JPH05347108A - Transparent conductive film and its manufacture - Google Patents

Transparent conductive film and its manufacture

Info

Publication number
JPH05347108A
JPH05347108A JP25917591A JP25917591A JPH05347108A JP H05347108 A JPH05347108 A JP H05347108A JP 25917591 A JP25917591 A JP 25917591A JP 25917591 A JP25917591 A JP 25917591A JP H05347108 A JPH05347108 A JP H05347108A
Authority
JP
Japan
Prior art keywords
conductive film
film
transparent conductive
substrate
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25917591A
Other languages
Japanese (ja)
Inventor
Masataka Murahara
正隆 村原
Akira Matsumoto
明 松本
Masayuki Ogoshi
昌幸 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP25917591A priority Critical patent/JPH05347108A/en
Publication of JPH05347108A publication Critical patent/JPH05347108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a transparent electrode having low resistivity at a low cost by radiating a laser light to a mixed gas made from a compound of Al and Sn in a specific divided pressure ratio and educing a transparent conductive film in which Al is doped into SnO2. CONSTITUTION:A mixed gas made from Al(CH3)3, Sn(CH3)4 and N2O as a row material for a transparent conductive film is enclosed in the reaction case 10 and the divided pressure of a compound of Al and Sn is adjusted to 0.1 to 0.7. A KrF eximer laser light L1 is radiated to the row material when a substrate 18 is at 250 degree centigrade. A SnO2 film 19 in a conduction of a circuit pattern in which Al is doped is educed on the substrate 18. The light transmittivity of the educed film 19 is 80% when the divided pressure ratio of Sn(CH3)4 to N2O is 1:5 and 100% when the divided pressure ratio is 1:20. The resistivity of the film turns to the minimum value when the divided pressure ratio of Al(CH3)3 to Sn(CH3)4 is 0.45. Thus, a transparent electrode having a low resistivity is manufactured at a low cost by mixing a very little amount of Al into SnO2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶ディスプレイ,太陽
電池,受光素子等における透明電極を構成する透明導電
膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film which constitutes a transparent electrode in a liquid crystal display, a solar cell, a light receiving element and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】この種の導電膜としては、古くはSnO
2(二酸化スズ)が知られていた。しかしSnO2は化学
的に安定ではあるものの抵抗値が比較的高い。そこで近
年では化学的に多少不安定ではあるが抵抗値の低いIn
23(インジュウムオキサイド)やITO(インジュウ
ムチタンオキサイド)が主流となっている。
2. Description of the Related Art SnO has long been used as a conductive film of this type.
2 (tin dioxide) was known. However, although SnO 2 is chemically stable, it has a relatively high resistance value. Therefore, in recent years, In, which is chemically unstable but has a low resistance value,
2 O 3 (indium oxide) and ITO (indium titanium oxide) are the mainstream.

【0003】[0003]

【発明の解決しようとする課題】しかしIn23やIT
Oは原料であるIn(インジュウム)やTi(チタン)
が高価であるため、導電膜自体も高価なものとなるとい
う問題があった。本発明は前記従来技術の問題点に鑑み
なされたもので、その目的は安価でしかも低抵抗率の透
明導電膜及びその製造方法を提供することにある。
However, In 2 O 3 and IT
O is the raw material In (indium) and Ti (titanium)
However, there is a problem in that the conductive film itself is also expensive. The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide an inexpensive transparent conductive film having low resistivity and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に請求項1に係る透明導電膜においては、透明導電膜の
構成体であるSnO2中にAlをドープした構成とする
ようにしたものである。また請求項2に係る透明導電膜
の製造方法においては、透明導電膜の原料であるAlの
化合物とSnの化合物の分圧比が0.1〜0.7、好ま
しくは0.45付近となるように調整された原料ガスに
レーザ光を照射して、SnO2中にAlがドープされた
透明導電膜を基板上に折出させるようにしたものであ
る。
In order to achieve the above object, in the transparent conductive film according to claim 1, SnO 2 which is a constituent of the transparent conductive film is doped with Al. Is. In the method for producing a transparent conductive film according to claim 2, the partial pressure ratio of the Al compound and the Sn compound, which are raw materials of the transparent conductive film, is 0.1 to 0.7, preferably about 0.45. By irradiating the raw material gas adjusted to the above with a laser beam, the transparent conductive film in which SnO 2 is doped with Al is projected onto the substrate.

【0005】また請求項3においては、請求項2に係る
方法において、透明導電膜の原料としてSn(CH34
又はSn(C254,Al(CH33又はAl(C2
53およびN2O又はO2の混合ガスを使用し、基板温度
を200〜400℃として、波長域150〜400nm
のレーザ光を前記混合ガスに照射するようにしたもので
ある。
According to a third aspect of the present invention, in the method according to the second aspect, Sn (CH 3 ) 4 is used as a raw material for the transparent conductive film.
Or Sn (C 2 H 5 ) 4 , Al (CH 3 ) 3 or Al (C 2 H
5 ) A mixed gas of 3 and N 2 O or O 2 is used, the substrate temperature is 200 to 400 ° C., and the wavelength range is 150 to 400 nm.
The mixed gas is irradiated with the laser light.

【0006】[0006]

【作用】SnO2中にAlがドープされた構成の透明導
電膜では、本実施例方法において折出した導電膜の抵抗
率を示す図4に示されるように、0.45Ωcmという極
めて低い抵抗率を示し、これはIn23膜やAlのドー
プされていないSnO2膜の抵抗率に比べて著しく低
い。
In the transparent conductive film having a structure in which SnO 2 is doped with Al, as shown in FIG. 4, which shows the resistivity of the conductive film extruded in the method of this embodiment, the resistivity is as low as 0.45 Ωcm. Which is significantly lower than the resistivity of the In 2 O 3 film and the SnO 2 film not doped with Al.

【0007】[0007]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1は本発明方法を実施するための装置の一実施
例を示している。この図において、符号10は、内部に
ヒータ11が設けられ、上方にレーザ光入射用の窓12
が設けられた反応容器で、反応容器10の側面には、原
料ガスを反応容器10内に供給するガス流入口13が設
けられている。窓12の上方には、集光レンズ14と、
電極回路パターンが透光部として形成されているマスク
16とが鉛直方向に配置されており、マスク16の上方
から鉛直下方に向けてKrFエキシマレーザ光(波長2
49nm)L1が照射される構造となっている。ヒータ
11の上にはガラス製の基板18が載置されており、K
rFエキシマレーザ光L1の照射によって、マスク16
に形成されている電極回路パターンが基板18上に結像
するようになっている。即ち基板18の表面では、マス
ク16の電極回路パターン形状に対応する領域だけにレ
ーザー光L1が照射されて、基板表面のレーザー光照射
領域だけが励起状態となる。このため集光点Pにおいて
容器10内の原料ガスが光分解され、これによって生成
されたラジカルが励起状態の基板上で再結合して膜19
が折出する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows an embodiment of an apparatus for carrying out the method according to the invention. In this drawing, reference numeral 10 is provided with a heater 11 inside, and a window 12 for entering a laser beam is provided above.
In the reaction container provided with, a gas inlet 13 for supplying the raw material gas into the reaction container 10 is provided on the side surface of the reaction container 10. Above the window 12, there is a condenser lens 14,
The mask 16 on which the electrode circuit pattern is formed as a light-transmitting portion is arranged in the vertical direction, and the KrF excimer laser light (wavelength 2
(49 nm) L 1 is irradiated. A glass substrate 18 is placed on the heater 11,
The mask 16 is irradiated with the rF excimer laser light L 1.
The electrode circuit pattern formed on the substrate 18 forms an image on the substrate 18. That is, on the surface of the substrate 18, only the region corresponding to the electrode circuit pattern shape of the mask 16 is irradiated with the laser light L 1 , and only the laser light irradiation region on the substrate surface is in the excited state. Therefore, the raw material gas in the container 10 is photodecomposed at the condensing point P, and the radicals generated thereby are recombined on the substrate in the excited state to form the film 19.
Breaks out.

【0008】図2は本発明方法を実施するための装置の
他の実施例を示している。反応容器10の側面にもレー
ザ光入射用の窓12Aが設けられ、この窓12Aから反
応容器10内にArFエキシマレーザ光(波長193n
m)L2が反応容器10内の基板18の上方に基板18
に平行に照射されるようになっている。符号14Aは側
方からのレーザ光L2を基板18の上方において集光さ
せてレーザ光のエネルギー密度を高めるための集光レン
ズである。この第2の実施例では、基板18に対し平行
に入射したArFエキシマレーザー光L2が原料ガスを
光分解するエネルギーを付与し、基板18に対し垂直に
入射したKrFエキシマレーザー光L1がラジカルの生
成を活性化するとともに、基板18の界面を励起するの
で、膜の基板18上への折出速度が速くなるという効果
がある。なお、図2においては、側方から照射されるレ
ーザ光L2をArFエキシマレーザ光として説明した
が、ArFエキシマレーザ光に代えてKrFエキシマレ
ーザ光であってもよい。
FIG. 2 shows another embodiment of the device for carrying out the method according to the invention. A window 12A for entering a laser beam is also provided on the side surface of the reaction vessel 10, and an ArF excimer laser beam (wavelength 193n is introduced into the reaction vessel 10 through the window 12A.
m) L 2 is above substrate 18 in reaction vessel 10
It is designed to be irradiated in parallel with. Reference numeral 14A is a condenser lens for condensing the laser light L 2 from the side above the substrate 18 to increase the energy density of the laser light. In the second embodiment, the ArF excimer laser light L 2 incident parallel to the substrate 18 imparts energy for photodecomposing the source gas, and the KrF excimer laser light L 1 incident perpendicularly to the substrate 18 is a radical. Is activated, and the interface of the substrate 18 is excited, so that there is an effect that the film deposition rate onto the substrate 18 is increased. In FIG. 2, the laser light L 2 radiated from the side is described as ArF excimer laser light, but KrF excimer laser light may be used instead of ArF excimer laser light.

【0009】〔実験例1〕図1に示す装置を使って、反
応容器10内に3TorrのAl(CH33,7Tor
rのSn(CH34及び10TorrのN2Oからなる
原料ガス(全圧20Torr)を封入し、基板温度を2
50℃とし、KrFエキシマレーザ光L1のエネルギー
を100mJとし、レーザのパルス繰り返し数20pp
sで15分間レーザー照射を行なったところ、基板18
上にAlのドープされた回路パターン状のSnO2膜が
折出した。この膜は発明者によって撮影された図面代用
写真(図8)において示されている。そして折出した膜
の光透過率を調べたところ、図3に示されるように、S
n(CH34とN2Oの分圧比が1:5の場合には透過
率80%だが、分圧比1:20では略100%となっ
た。またN2Oの分圧の増加とともに光透過率が高くな
ることもわかった。
Experimental Example 1 Using the apparatus shown in FIG. 1, 3 Torr of Al (CH 3 ) 3 , 7 Tor was placed in the reaction vessel 10.
A raw material gas (total pressure 20 Torr) composed of Sn (CH 3 ) 4 of 10 r and N 2 O of 10 Torr is charged, and the substrate temperature is set to 2
At 50 ° C., the energy of the KrF excimer laser beam L 1 is 100 mJ, and the laser pulse repetition rate is 20 pp.
When laser irradiation was performed for 15 minutes, the substrate 18
A SnO 2 film in the form of a circuit pattern doped with Al was projected on the top. This membrane is shown in a drawing-substitute photograph (FIG. 8) taken by the inventor. Then, when the light transmittance of the film that was projected was examined, as shown in FIG.
When the partial pressure ratio of n (CH 3 ) 4 and N 2 O was 1: 5, the transmittance was 80%, but when the partial pressure ratio was 1:20, it was about 100%. It was also found that the light transmittance increased as the partial pressure of N 2 O increased.

【0010】次に膜の抵抗率を測定したところ、図4に
示されるような結果となった。即ち、図4に示されるよ
うに、Al(CH33とSn(CH34の分圧比が約
0.45のとき抵抗率は最小で、0.45Ωcmを示し、
分圧比を大小いずれの側に変化させても抵抗率は大きく
なった。ちなみに「薄膜ハンドブック(オーム社)日本
学術振興会編1983年」には、真空蒸着により形成し
たIn23膜の抵抗率は2.8Ωcm,CVD法により形
成したIn23膜の抵抗率は3Ωcm,CVD法により形
成したSnO2膜(Alを含有しない)の抵抗率は72
Ωcm,スプレー法により形成したSnO2膜(Alを含
有しない)の抵抗率は10.6Ωcmというデータが示さ
れているが、この実験例で得られた抵抗率0.45Ωcm
という低い値は、従来のIn23膜やSnO2膜に比べ
て、抵抗率が一桁以上も改善されていることがわかる。
Next, when the resistivity of the film was measured, the result as shown in FIG. 4 was obtained. That is, as shown in FIG. 4, when the partial pressure ratio of Al (CH 3 ) 3 and Sn (CH 3 ) 4 is about 0.45, the minimum resistivity is 0.45 Ωcm,
The resistivity increased when the voltage division ratio was changed to either large or small. By the way, in “Thin Film Handbook (Ohmsha), Japan Society for the Promotion of Science, 1983”, the resistivity of the In 2 O 3 film formed by vacuum deposition is 2.8 Ωcm, and the resistivity of the In 2 O 3 film formed by the CVD method. Is 3 Ωcm, and the resistivity of the SnO 2 film (not containing Al) formed by the CVD method is 72
The data shows that the resistivity of the SnO 2 film (not containing Al) formed by the spray method is 10.6 Ωcm, and the resistivity obtained in this experimental example is 0.45 Ωcm.
The low value indicates that the resistivity is improved by one digit or more as compared with the conventional In 2 O 3 film and SnO 2 film.

【0011】また図5のA線に見られるように、膜の抵
抗率はN2OとSn(CH34の分圧比が5:1の場合
では約6Ωcmで、分圧比が20:1の場合には15Ωcm
となった。そしてN2Oの分圧の低下とともに抵抗率も
下がることがわかる。また同図B線は基板温度を300
℃として同様の実験を行なった場合の抵抗率特性を示し
ており、分圧比が5:1の場合に5Ωcmという低い抵抗
率を示した。さらに図5から、N2OとSn(CH34
の分圧比と抵抗率はリニアに変化していることがわか
る。
As can be seen from the line A in FIG. 5, the resistivity of the film is about 6 Ωcm when the partial pressure ratio of N 2 O and Sn (CH 3 ) 4 is 5: 1 and the partial pressure ratio is 20: 1. In case of, 15Ωcm
Became. It can be seen that the resistivity decreases as the partial pressure of N 2 O decreases. The line B in the figure indicates a substrate temperature of 300.
The resistivity characteristic is shown when the same experiment is performed at a temperature of ℃, and the resistivity is as low as 5 Ωcm when the partial pressure ratio is 5: 1. Furthermore, from FIG. 5, N 2 O and Sn (CH 3 ) 4
It can be seen that the partial pressure ratio and the resistivity of are changing linearly.

【0012】図6は膜の組成比の分在依存性を示す図
で、原料ガスの分圧比10:1を境にSnとO2の組成
比が変化している。これはN2Oの分圧が低いと励起状
態の配素原子の供給が不十分であるため、膜中にO2
結合していないSnが存在するためと考えられる。また
基板温度が300℃の場合では、同温度が250℃の場
合に比べて、Sn/O2が1.0に近いことから、未結
合手が少なくなって耐候性良好な膜となっていることが
わかる。またN2OとSn(CH34の分圧比が1:5
の場合の回路パターン状の膜の線幅と膜厚は、図7に示
されるように、線幅50μm、膜厚1300Åであっ
た。
FIG. 6 is a diagram showing the distribution dependence of the composition ratio of the film. The composition ratio of Sn and O 2 changes at the boundary of the partial pressure ratio of the source gas of 10: 1. This is presumably because when the partial pressure of N 2 O is low, the supply of excited coordination atoms is insufficient, and Sn that is not bonded to O 2 exists in the film. When the substrate temperature is 300 ° C., Sn / O 2 is closer to 1.0 than when the substrate temperature is 250 ° C., so that the number of dangling bonds is reduced and the film has good weather resistance. I understand. The partial pressure ratio of N 2 O and Sn (CH 3 ) 4 is 1: 5.
In the case of, the line width and film thickness of the circuit pattern film were, as shown in FIG. 7, a line width of 50 μm and a film thickness of 1300Å.

【0013】〔実験例2〕図2に示す装置を使って、実
験例1と同様の条件下で、基板18の鉛直方向からKr
Fエキシマレーザ光L1を照射し、側方からはArFエ
キシマレーザ光L2を照射したところ、基板18に折出
するAlのドープされたSnO2膜の折出速度が実験例
1の場合の5倍となった。即ち透明導電膜の製造時間を
短縮できることが確認された。
[Experimental Example 2] Using the apparatus shown in FIG. 2, under the same conditions as in Experimental Example 1, Kr was measured from the vertical direction of the substrate 18.
When the F excimer laser light L 1 was irradiated and the ArF excimer laser light L 2 was irradiated from the side, the Al-doped SnO 2 film protruding on the substrate 18 had a protruding speed in the case of Experimental Example 1. It became five times. That is, it was confirmed that the manufacturing time of the transparent conductive film can be shortened.

【0014】[0014]

【発明の効果】以上の説明から明かなように、本発明に
よれば、安価な金属化合物から製造できるSnO2中に
わずかな量のAlを混入させたことで、高価なIn23
やITOよりも低抵抗率を示すので、低抵抗率の透明電
極を安価に提供することが可能となる。
As is apparent from the above description, according to the present invention, a small amount of Al is mixed into SnO 2 which can be produced from an inexpensive metal compound, so that expensive In 2 O 3 can be obtained.
Since it has a lower resistivity than ITO or ITO, it is possible to provide a transparent electrode having a low resistivity at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための装置の第1の実施
例の概要図
FIG. 1 is a schematic diagram of a first embodiment of an apparatus for carrying out the method of the present invention.

【図2】本発明方法を実施するための装置の第2の実施
例の概要図
FIG. 2 is a schematic diagram of a second embodiment of the apparatus for carrying out the method of the invention.

【図3】透明導電膜の光透過率を示す図FIG. 3 is a diagram showing the light transmittance of a transparent conductive film.

【図4】Al(CH33とSn(CH34の分圧比と膜
の抵抗率との関係を示す図
FIG. 4 is a diagram showing the relationship between the partial pressure ratio of Al (CH 3 ) 3 and Sn (CH 3 ) 4 and the film resistivity.

【図5】N2OとSn(CH34の分圧比と膜の抵抗率
との関係を示す図
FIG. 5 is a graph showing the relationship between the partial pressure ratio of N 2 O and Sn (CH 3 ) 4 and the film resistivity.

【図6】N2OとSn(CH34の分圧比とSn/O2
組成比との関係を示す図
FIG. 6 is a diagram showing the relationship between the partial pressure ratio of N 2 O and Sn (CH 3 ) 4 and the composition ratio of Sn / O 2 .

【図7】折出した導電膜の線幅および膜厚を示す図FIG. 7 is a diagram showing a line width and a film thickness of a protruding conductive film.

【図8】実験例1によって形成された膜を拡大して示す
図面代用写真
FIG. 8 is a drawing-substitute photograph showing an enlarged view of a film formed in Experimental Example 1.

【符号の説明】[Explanation of symbols]

10 反応容器 11 ヒータ 12,12A レーザ光入射用の窓 13 原料ガス流入口 16 マスク 18 基板 L1 基板に垂直に照射されるKrFエキシマレーザー
光 L2 基板に平行に照射されるArFエキシマレーザー
10 ArF excimer laser light parallel to irradiate the reaction vessel 11 KrF excimer laser beam L 2 substrate is irradiated perpendicularly to the window 13 feed gas inlet 16 mask 18 the substrate L 1 substrate heater 12,12A laser beam for incidence

【手続補正書】[Procedure amendment]

