JPH0535351B2 - - Google Patents

Info

Publication number
JPH0535351B2
JPH0535351B2 JP26963684A JP26963684A JPH0535351B2 JP H0535351 B2 JPH0535351 B2 JP H0535351B2 JP 26963684 A JP26963684 A JP 26963684A JP 26963684 A JP26963684 A JP 26963684A JP H0535351 B2 JPH0535351 B2 JP H0535351B2
Authority
JP
Japan
Prior art keywords
melting
gas
exhaust gas
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26963684A
Other languages
Japanese (ja)
Other versions
JPS61149785A (en
Inventor
Takamitsu Yamada
Shoji Furuya
Sadao Higuchi
Tetsuo Horie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP26963684A priority Critical patent/JPS61149785A/en
Publication of JPS61149785A publication Critical patent/JPS61149785A/en
Publication of JPH0535351B2 publication Critical patent/JPH0535351B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スクラツプ等の溶解方法に係り、特
に、省電力化と排ガスの顕熱と潛熱との有効利用
を達成することができるスクラツプ等の溶解方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for melting scrap, etc., and in particular, to a method for melting scrap, etc., which can achieve power saving and effective use of sensible heat and heat from exhaust gas. Concerning a method of dissolving.

[従来の技術] 一般にスクラツプ等の固体の鉄を再利用するた
めに、これを溶解する装置として、三相電極のア
ーク熱を利用する三相アーク炉はすでに知られて
いる。
[Prior Art] A three-phase arc furnace that utilizes the arc heat of three-phase electrodes is already known as a device for melting solid iron, such as scrap, in order to recycle it.

このアーク炉は、上方が開放されたアーク炉本
体内に原料スクラツプを投入しておき、これに三
相電極を挿入しつつ上蓋をして放電させ、このア
ーク熱により原料を溶解するようにしたものであ
る。そして、このアーク炉本体から発生する排ガ
スは周辺部より炉内に侵入した空気を主成分とす
るが一部CO等の可燃分を含んでいるため、排ガ
スを炉内より取出してこれを燃焼し、この燃焼ガ
スにより原料スクラツプを予熱して熱の有効利用
を図つている。
In this arc furnace, raw material scrap is placed in the arc furnace main body, which is open at the top, and a three-phase electrode is inserted into this, the top lid is placed on it, and the raw material is discharged, and the raw material is melted by the arc heat. It is something. The exhaust gas generated from the arc furnace body is mainly composed of air that has entered the furnace from the surrounding area, but it also contains some combustible components such as CO, so the exhaust gas is taken out from inside the furnace and burned. This combustion gas is used to preheat the raw material scrap, making effective use of heat.

また、溶解時に生成される排ガスを有効利用す
る溶解方法として、2基の溶解炉を並設してそれ
ぞれを排ガス通路で連通させておき、一方の溶解
炉内で溶解を行なうときに発生する高温排ガスを
他方の溶解炉内に導き、これに予め装入した原料
を予熱するようにし、装入原料の溶解と予熱とを
交互に繰返し行なうことがなされている。
In addition, as a melting method that effectively utilizes the exhaust gas generated during melting, two melting furnaces are installed side by side and communicated with each other through an exhaust gas passage. Exhaust gas is introduced into the other melting furnace to preheat the raw material previously charged therein, and melting and preheating of the charged raw material are alternately repeated.

[発明が解決しようとする問題点] ところで、従来の溶解方法の如くアーク熱でス
クラツプ等の原料を溶解する場合には、排ガスで
予熱を行なつているといえども多量の電力を必要
とし、特に我国のように電気料の高い国において
は、操業コストの高騰を余儀なくされていた。
[Problems to be Solved by the Invention] By the way, when melting raw materials such as scrap using arc heat as in the conventional melting method, a large amount of electric power is required even though preheating is performed using exhaust gas. Especially in countries like Japan where electricity costs are high, operating costs have been forced to rise.

そこで、溶解のために、電気エネルギと油、石
油ガスとを併用することも行なわれてはいるが、
油、石油ガス等も高価であり、操業コストを充分
に低減することはできない。
Therefore, although electrical energy and oil or petroleum gas are used together for melting,
Oil, petroleum gas, etc. are also expensive, and operating costs cannot be reduced sufficiently.

また、溶解時に発生する高温排ガスで他の原料
を予熱してはいるが、この排ガス温度は約600度
前後と低く、従つて原料の予熱温度も200〜300度
と更に低くなつて十分な予熱を行なうことができ
ない。また、排ガス中に含まれる可燃ガスを燃焼
することも行なわれてはいるが、可燃ガスの含有
率は非常に低く排ガスを充分に温度上昇させるこ
とができない。
In addition, other raw materials are preheated using the high-temperature exhaust gas generated during melting, but the temperature of this exhaust gas is low at around 600 degrees, so the preheating temperature of the raw materials is even lower at 200 to 300 degrees, making it difficult to preheat them sufficiently. can't do it. Furthermore, although combustion of combustible gas contained in the exhaust gas has been carried out, the content of combustible gas is very low and the temperature of the exhaust gas cannot be raised sufficiently.

更には、前述の如く原料の予熱温度が低いこと
から、原料中に含まれる有機分の熱分解により発
生する悪臭成分が公害の発生源となつていた。
Furthermore, as mentioned above, since the preheating temperature of the raw materials is low, malodorous components generated by thermal decomposition of organic components contained in the raw materials have become a source of pollution.

特にスクラツプ消費量が今後大きく増加するこ
とが予想される今日において、上記した問題点の
解決が早期に望まれている。
Particularly in today's world where scrap consumption is expected to increase significantly in the future, it is desired to solve the above-mentioned problems as soon as possible.

[発明の目的] 本発明は以上のような問題点に着目し、これを
有効に解決すべく創案されたものである。
[Object of the Invention] The present invention has focused on the above-mentioned problems and has been devised to effectively solve the problems.

本発明の目的は、溶解と予熱の両機能を有する
複数の溶解炉を備え、溶解と予熱とを交互に繰返
して行なうに際し、1の溶解炉内の原料溶解時に
炭材吹込により発生する高温可燃ガスからまず顕
熱回収を行ない、更に、この可燃ガスを燃焼させ
て発生する高温排ガスにより他の溶解炉内の原料
を予熱して潛熱を回収するようにし、もつて大幅
な電力の削減を図ることができるスクラツプ等の
溶解方法を提供するにある。
The purpose of the present invention is to provide a plurality of melting furnaces having both melting and preheating functions, and when melting and preheating are repeated alternately, high-temperature combustible material generated by injection of carbonaceous materials during melting of raw materials in one melting furnace is to be avoided. First, sensible heat is recovered from the gas, and then the high-temperature exhaust gas generated by burning this combustible gas is used to preheat the raw materials in other melting furnaces and recover the sensible heat, thereby significantly reducing power consumption. The purpose is to provide a method for dissolving scraps, etc. that can be used.

[発明の概要] 上記目的を達成する本発明の構成は、原料の予
熱と溶解の両機能を有する複数の溶解炉を備え、
1つの溶解炉内の原料溶解時に発生する排ガスを
他の溶解炉内へ導入して予熱し、原料の予熱と溶
解とを交互に繰返して行なうのに際し、1の溶解
炉内で炭材を酸素とともに吹込むことにより、こ
れらをを可燃ガス生成反応させてこの反応熱によ
り原料を溶解し、得られる高温可燃排ガスにより
他の原料を予熱してまず顕熱回収を行ない、次い
で、顕熱回収後の低温化した可燃排ガスを燃焼さ
せて高温化し、この高温ガスで他の溶解炉内の原
料を予熱して潛熱を回収し、もつてアーク加熱を
ほとんど行なうことなく原料溶解を行なうように
したことを要旨とする。
[Summary of the Invention] The configuration of the present invention that achieves the above object includes a plurality of melting furnaces having both functions of preheating and melting raw materials,
The exhaust gas generated when melting raw materials in one melting furnace is introduced into another melting furnace for preheating, and when preheating and melting the raw materials are repeated alternately, the carbonaceous material is heated in oxygen in the first melting furnace. By injecting them together, these react to generate combustible gas, and the raw materials are melted by this reaction heat, and the resulting high-temperature combustible exhaust gas is used to preheat other raw materials to first recover sensible heat, and then, after sensible heat recovery, The low-temperature combustible exhaust gas is combusted to raise the temperature, and the high-temperature gas is used to preheat the raw materials in other melting furnaces and the heat is recovered, thereby melting the raw materials with almost no arc heating. The gist is:

[実施例] 以下に、本発明方法を添付図面に基づいて詳述
する。
[Example] Below, the method of the present invention will be explained in detail based on the accompanying drawings.

第1図は本発明方法を実施するための溶解炉設
備を示す概略フロールートである。
FIG. 1 is a schematic flow route showing melting furnace equipment for carrying out the method of the present invention.

図示する如くこの溶解炉設備は複数(図示例に
おいては2基)の溶解炉すなわち第1溶解炉1及
び第2溶解炉2と、溶解時に発生する高温可燃ガ
スから顕熱を回収する原料予熱器3と、顕熱回収
後の可燃ガスを燃焼する燃焼塔4とにより主に構
成されている。上記両溶解炉1,2はともに同様
な構造になされており、しかもともに原料の溶解
と予熱の両機能を備えている。すなわち炉蓋5,
5の上方には炉内へ挿脱自在になされた電極6,
6を備えると共に底部側壁には生成した溶鋼を取
出すための出鋼口7,7及び炉を予熱器として使
用する際に予熱ガスを炉内へ導入するための予熱
ガス導入口8,8が形成されている。また、炉の
底部9,9には溶解時に炉内へ微粉炭等の炭材を
酸素又は空気とともに吹込むための吹込口10,
10が形成されると共に、炉蓋5,5には溶解時
に高温排ガスを排出する高温ガス排出口11,1
1と予熱時に低温ガスを排出する低温ガス排出口
12,12が形成されている。
As shown in the figure, this melting furnace equipment includes a plurality of (two in the illustrated example) melting furnaces, namely a first melting furnace 1 and a second melting furnace 2, and a raw material preheater that recovers sensible heat from high-temperature combustible gas generated during melting. 3 and a combustion tower 4 that burns the combustible gas after sensible heat recovery. Both of the melting furnaces 1 and 2 have the same structure, and both have the functions of melting and preheating raw materials. That is, the furnace lid 5,
Above the electrode 5 is an electrode 6 which can be inserted into and removed from the furnace.
6, and tap ports 7, 7 for taking out the generated molten steel and preheating gas inlet ports 8, 8 for introducing preheating gas into the furnace when the furnace is used as a preheater are formed on the bottom side wall. has been done. Further, at the bottom part 9 of the furnace, an inlet 10 is provided for blowing carbonaceous material such as pulverized coal into the furnace together with oxygen or air during melting.
10 is formed, and the furnace lids 5, 5 are provided with high-temperature gas discharge ports 11, 1 for discharging high-temperature exhaust gas during melting.
1 and low-temperature gas discharge ports 12, 12 for discharging low-temperature gas during preheating are formed.

図中、実線は第1溶解炉1を原料溶解のために
機能させると共に第2溶解炉2を原料予熱のため
に機能させている経路を示し、破線はその逆の場
合を示す。
In the figure, a solid line indicates a route in which the first melting furnace 1 is made to function for melting the raw material and a second melting furnace 2 is made to function in order to preheat the raw material, and a broken line indicates the reverse case.

両溶解炉1,2の高温ガス排出口11,11
は、途中に第1開閉弁13及び第2開閉弁14が
それぞれ介設された高温可燃ガス通路15,16
を介して原料予熱器3のガス導入口17にそれぞ
れ接続されている。この原料予熱器4のガス排出
口18は燃焼塔4のガス入口19に通路20を介
して接続され、このガス出口21は途中に第1開
閉弁22及び第2開閉弁23がそれぞれ介設され
た高温排ガス通路24,25を介して第1及び第
2溶解炉1,2の予熱ガス導入口8,8にそれぞ
れ接続されている。
High temperature gas discharge ports 11, 11 of both melting furnaces 1, 2
are high-temperature combustible gas passages 15 and 16 in which a first on-off valve 13 and a second on-off valve 14 are interposed, respectively.
are connected to the gas inlet 17 of the raw material preheater 3 via the respective gas inlet ports 17 of the raw material preheater 3. The gas outlet 18 of the raw material preheater 4 is connected to the gas inlet 19 of the combustion tower 4 via a passage 20, and a first on-off valve 22 and a second on-off valve 23 are interposed in the middle of the gas outlet 21, respectively. The melting furnaces 1 and 2 are connected to preheating gas inlets 8 and 8 of the first and second melting furnaces 1 and 2 via high-temperature exhaust gas passages 24 and 25, respectively.

各炉の低温ガス排出口12,12は、途中に第
1開閉弁26及び第2開閉弁27がそれぞれ介設
された低温ガス通路28,29を介して燃焼用空
気予熱器30のガス導入口31に接続され、この
ガス排出口32は排気ガスフアン33を介した後
集じん器34に接続されている。
The low temperature gas discharge ports 12, 12 of each furnace are connected to the gas inlet of the combustion air preheater 30 via low temperature gas passages 28, 29 in which a first on-off valve 26 and a second on-off valve 27 are interposed, respectively. 31, and this gas outlet 32 is connected to a post-dust collector 34 via an exhaust gas fan 33.

また、上記燃焼用空気予熱器30内で予熱され
た燃焼用空気を前記燃焼塔4内へ導入するために
空気出口35と燃焼塔4のガス入口19とを連絡
する通路36が設けられている。
Further, a passage 36 is provided which communicates the air outlet 35 with the gas inlet 19 of the combustion tower 4 in order to introduce the combustion air preheated in the combustion air preheater 30 into the combustion tower 4. .

以上にように構成された溶解炉設備に基づいて
本発明方法を具体的に説明する。
The method of the present invention will be specifically explained based on the melting furnace equipment configured as described above.

まず、本発明方法の特長は1の溶解炉内で原料
溶解を行なうときは、その排ガスを利用して他の
溶解炉内で原料予熱を行なうようにした点にあ
り、これを交互に繰返して行なうものである。
First, the feature of the method of the present invention is that when the raw material is melted in one melting furnace, the exhaust gas is used to preheat the raw material in the other melting furnaces, and this is repeated alternately. It is something to do.

まず、第1溶解炉1内で原料溶解を行ないつつ
第2溶解炉2内で原料予熱を行なうためには図中
実線で示す排ガス経路を成立させる。すなわち、
高温可燃ガス通路15,16の第1開閉弁13を
開に、第2開閉弁14を閉にし、高温排ガス通路
24,25の第1開閉弁22を閉に、第2開閉弁
23を開にし、更に低温ガス通路28,29の第
1開閉弁26を閉に、第2開閉弁27を開にす
る。
First, in order to preheat the raw material in the second melting furnace 2 while melting the raw material in the first melting furnace 1, an exhaust gas path shown by a solid line in the figure is established. That is,
Open the first on-off valve 13 and close the second on-off valve 14 of the high-temperature combustible gas passages 15 and 16, close the first on-off valve 22 of the high-temperature exhaust gas passages 24 and 25, and open the second on-off valve 23. Furthermore, the first on-off valves 26 of the low-temperature gas passages 28 and 29 are closed, and the second on-off valves 27 are opened.

実線に示す排ガス経路が確立したならば、次に
操業に着手する。
Once the exhaust gas route shown by the solid line has been established, operation will begin.

まず、第1溶解炉1内に、この底部に設けた吹
込口10から微粉炭、チヤー、コークス等の炭材
を酸素又は空気とともに吸込む。この溶解炉1内
にはアーク加熱により、或いは前工程で生成した
溶鋼を少し残留させるなどして初期溶鋼を予め形
成しておく。吹込まれた酸素分は吹込炭材又は銑
鉄中の炭素のように装入原料中に含まれる炭素と
ともに発熱反応を起し、CO,H2、炭化水素系の
可燃ガスを発生させる。この時発生する熱量によ
り装入原料を昇熱し、溶解する。そして、発生し
た高温可燃ガスは約600℃前後で高温ガス排出口
11から排出されて高温可燃ガス通路15を通
り、第1開閉弁13を通過した後、原料予熱器3
内へ導入される。この予熱器3内には予め原料が
装入されており、この原料を上記高温可燃ガスに
より200〜300℃まで1次予熱し、排ガスの保有す
る顕熱を回収する。尚、予熱後の原料は各溶解炉
内へ導入されて溶解されることになる。予熱器3
のガス排出口18から排出される顕熱回収後の可
燃ガスは通路20を介して燃焼塔4内へ導入さ
れ、導入されたこの可燃ガスは燃焼用空気予熱器
30側から供給される燃焼用空気により燃焼され
て約1000℃前後の高温排ガスとなる。この際、原
料予熱器3から可燃ガスとともに搬送されてきた
悪臭分は燃焼塔4内の高熱のために熱分解されて
無臭となる。
First, carbonaceous materials such as pulverized coal, char, coke, etc. are sucked into the first melting furnace 1 through an inlet 10 provided at the bottom of the furnace 1 along with oxygen or air. An initial molten steel is previously formed in the melting furnace 1 by arc heating or by leaving a small amount of molten steel produced in a previous process. The injected oxygen causes an exothermic reaction with carbon contained in the charged raw material, such as carbon in injected carbonaceous materials or pig iron, and generates combustible gases such as CO, H 2 and hydrocarbons. The amount of heat generated at this time heats up the charged raw material and melts it. The generated high-temperature combustible gas is discharged from the high-temperature gas outlet 11 at around 600°C, passes through the high-temperature combustible gas passage 15, passes through the first on-off valve 13, and then passes through the raw material preheater 3.
introduced into the world. A raw material is charged in advance into the preheater 3, and this raw material is primarily preheated to 200 to 300°C using the above-mentioned high temperature combustible gas, and the sensible heat possessed by the exhaust gas is recovered. Note that the preheated raw materials are introduced into each melting furnace and melted. Preheater 3
The combustible gas after sensible heat recovery discharged from the gas outlet 18 is introduced into the combustion tower 4 through the passage 20, and this introduced combustible gas is used for combustion supplied from the combustion air preheater 30 side. It is combusted by air and becomes high-temperature exhaust gas at around 1000℃. At this time, the malodorous components conveyed together with the combustible gas from the raw material preheater 3 are thermally decomposed due to the high heat within the combustion tower 4 and become odorless.

この高温排ガスは燃焼塔4のガス出口21から
排出された後、高温排ガス通路25内を流れ、こ
れに介設される第2開閉弁23を介して第2溶解
炉2内に導入される。この第2溶解炉2内におい
ては、予め他の原料が装入されており、この原料
を上記高温排ガスにより2次予熱して潛熱の回収
を行なう。この場合、第2溶解炉2は原料溶解の
ために機能するのでなく予熱器として機能する。
また高温排ガスは約1000℃と特に高く、従つて装
入原料は600〜800℃前後の高温にまで予熱される
ことになる。また、この予熱時に発生する悪臭
は、2次予熱自体が800℃以上の高温状態で行な
われるために、直ちに熱分解される。
This high-temperature exhaust gas is discharged from the gas outlet 21 of the combustion tower 4, flows through the high-temperature exhaust gas passage 25, and is introduced into the second melting furnace 2 via the second on-off valve 23 provided therein. In this second melting furnace 2, other raw materials are charged in advance, and this raw material is secondarily preheated by the above-mentioned high-temperature exhaust gas to recover heat from the melting furnace. In this case, the second melting furnace 2 does not function to melt the raw material, but functions as a preheater.
Furthermore, the high temperature exhaust gas is particularly high at about 1000°C, so the charged raw material is preheated to a high temperature of around 600 to 800°C. Further, the bad odor generated during this preheating is immediately thermally decomposed because the secondary preheating itself is carried out at a high temperature of 800° C. or higher.

尚、この際、第2溶解炉2内には炭材吹込を行
なつていないのは勿論である。
Incidentally, at this time, it goes without saying that no carbonaceous material is injected into the second melting furnace 2.

潛熱回収がなされて比較的低温となつたガス
は、第2溶解炉2の低温ガス排出口12から排出
されて低温ガス通路29を流れ、第2開閉弁27
を通過した後、第1開閉弁が閉状態なので燃焼用
空気予熱器30内に導入される。この導入された
排ガスは外気温と比較したら未だ高温なので、こ
の排ガスの保有する顕熱により燃焼用空気を予熱
し、更に熱回収を行なう。ここで予熱された燃焼
用空気は、通路36を介して前述の如く燃焼塔4
へ導入されて可燃ガスの燃焼に寄与する。
The gas, which has undergone heat recovery and has become relatively low temperature, is discharged from the low temperature gas outlet 12 of the second melting furnace 2, flows through the low temperature gas passage 29, and is passed through the second on-off valve 27.
After passing through, the first on-off valve is closed, so the air is introduced into the combustion air preheater 30. Since this introduced exhaust gas is still at a high temperature compared to the outside temperature, the combustion air is preheated by the sensible heat possessed by this exhaust gas, and further heat is recovered. The preheated combustion air is passed through the passage 36 to the combustion tower 4 as described above.
combustible gas and contributes to the combustion of combustible gas.

一方、燃焼用空気予熱器30を排出された排ガ
スは排気ガスフアン33及び集じん器34を通過
した後、大気中へ放出される。
On the other hand, the exhaust gas discharged from the combustion air preheater 30 passes through an exhaust gas fan 33 and a dust collector 34, and then is released into the atmosphere.

このように、第1溶解炉1内で原料の溶解を行
ないつつ原料予熱器3内及び第2溶解炉2内で1
次予熱、2次予熱をそれぞれ行なつて第1溶解炉
内の溶解作業を終了すると、その溶鋼を出鋼口7
から取出す。
In this way, while melting the raw material in the first melting furnace 1, melting is performed in the raw material preheater 3 and the second melting furnace 2.
When the melting work in the first melting furnace is completed by performing the next preheating and the second preheating, the molten steel is transferred to the tapping port 7.
Take it out.

そして、空になつた第1溶解炉1内に、原料予
熱器3内で予熱した原料や新たな原料を装入して
前記方法と逆に第1溶解炉1を原料予熱のために
機能させ、第2溶解炉2を原料溶解のために機能
させる。すなわち、図中破線で示す排ガス経路を
確立させる。そのために前記方法とは逆に高温加
熱ガス通路15,16の第1開閉弁13を閉に、
第2開閉弁14を開にし、高温排ガス通路24,
25の第1開閉弁22を開に、第2開閉弁23を
閉にし、更に、低温ガス通路28,29の第1開
閉弁26を開に、第2開閉弁27を閉にする。こ
の場合の作用は、第1溶解炉1と第2溶解炉2と
の機能が交代するだで他は同様なので説明を省略
する。
Then, the raw material preheated in the raw material preheater 3 and new raw materials are charged into the empty first melting furnace 1, and the first melting furnace 1 is made to function for preheating the raw materials in the opposite manner to the above method. , the second melting furnace 2 is operated to melt the raw material. That is, the exhaust gas path shown by the broken line in the figure is established. To this end, contrary to the above method, the first on-off valves 13 of the high-temperature heating gas passages 15 and 16 are closed;
The second on-off valve 14 is opened, and the high-temperature exhaust gas passage 24,
The first on-off valve 22 of 25 is opened and the second on-off valve 23 is closed, and the first on-off valve 26 of low-temperature gas passages 28 and 29 is opened and the second on-off valve 27 is closed. The operation in this case is the same except that the functions of the first melting furnace 1 and the second melting furnace 2 are alternated, so a description thereof will be omitted.

このように、本発明においては溶解と予熱との
両機能を備えた複数(2基)の溶解炉1,2を交
互に溶解と予熱とを繰り返させて、一方の溶解炉
の溶解時に発生する排ガスを他方の溶解炉内に装
入した原料の予熱に利用するようになした溶解方
法において、1の溶解炉の原料溶解時に炭材吹込
を行なうことにより可燃ガス生成反応させてこの
反応熱により原料を溶解し、得られる高温可燃ガ
スを原料予熱器3内へ導入することにより他の原
料を予熱してまず顕熱を回収し、次いで、顕熱回
収後の可燃ガスを燃焼させて得られる高温排ガス
を他の溶解炉内へ導入することにより、それに装
入されている原料を高温予熱して潛熱を回収する
ようにしたので、全工程を通じてアーク加熱を全
く行なう必要がないか或いは使用するとしても初
期溶鋼生成時だけで済み、消費電力を大幅に削減
することができる。
In this way, in the present invention, a plurality of (two) melting furnaces 1 and 2 having both melting and preheating functions are made to alternately repeat melting and preheating, so that melting occurs when one melting furnace melts. In a melting method in which exhaust gas is used to preheat the raw material charged into the other melting furnace, carbon material is injected during the melting of the raw material in the first melting furnace to cause a combustible gas generation reaction, and the reaction heat is used to generate a combustible gas. It is obtained by melting raw materials and introducing the resulting high-temperature combustible gas into the raw material preheater 3 to preheat other raw materials, first recovering sensible heat, and then combusting the combustible gas after recovering the sensible heat. By introducing high-temperature exhaust gas into another melting furnace, the raw materials charged therein are preheated to a high temperature and the heat is recovered, so arc heating is not necessary or can be used throughout the entire process. However, it is only necessary to generate the initial molten steel, and power consumption can be significantly reduced.

