO-3,5-DIHIDRO-1,4-BENZOTIAZEPÍN-4-IL) -6-METIL- QUINAZOLÍN-4-AMINA

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1169027A (en) * 1966-11-19 1969-10-29 Beecham Group Ltd Azetidine Derivatives
DE3432320A1 (en) * 1984-09-03 1986-03-13 Behringwerke Ag, 3550 Marburg CIS-PLATINUM COMPLEXES WITH A PENTAERYTHRITE DERIVATIVE AS A LIGAND, METHOD FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL AGENT CONTAINING THESE COMPOUNDS
US4880790A (en) * 1986-01-31 1989-11-14 American Cyanamid Company (Gem-heterocyclodimethanamine-N,N')platinum complexes

Also Published As

Publication number Publication date
JP2007070270A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP6948419B2 (en) New manufacturing method for chromanon derivatives
JPH0776209B2 (en) Process for producing optically active 3-hydroxypyrrolidine derivative
JP2011178787A (en) Process for producing 4-substituted or unsubstituted tetrahydropyran-4-carboxylic acid compound or ester compound thereof
KR101728443B1 (en) Method for Producing Benzyl Ester 2-aminonicotinicotinate Derivative
JP4899385B2 (en) Method for producing 3-aminomethyloxetane compound
JP4879907B2 (en) Process for producing phenyl 2-pyrimidinyl ketones and novel intermediates thereof
JP5516567B2 (en) Process for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde
JP5205971B2 (en) Method for producing tetrahydropyran compound
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP4239473B2 (en) Process for producing pyridone compounds and intermediates thereof
JP4561635B2 (en) Process for producing 4-alkoxycarbonyltetrahydropyran or tetrahydropyranyl-4-carboxylic acid
JP2024146829A (en) Method for producing water-soluble thioamide compound carboxylate
JP2659587B2 (en) 4-aziridinyl pyrimidine derivatives and their production
JP4538993B2 (en) Process for producing β-ketonitrile derivatives
JP4608888B2 (en) Method for producing 2-cyano-2- (4-tetrahydropyranyl) acetate
JP2006298872A (en) Manufacturing method of 1-fluoro-1-phenylthioethene
JP5034277B2 (en) Of 3- (N-acylamino) -3- (4-tetrahydropyranyl) -2-oxopropanoic acid ester and 3- (N-acylamino) -3- (4-tetrahydropyranyl) -2-oxopropanohydrazide Production method
JP2010229113A (en) Method for producing 2-(2',4'-di-substituted phenyl)pyridine compound
JP2008239531A (en) Method for producing 4-cyanotetrahydropyran
RU2334736C1 (en) Method of production of 3-phenoxy benzyl thiocyanate
JP5555527B2 (en) Method for producing alicyclic sulfonate
JP2022159769A (en) Deoxyhalogeno gluconate derivative and method for producing the same, and deoxysulfonyloxy gluconate derivative and method for producing the same
JP3918468B2 (en) 3,3-bis (alkoxycarbonyl-methylthio) propionitrile and process for producing the same
JPWO2005026108A1 (en) Process for producing N, N'-dialkoxy-N, N'-dialkyloxamide
JPH1072398A (en) Production of 1-indanone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees