JPH0535802B2 - - Google Patents

Info

Publication number
JPH0535802B2
JPH0535802B2 JP60188382A JP18838285A JPH0535802B2 JP H0535802 B2 JPH0535802 B2 JP H0535802B2 JP 60188382 A JP60188382 A JP 60188382A JP 18838285 A JP18838285 A JP 18838285A JP H0535802 B2 JPH0535802 B2 JP H0535802B2
Authority
JP
Japan
Prior art keywords
hole
measurement
light receiver
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60188382A
Other languages
Japanese (ja)
Other versions
JPS6249210A (en
Inventor
Masatake Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP18838285A priority Critical patent/JPS6249210A/en
Publication of JPS6249210A publication Critical patent/JPS6249210A/en
Publication of JPH0535802B2 publication Critical patent/JPH0535802B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

【発明の詳細な説明】 ≪産業上の利用分野≫ この発明は孔曲り測定装置に関し、特にボーリ
ング孔、先進導孔等の人が立ち入ることのできな
い小径の掘削孔の曲がり度合いを測定する孔曲り
測定装置に関する。
[Detailed Description of the Invention] <<Industrial Application Field>> This invention relates to a hole bending measuring device, and in particular to a hole bending measuring device for measuring the degree of bending of small-diameter excavated holes such as boreholes and advanced guide holes that cannot be accessed by humans. Concerning a measuring device.

≪従来の技術≫ 通常ボーリングマシンなどで掘削された孔は、
完全な直進性を有さずいづれかの方向に曲がつて
おり、特に水平掘削孔はボーリングマシンに作用
する重力もあつて、下方に傾斜する傾向にある。
≪Conventional technology≫ A hole drilled using a boring machine or the like is usually
They do not have perfect straightness and are curved in either direction, and horizontal boreholes in particular tend to slope downward due to the force of gravity acting on the boring machine.

ところで、油田、井戸、トンネルの先進導孔な
ど比較的小径の掘削孔も、例えば先進導孔は、本
抗との位置関係を正確に求める必要上、導孔の曲
がりを測定しなければならない。
Incidentally, in the case of comparatively small-diameter excavated holes such as advanced guide holes in oil fields, wells, and tunnels, for example, in advanced guide holes, the bending of the guide hole must be measured in order to accurately determine the positional relationship with the main shaft.

このため、かかるボーリング孔、先進導孔等の
人が立ち入ることのできない小径の掘削孔の曲が
り度合いを測定するものとして、従来は、例えば
レーザー発振器とテレビカメラとを内蔵した2個
の筒体を可撓性の部材で連結した計測管を使用
し、これを掘削孔内に挿入して、可撓性部材の前
後の筒体間に生ずる傾斜角の差をレーザー光とテ
レビカメラで検出する測定装置が用いられてい
た。
For this reason, in order to measure the degree of curvature of such small-diameter excavated holes such as boreholes and advanced guide holes that cannot be accessed by humans, conventional methods have been to use two cylindrical bodies containing, for example, a laser oscillator and a television camera. Measurement using a measurement tube connected by a flexible member, inserted into a borehole, and detecting the difference in inclination angle between the front and rear cylinders of the flexible member using a laser beam and a television camera. equipment was used.

そして、この種の測定装置は掘削孔内を順次移
動させながら計測を行なうものであるが、移動は
前回測定時の光軸を次回測定時の基準光軸となす
ように尺取虫状に行なつていた。
This type of measuring device takes measurements while sequentially moving inside the borehole, but the movement is done in an inchworm-like manner so that the optical axis from the previous measurement becomes the reference optical axis for the next measurement. Ta.

≪発明が解決しようとする問題点≫ 上述した如き形式の測定装置では、掘削孔内の
発信位置で測定装置の初期設定を正確に求めてお
かなければ、以後の計測に累積され大きな誤差を
生ずるが、この初期設定に関する配慮が欠けてい
た。
<<Problems to be Solved by the Invention>> With the above-mentioned type of measuring device, unless the initial settings of the measuring device are accurately determined at the transmitting position in the borehole, large errors will be accumulated in subsequent measurements. However, there was a lack of consideration regarding this initial setting.