【提出日】平成4年10月29日[Submission date] October 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】基板上に形成された微細なパターンを拡大して
示す図面代用写真
FIG. 8 is a photograph as a substitute for a drawing showing an enlarged fine pattern formed on a substrate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SnO2中にAlがドープされたことを
特徴とする透明導電膜。
1. A transparent conductive film, characterized in that SnO 2 is doped with Al.
【請求項2】 透明導電膜の原料であるAlの化合物と
Snの化合物の分圧比が0.1〜0.7、好ましくは
0.45付近となるように調整された原料ガスにレーザ
光を照射して、SnO2中にAlがドープされた透明導
電膜を基板上に折出させることを特徴とする透明導電膜
の製造方法。
2. A source gas adjusted to have a partial pressure ratio of an Al compound and a Sn compound, which are raw materials of a transparent conductive film, of 0.1 to 0.7, preferably about 0.45, is irradiated with laser light. A method for producing a transparent conductive film, which comprises irradiating and causing a transparent conductive film in which SnO 2 is doped with Al to be projected onto a substrate.
【請求項3】 前記透明導電膜の原料としてSn(CH
34又はSn(C254,Al(CH33又はAl
(C253およびN2O又はO2の混合ガスを使用し、
前記基板温度を200〜400℃として、波長域150
〜400nmのレーザ光を前記混合ガスに照射すること
を特徴とする請求項2記載の透明導電膜の製造方法。
3. The material of the transparent conductive film is Sn (CH).
3 ) 4 or Sn (C 2 H 5 ) 4 , Al (CH 3 ) 3 or Al
Using a mixed gas of (C 2 H 5 ) 3 and N 2 O or O 2 ,
The substrate temperature is 200 to 400 ° C., and the wavelength range is 150.
The method for producing a transparent conductive film according to claim 2, wherein the mixed gas is irradiated with a laser beam of ˜400 nm.
JP25917591A 1991-10-07 1991-10-07 Transparent conductive film and its manufacture Pending JPH05347108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25917591A JPH05347108A (en) 1991-10-07 1991-10-07 Transparent conductive film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25917591A JPH05347108A (en) 1991-10-07 1991-10-07 Transparent conductive film and its manufacture

Publications (1)

Publication Number Publication Date
JPH05347108A true JPH05347108A (en) 1993-12-27

Family

ID=17330405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25917591A Pending JPH05347108A (en) 1991-10-07 1991-10-07 Transparent conductive film and its manufacture

Country Status (1)

Country Link
JP (1) JPH05347108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084218A (en) * 2008-10-02 2010-04-15 Asahi Glass Co Ltd Method for forming photoexcitable material
CN102212796A (en) * 2011-05-18 2011-10-12 浙江大学 Non-magnetic ions Zn<2+>, Mg<2+> and Al<3+> doped SnO2-based magnetic semiconductor film material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084218A (en) * 2008-10-02 2010-04-15 Asahi Glass Co Ltd Method for forming photoexcitable material
CN102212796A (en) * 2011-05-18 2011-10-12 浙江大学 Non-magnetic ions Zn<2+>, Mg<2+> and Al<3+> doped SnO2-based magnetic semiconductor film material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7745297B2 (en) Method of substrate with transparent electrodes and devices incorporating it
JPH08139019A (en) Manufacture of semiconductor device
KR20000075689A (en) Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
JPH1048669A (en) Thin-film transistor, its production and display device
TWI226475B (en) Laser irradiation method
JPH02155225A (en) Method of forming amorphous semiconductor thin-film
JPH05347108A (en) Transparent conductive film and its manufacture
JP3521737B2 (en) Method for manufacturing thin-film semiconductor device, method for manufacturing active matrix substrate, and coating apparatus for tetramethoxysilane
JP2001335918A (en) Method for depositing ito transparent electric conductive film
JPS59208065A (en) Depositing method of metal by laser
JPS6329924A (en) Manufacture of semiconductor device
JP3083316B2 (en) Manufacturing method of liquid crystal display element
JPH01244609A (en) Production of semiconductor thin film
JPS61141420A (en) Production of liquid crystal display element
JPS6219005B2 (en)
TW557495B (en) Method and device for producing polycrystalline indium tin oxide (ITO) film in a low temperature process
JPH02181473A (en) Amorphous solar cell
JPS58123772A (en) Semiconductor element
JPS5632774A (en) Thin film type photovoltaic element and manufacture thereof
JPS5499561A (en) Manufacture of binary chemical semiconductor thin film
JPS6053015A (en) Thin film formation by laser irradiation
KR880002131B1 (en) Photo responsive device processing method
JPS6298677A (en) Manufacture of substrate for solar cell
JPH06202126A (en) Transparent electrode substrate and its production
JPH07161234A (en) Transparent conductive film and its forming method