具体的には、従来において、溶解炉の大きさに
もよるが、原料溶解のために電力エネルギ450〜
470KWH/Tを必要とし、オイルバーナ等の助
燃エネルギ等を利用しても360〜400KWH/Tを
必要としたが、本発明方法によれば250KWH/
T以下にでき、大幅に省電力化を図ることができ
た。
Specifically, in the past, depending on the size of the melting furnace, electric energy of 450 ~
470KWH/T was required, and even if auxiliary combustion energy such as an oil burner was used, 360 to 400KWH/T was required, but according to the method of the present invention, 250KWH/T was required.
T or less, resulting in significant power savings.

また、原料溶解時に発生する排ガスから顕熱回
収と潛熱回収とを行なつて2段階熱回収をなして
いるので、従来では30〜50KWH/Tの熱回収量
であつたが、本発明方法では70〜100KWH/T
に熱回収量を向上させることができる。
In addition, since two-stage heat recovery is performed by recovering sensible heat and recovering heat from the exhaust gas generated when melting raw materials, conventionally the amount of heat recovered was 30 to 50 KWH/T, but with the method of the present invention, the amount of heat recovered was 30 to 50 KWH/T. 70~100KWH/T
The amount of heat recovery can be improved.

更には、各溶解炉1,2内においてそれぞれ高
温予熱された原料は、他に移送されることなくそ
のまま溶解されるので原料のハンドリングを大幅
に簡略化させることができる。
Furthermore, the raw materials that have been preheated to a high temperature in each of the melting furnaces 1 and 2 are melted as they are without being transferred elsewhere, so that the handling of the raw materials can be greatly simplified.

尚、上記実施例にあつては溶解炉を2基設けた
場合について説明したが、その数量に限定されな
いのは勿論である。
Although the above embodiment has been described with reference to the case where two melting furnaces are provided, it is needless to say that the number is not limited to that number.

[発明の効果] 以上要するに、本発明方法によれば次のような
優れた効果を発揮することができる。
[Effects of the Invention] In summary, according to the method of the present invention, the following excellent effects can be exhibited.

(1) 炭材吹込により可燃ガス生成反応をさせて反
応熱により原料を溶解し、得られる高温可燃ガ
スから顕熱及び潛熱を回収するようにしたの
で、従来例に比較して消費電力を大幅に削減す
ることができる。
(1) By injecting carbonaceous materials into a reaction to produce combustible gas, the raw material is melted by the heat of reaction, and sensible heat and heat from the resulting high-temperature combustible gas are recovered, significantly reducing power consumption compared to conventional methods. can be reduced to

(2) 原料予熱器内における低温予熱時に発生する
悪臭成分を、燃焼塔内における可燃ガスの燃焼
時に発生する高温排ガスにより熱分解できるの
で、悪臭公害を防止することができる。
(2) Malodorous components generated during low-temperature preheating in the raw material preheater can be thermally decomposed by the high-temperature exhaust gas generated during combustion of combustible gas in the combustion tower, making it possible to prevent malodor pollution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための溶解炉設
備を示す概略平面図である。 尚、図中1,2は溶解炉、3は原料予熱器、4
は燃焼塔、10は炭材の吹込口、30は燃焼用空
気予熱器である。
FIG. 1 is a schematic plan view showing melting furnace equipment for carrying out the method of the present invention. In the figure, 1 and 2 are the melting furnace, 3 is the raw material preheater, and 4 is the melting furnace.
10 is a combustion tower, 10 is a carbon material inlet, and 30 is a combustion air preheater.