つまり、この種の測定装置では、孔内の後方に
ある筒体を基準にして曲りを測定し、測定装置の
初期設定では、後の筒体が基準となり、これが測
定すべき孔内にどのように設定されていても、そ
の状態を基準として、順次測定を繰返すため、相
対的な孔曲りを測定することになる。
In other words, with this type of measuring device, bending is measured using the cylinder at the rear of the hole as a reference, and in the initial settings of the measuring device, the rear cylinder is used as a reference, and this determines the bending in the hole to be measured. Even if it is set to , the relative hole curvature is measured because measurements are repeated sequentially based on that state.

また、レーザー発振器とテレビカメラの筒体へ
の取付が不正確であつた場合には、これを外部か
ら確認することができないため、装置自体で誤差
を包含することとなり、この点でも測定精度を低
下させていた。
Additionally, if the laser oscillator and television camera are incorrectly attached to the barrel, this cannot be confirmed from the outside, so the device itself will contain errors, and measurement accuracy may be affected in this respect as well. It was lowering it.

この発明はこのような問題点に鑑みてなされた
ものであつて、その目的とするところは、ボーリ
ング孔、先進導孔等の人が立ち入ることをできな
い小径の掘削孔の曲がり度合いを測定するための
装置であつて、累積誤差等を生じることなく、高
精度に孔曲りを測定できる孔曲り測定装置を提供
することにある。
This invention was made in view of these problems, and its purpose is to measure the degree of curvature of small-diameter excavated holes such as boreholes and advanced guide holes that cannot be accessed by humans. It is an object of the present invention to provide a hole curvature measuring device which can measure hole curvature with high precision without producing cumulative errors.

≪問題点を解決するための手段≫ 上記目的を達成するため、この発明の孔曲り測
定装置は、ボーリング孔、先進導孔等の人が立ち
入ることのできない小径の掘削孔内に挿入され、
これに沿つて移動する、一対の先・後行筒体の一
端同士を回動可能に連結した計測管と、前記先行
筒体に内蔵された受光器と、前記後行筒体に内蔵
された同一光軸上の前後方向に光を投射するレー
ザー発射装置と、掘削孔の孔口に設けた受光装置
とを有し、レーザーを前方の前記受光器に投射し
て測定した前記先行筒体の偏位を、同一位置にお
ける、レーザーを後方の前記受光装置に投射して
測定した前記後行筒体の偏位と比較しつつ孔の曲
がりを測定するようにしたことを特徴とするもの
である。
<<Means for Solving the Problems>> In order to achieve the above object, the hole bending measuring device of the present invention is inserted into a small diameter excavation hole such as a borehole or an advanced guide hole that cannot be accessed by humans.
A measuring tube that moves along this axis is rotatably connected to one end of a pair of leading and trailing cylinders, a light receiver built in the leading cylinder, and a measuring tube built in the trailing cylinder. It has a laser emitting device that projects light in the front-rear direction on the same optical axis, and a light receiving device installed at the mouth of the excavation hole, and the laser beam is projected to the light receiver in front of the leading cylinder and measured. The method is characterized in that the deflection of the hole is measured while comparing the deflection with the deflection of the trailing cylinder at the same position, which is measured by projecting a laser onto the light receiving device at the rear. .

≪作用≫ 上記構成の孔曲り測定装置では、同一光軸上の
前後方向にレーザー光が投射され、これを受光装
置で受けることで測定装置の初期設定の状態が計
測される。
<<Operation>> In the hole bending measuring device having the above configuration, a laser beam is projected in the front-rear direction on the same optical axis, and the initial setting state of the measuring device is measured by receiving the laser beam with the light receiving device.

また、同一光軸上の前後方向に投射された光
を、受光器と受光装置とで同時に設け、それぞれ
個別に掘削孔の偏位が計測できるため、これを比
較することにより、計測状態の正確な把握が可能
となり、測定精度が向上する。
In addition, since the light projected in the front-back direction on the same optical axis is provided simultaneously by the light receiver and the light-receiving device, the deviation of the borehole can be measured individually, so by comparing these, the measurement status can be accurately determined. This enables accurate understanding and improves measurement accuracy.

≪実施例≫ 以下、この発明の好適な実施例について添附図
面を参照にして詳細に説明する。
<<Example>> Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図および第2図は、本発明に係る孔曲り測
定装置の一実施例を示しており、第3図はその測
定方法の説明図である。
FIGS. 1 and 2 show an embodiment of the hole bending measuring device according to the present invention, and FIG. 3 is an explanatory diagram of the measuring method.

同図に示す測定装置は、一対のほぼ同じ長さの
中空円筒形の先・後行筒体10,12の一端同士
をボールジヨイント14で、回動可能に連結した
計測管16と、先行筒体10の前端近傍に筒軸と
直交するようにして設けられた受光器18と、後
行筒体12の前端近傍の筒軸上に設置され、筒軸
とほぼ一致した同一光軸上の前後方向に光(S1、
S2)を投射するレーザー発射装置20と有して
いる。
The measuring device shown in the figure consists of a measuring tube 16, which is rotatably connected to one end of a pair of hollow cylindrical leading and trailing cylinders 10 and 12 of approximately the same length through a ball joint 14, and A light receiver 18 is installed near the front end of the cylinder body 10 so as to be perpendicular to the cylinder axis, and a light receiver 18 is installed on the cylinder axis near the front end of the trailing cylinder body 12 and is on the same optical axis that almost coincides with the cylinder axis. Light in front and back direction (S1,
S2) and a laser emitting device 20 for projecting.

上記受光器18は、例えばC.C.D素子をX、Y
方向に配置したターゲツトなどが用いられ、レー
ザー発射装置20からの光線S1で照射された部
分の位置が分かるようになつている。
The light receiver 18 includes, for example, a CCD element in X and Y directions.
A target placed in the direction is used so that the position of the area irradiated with the beam S1 from the laser emitting device 20 can be determined.

上記筒体10,12の下方には、計測管16を
移動させる複数の回転ローラ22,22が装着さ
れており、回転ローラ22は例えばステツピング
モータなどで移動する長さが制御されるととも
に、その移動長が検出され、この計測装置では、
端部の回転ローラ22間の長さ(2L)の、1/2の
長さで尺取虫状に順次移動して計測が行なわれ
る。
A plurality of rotating rollers 22, 22 for moving the measuring tube 16 are mounted below the cylinders 10, 12, and the moving length of the rotating roller 22 is controlled by, for example, a stepping motor. The length of the movement is detected, and this measuring device
The measurement is performed by sequentially moving in an inchworm-like manner by 1/2 the length (2L) between the rotating rollers 22 at the ends.

計測管16は、ほぼ水平に掘られた掘削孔24
内に挿入されるが、掘削孔24には予めパイプ2
6が挿通される。
The measurement pipe 16 is located in an approximately horizontally dug hole 24.
However, the pipe 2 is inserted into the excavation hole 24 in advance.
6 is inserted.

パイプ26は、掘削孔24の曲りに沿つて変形
し得る可撓性を有しており、例えば塩化ビニルパ
イプあるいは比較的肉簿のアルミパイプなどが適
当である。
The pipe 26 is flexible enough to deform along the curve of the excavated hole 24, and is suitably made of, for example, a vinyl chloride pipe or a relatively solid aluminum pipe.

また、パイプ26内には、その軸方向に沿つて
延びる凹形のレール27が取付けられ、計測管1
6の各ローラ22,22は、このレール27上に
載置され、ローラ22とレール27とが接触する
3点でパイプ26の中心軸と計測管16の軸とが
一致するようにこれを支持する。
Further, a concave rail 27 is installed inside the pipe 26 and extends along the axial direction of the pipe 26.
Each of the rollers 22, 22 of 6 is placed on this rail 27, and supported so that the central axis of the pipe 26 and the axis of the measurement tube 16 coincide at the three points where the rollers 22 and the rail 27 contact. do.

測定方法は、まず、装置を上記計測管16のレ
ーザー発射装置20からの光線(S1)が、受光
器18の中心を照射するように調整した後、掘削
孔24内の発進位置に設置する。
In the measurement method, first, the device is adjusted so that the light beam (S1) from the laser emitting device 20 of the measurement tube 16 irradiates the center of the light receiver 18, and then the device is installed at the starting position in the excavation hole 24.