Claims (1)

【特許請求の範囲】[Claims] 1 スクラツプ等の原料の予熱と溶解の両機能を
有する複数の溶解炉を備え、1つの溶解炉内の原
料溶解時に発生する排ガスを他の溶解炉内へ導入
して予熱し、原料の予熱と溶解とを交互に繰返し
て行なうに際し、1の溶解炉内で、炭材を酸素含
有気体の存在下で可燃ガス生成反応させてこの反
応熱により原料を溶解し、得られる高温可燃ガス
により他の原料を予熱して顕熱を回収し、次い
で、顕熱回収後の可燃ガスを燃焼させて発生する
高温排ガスにより他の溶解炉内の原料を予熱して
潛熱を回収するようにしたことを特徴とするスク
ラツプ等の溶解方法。
1 Equipped with multiple melting furnaces that have the functions of both preheating and melting raw materials such as scrap, the exhaust gas generated during melting of raw materials in one melting furnace is introduced into the other melting furnaces for preheating, and is used to preheat and melt raw materials. When melting and melting are repeated alternately, the carbonaceous material is subjected to a combustible gas generation reaction in the presence of oxygen-containing gas in the first melting furnace, the raw material is melted by the heat of reaction, and the resulting high temperature combustible gas is used to melt other materials. The feature is that the raw material is preheated to recover sensible heat, and then the combustible gas after the sensible heat recovery is combusted, and the generated high temperature exhaust gas is used to preheat the raw materials in other melting furnaces and the sensible heat is recovered. How to dissolve scraps, etc.
JP26963684A 1984-12-22 1984-12-22 Method of melting scrap, etc. Granted JPS61149785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26963684A JPS61149785A (en) 1984-12-22 1984-12-22 Method of melting scrap, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26963684A JPS61149785A (en) 1984-12-22 1984-12-22 Method of melting scrap, etc.

Publications (2)

Publication Number Publication Date
JPS61149785A JPS61149785A (en) 1986-07-08
JPH0535351B2 true JPH0535351B2 (en) 1993-05-26

Family

ID=17475105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26963684A Granted JPS61149785A (en) 1984-12-22 1984-12-22 Method of melting scrap, etc.

Country Status (1)

Country Link
JP (1) JPS61149785A (en)

Also Published As

Publication number Publication date
JPS61149785A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
CN101253367B (en) Method of pre-heating fuel and comburent for oxy-burners, using combustion air pre-heating installations
KR19980701311A (en) METHOD FOR CO-PRODUCING FUEL AND IRON
CN108168320A (en) A kind of symmetrical double furnace chambers scrap steel preheating melting appartus and steel scrap melt method
KR100513932B1 (en) A pyrolyser heating wastes directly by exhaust gas of a melting furnace and the pyrolysis process using the pyroser
JPH0535351B2 (en)
JPS63503006A (en) Method and device for preheating waste metal for furnaces
JPH0535349B2 (en)
EP1226283B1 (en) High temperature premelting apparatus
CN207850090U (en) A kind of symmetrical double furnace chambers scrap steel preheating melting appartus
JPH0631686B2 (en) Exhaust gas heat recovery method and apparatus for melting furnace
JP3791853B2 (en) Gasification of solid waste and gasification combustion method
KR100508856B1 (en) Method and Device for high temperature incineration and thermal decomposition of wastes
JPH0535350B2 (en)
JPS60103215A (en) Disposal of waste
JP4038536B2 (en) Reduction melting furnace and high temperature reducing gas recovery method using the same
JP2002048321A (en) Melting processing method for waste
JPH05271810A (en) Method for melting metal
JPH11201429A (en) Method and device for melting by gasification
JPH0579911B2 (en)
JPH0746034B2 (en) Double melting equipment
CN114857586A (en) Small household garbage pyrolysis gasification incinerator and pyrolysis gasification method
JPH0535348B2 (en)
JPH05196372A (en) Scrap preheating method and scrap melting furance
JPH10205725A (en) Combustion melting furnace for waste treatment device
JPS62199709A (en) Method and apparatus for melting scrap