しかる後、レーザー発射装置20に電気を供給
して、前後方向に光線S1、S2を投射させる。
After that, electricity is supplied to the laser emitting device 20 to project the light beams S1 and S2 in the front-back direction.

前方の光線S1は受光器18を照射し、先・後
行筒体10,12間の偏位が測定される。
The forward light beam S1 illuminates the light receiver 18, and the deviation between the leading and trailing cylinders 10, 12 is measured.

後方の光線S2は、これを例えばカメラやスク
リーン、上記受光器18と同じものなどの受光装
置28で受け、受光装置28と掘削孔24との位
置関係を求めれば、後行筒体12が掘削孔24に
対して、どのように初期設定されているかが計測
される。
The rear light beam S2 is received by a light receiving device 28 such as a camera, a screen, or the same as the light receiving device 18 described above, and the positional relationship between the light receiving device 28 and the excavation hole 24 is determined. How the hole 24 is initially set is measured.

初期状態の計測が行なわれると、計測管16を
Lだけ掘削孔24の奥に向けて移動しながら順次
計測を繰返すことになるが、その方法を第3図に
基づいて説明する。
Once the initial state measurements have been taken, measurements are repeated one after another while moving the measuring tube 16 by L towards the back of the excavated hole 24. The method will be explained based on FIG. 3.

同図は計測管16の支持点間の長さ2Lの1/2、
つまりLの点をP0〜Pnとして示しており、発進
位置にセツトされた初期状態では、前述した初期
設定の計測による誤差がなく、計測管16が掘削
孔24の中心に設置されたものとして図示し、し
かも直交座標の一方だけ示している。
The figure shows 1/2 of the length 2L between the support points of the measurement tube 16,
In other words, the point L is shown as P0 to Pn, and in the initial state set at the starting position, there is no error due to the initial setting measurement described above, and the diagram assumes that the measurement pipe 16 is installed at the center of the excavation hole 24. Moreover, only one of the orthogonal coordinates is shown.

1回目の測定では、計測管16がLだけ前進
し、P0はP1まで移動する。
In the first measurement, the measurement tube 16 moves forward by L, and P0 moves to P1.

ここで、先行筒体10が後行筒体12に対して
θ1の角度だけ偏位したとすると、受光器18に対
する前方レーザー光S1はX1だけ偏位した場所を
照射する。
Here, if the leading cylinder 10 is deviated by an angle of θ1 with respect to the trailing cylinder 12, the forward laser beam S1 to the light receiver 18 will irradiate a position deviated by X1.

この状態を式で表わすと、受光器18に関して X1=Lsinθ1、となる。 Expressing this state in a formula, regarding the light receiver 18, X1=Lsinθ1.

X1の計測が終了すると、計測管16を再びL
だけ前進させる。
When the measurement of X1 is completed, turn the measurement tube 16 to L again.
only move forward.

この状態で受光器18の偏位X2は、 X1+Lsin(θ1+θ2)となる。 In this state, the deviation X2 of the photoreceiver 18 is X1 + Lsin (θ1 + θ2).

一方、受光装置28に対する後方レーザー光S
は2回目の測定で始めてd1だけ偏位した場所を
照射する。すなわち、受光装置28に関して X1=d1/2 (なお、ここで各偏位角θ1、θ2……は小さく、
sinθ≒θ、cosθ≒1の近似が成立するものとす
る。) となり、受光装置28においてd1を測定して得
た偏位X1と前記受光器18に関する偏位X1と別
個に求めることができる。以下、3回目の測定で
は受光器18の偏位X3は X2+Lsin(θ1+θ2+θ3) これに対し、受光装置28での偏位X2は (4d1+d2)/3となり、 これにより前記と同じように、2回目の受光器
18で求めたX2と比較することができる。従つ
て、n回目の偏位Xnは受光器18では、 Xn−1+Lsinoi=l θi であり、これは受光器装置28で求められたXn
={(n+2)dn−1+dn}/(n+1)と比較
することができる。
On the other hand, the backward laser beam S toward the light receiving device 28
starts with the second measurement and irradiates a location shifted by d1. That is, regarding the light receiving device 28, X1 = d1/2 (here, each deviation angle θ1, θ2... is small,
It is assumed that the approximations of sin θ≒θ and cos θ≒1 hold true. ), and the deviation X1 obtained by measuring d1 in the light receiving device 28 and the deviation X1 regarding the light receiving device 18 can be determined separately. Hereinafter, in the third measurement, the deflection X3 of the light receiver 18 is X2 + Lsin (θ1 + θ2 + θ3), whereas the deflection X2 of the light receiver 28 is (4d1 + d2)/3. It can be compared with X2 determined by the light receiver 18. Therefore, the n-th deviation Xn at the optical receiver 18 is Xn-1+Lsin oi=l θi, which is
= {(n+2)dn-1+dn}/(n+1).

上述したような、受光器18と受光装置28に
よる掘削孔24の偏位量の計測は、後方レーザー
光S2が掘削孔24の発進位置に到達できなくな
るまで行なうことができ、一般にボーリング孔な
どの曲りは緩かに曲つているため、この計測はか
なり奥まで可能となる。
The measurement of the deviation amount of the borehole 24 by the light receiver 18 and the light receiver 28 as described above can be carried out until the backward laser beam S2 can no longer reach the starting position of the borehole 24. Since the curve is gentle, this measurement can be made quite deep.

以上のようにして、本来の計測管16による前
方レーザー光Sと受光器18の測定値と、後方レ
ーザー光Sと受光装置28による測定値とを、掘
削孔24の発進位置から数個所の測定点で比較す
ることにより、以後の計測管16による計測の信
頼性を確保できることになる。
As described above, the measurement values of the forward laser beam S and the light receiver 18 by the original measurement tube 16 and the measurement values of the rear laser beam S and the light receiver 28 are measured at several locations from the starting position of the drilling hole 24. By comparing points, the reliability of subsequent measurements by the measurement tube 16 can be ensured.

また、後方レーザー光S2が発進位置から見え
なくなるまでは、個別に測定した値を対比するこ
とで高精度の測定が行なわれるため、計測点のス
タート点を事実上掘削孔24のこの地点まで進め
たとの同じこととなり、この分だけ実質的な計測
長さが短縮され、測定精度が向上する。
In addition, until the rear laser beam S2 is no longer visible from the starting position, highly accurate measurements are performed by comparing the individually measured values, so the starting point of the measurement point can be effectively advanced to this point in the drilling hole 24. The actual measurement length is reduced by this amount, and the measurement accuracy is improved.

≪発明の効果≫ 以上詳細したように、本願発明の孔曲り測定装
置によれば、ボーリング孔、先進導孔等の人が立
ち入ることのできない小径の掘削孔内において、
レーザーを前方の受光器に投射して測定した偏位
と、同一位置における、レーザーを後方の受光装
置に投射して測定した偏位とを、測定途中におい
て随時比較しつつ孔の曲がりを測定してゆくこと
により、装置の初期設定時の誤差による測定誤差
の累積を防止して、精度の良い測定結果を容易に
得ることができる。
≪Effects of the Invention≫ As detailed above, the hole bending measuring device of the present invention can be used in small-diameter excavated holes such as boreholes and advanced guide holes that cannot be accessed by humans.
The deflection of the hole is measured by comparing the deflection measured by projecting the laser to the front receiver and the deflection measured by projecting the laser to the rear receiver at the same position at any time during the measurement. By doing so, it is possible to prevent measurement errors from accumulating due to errors in initial setting of the device, and to easily obtain accurate measurement results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の設置状態の概略図、第2
図は第1図の縦断面図、第3図は測定状態の説明
図である。 10……先行筒体、12……後行筒体、14…
…ボールジヨイント、16……計測管、18……
受光器、20……レーザー発射装置、22……回
転ローラ、24……掘削孔、26……パイプ、2
8……受光装置。
Figure 1 is a schematic diagram of the installed state of the device of the present invention, Figure 2
The figure is a longitudinal sectional view of FIG. 1, and FIG. 3 is an explanatory diagram of the measurement state. 10... Leading cylinder body, 12... Trailing cylinder body, 14...
...Ball joint, 16...Measuring tube, 18...
Light receiver, 20...Laser emitting device, 22...Rotating roller, 24...Drilling hole, 26...Pipe, 2
8... Light receiving device.

Claims (1)

【特許請求の範囲】[Claims] 1 ボーリング孔、先進導孔等の人が立ち入るこ
とのできない小径の掘削孔内に挿入され、これに
沿つて移動する、一対の先・後行筒体の一端同士
を回動可能に連結した計測管と、前記先行筒体に
内蔵された受光器と、前記後行筒体に内蔵された
同一光軸上の前後方向に光を投射するレーザー発
射装置と、掘削孔の孔口に設けた受光装置とを有
し、レーザーを前方の前記受光器に投射して測定
した前記先行筒体の偏位を、同一位置における、
レーザーを後方の前記受光装置に投射して測定し
た前記後行筒体の偏位と比較しつつ孔の曲がりを
測定するようにしたことを特徴とする孔曲り測定
装置。
1. A measurement method in which one end of a pair of leading and trailing cylinders is rotatably connected to each other, and is inserted into a small-diameter excavation hole such as a borehole or an advanced guide hole that cannot be accessed by humans, and moves along the borehole. a tube, a light receiver built into the leading barrel, a laser emitting device built into the trailing barrel that projects light in the front-rear direction on the same optical axis, and a light receiver provided at the mouth of the excavation hole. a device, and measures the deflection of the leading barrel body by projecting a laser onto the light receiver in front at the same position.
A hole curvature measuring device characterized in that the curvature of the hole is measured while comparing the deflection of the trailing cylinder body measured by projecting a laser onto the light receiving device at the rear.
JP18838285A 1985-08-29 1985-08-29 Hole bend measuring apparatus Granted JPS6249210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18838285A JPS6249210A (en) 1985-08-29 1985-08-29 Hole bend measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18838285A JPS6249210A (en) 1985-08-29 1985-08-29 Hole bend measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6249210A JPS6249210A (en) 1987-03-03
JPH0535802B2 true JPH0535802B2 (en) 1993-05-27

Family

ID=16222644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18838285A Granted JPS6249210A (en) 1985-08-29 1985-08-29 Hole bend measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6249210A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931140A (en) * 1972-07-14 1974-03-20
JPS59114396A (en) * 1982-12-16 1984-07-02 株式会社 青木建設 Refractive index measuring apparatus in shield drilling machine
JPS59206709A (en) * 1983-05-11 1984-11-22 Taisei Corp Measuring method of position having moving measuring point at intermediate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931140A (en) * 1972-07-14 1974-03-20
JPS59114396A (en) * 1982-12-16 1984-07-02 株式会社 青木建設 Refractive index measuring apparatus in shield drilling machine
JPS59206709A (en) * 1983-05-11 1984-11-22 Taisei Corp Measuring method of position having moving measuring point at intermediate

Also Published As

Publication number Publication date
JPS6249210A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
AU2014286916B2 (en) Alignment system for alignment of a drill rod during drilling
CN109539992B (en) Double shield position detecting devices, detection method, guidance system and guidance method
US4869591A (en) Method of optically measuring relative angular movement
WO2021114583A1 (en) Roadheader footage measurement method
US6480289B1 (en) Position measuring apparatus and optical deflection angle measuring apparatus for underground excavators
JPH0535802B2 (en)
JP3723661B2 (en) Underground excavator position measurement device
JPH0550687B2 (en)
JP3759281B2 (en) Underground excavator position measurement device
JPS61292514A (en) Bent hole measuring apparatus
JPH1114356A (en) Three-dimensional position detecting method
JP2002188389A (en) Blasting excavation and drilling method for tunnel, and drilling system
JPS61251710A (en) Detecting method for position and attitude of tunnel drilling
JPH06137070A (en) Automatic measuring method of shielding machine
CN219316949U (en) Drilling guiding device for tunneling working face
JP2018109562A (en) Bore diameter measuring device and bore diameter measurement method
US10508905B2 (en) Device and method for measuring cavities and use of the device for determining roller alignments
JP2644151B2 (en) Automatic surveying method of shield machine
JP3082834U (en) Long hole bending measurement device
JPS60213811A (en) Automatic measuring apparatus of cross section of tunnel
JPH0324969B2 (en)
JPH06137068A (en) Automatic measuring method of shielding machine
JPH0435765Y2 (en)
JPH06200692A (en) Automatic measurement of shielding machine
JPS6049323B2 (en) Moving object tracking control device