JPH05346313A - Cross-sectional-shape measuring method - Google Patents

Cross-sectional-shape measuring method

Info

Publication number
JPH05346313A
JPH05346313A JP17933392A JP17933392A JPH05346313A JP H05346313 A JPH05346313 A JP H05346313A JP 17933392 A JP17933392 A JP 17933392A JP 17933392 A JP17933392 A JP 17933392A JP H05346313 A JPH05346313 A JP H05346313A
Authority
JP
Japan
Prior art keywords
cross
sectional shape
long material
reflected light
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17933392A
Other languages
Japanese (ja)
Inventor
Tadahiro Nagase
忠広 長瀬
Yuji Kimura
裕司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17933392A priority Critical patent/JPH05346313A/en
Publication of JPH05346313A publication Critical patent/JPH05346313A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the cross-sectional shape of the specified part of a long material, which is moved in the longitudinal direction, accurately. CONSTITUTION:Slit light beams are projected from slit-light projecting devices 6A, 6B and 6C on the outer surfaces of the specified parts of a long material from the surrounding side of the long material 1. The reflected light beams are detected as profile parts A, B and C of the long material 1. The profile parts A, B and C are synthesized, and the cross-sectional shape at the part is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば圧延された棒状鋼
材の断面形状を測定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the sectional shape of a rolled steel rod, for example.

【0002】[0002]

【従来の技術】従来は図4に示すように長手方向に移動
する棒状鋼材(1) の断面形状を測定するには、該棒状鋼
材(1) の周囲にランプ(2) 、投光レンズ(3) 、受光レン
ズ(4)、およびCCDセンサー(5) からなる断面形状測
定装置を配置し、該装置を矢印方向に回転しつゝ投光レ
ンズ(3) の焦点に配したランプ(2) から該投光レンズ
(3) を介して平行光束として受光レンズ(4) 側に投光
し、該棒状鋼材(1) を該受光レンズ(4) の焦点より後方
に配置したCCDセンサー(5) に投影して二点間距離l
を測定し、これを全周に対して合成することによって該
棒状鋼材(1) の断面形状を測定する方法が採られてい
た。
2. Description of the Related Art Conventionally, as shown in FIG. 4, in order to measure the cross-sectional shape of a rod-shaped steel material (1) that moves in the longitudinal direction, a lamp (2) and a projection lens ( 3), a light receiving lens (4), and a CCD sensor (5) are placed in the cross-section shape measuring device, and the device is rotated in the direction of the arrow, and the lamp (2) is placed at the focal point of the light projecting lens (3). From the floodlight lens
It is projected onto the light receiving lens (4) side as a parallel light flux via (3), and the rod-shaped steel material (1) is projected onto a CCD sensor (5) arranged behind the focal point of the light receiving lens (4) to project the light. Point distance l
Was measured, and the cross-sectional shape of the rod-shaped steel material (1) was measured by synthesizing the measured values over the entire circumference.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記装置
が棒状鋼材(1) の周囲を一回転する間にも棒状鋼材(1)
は長手方向に移動しているから、棒状鋼材(1) の特定個
所の断面形状を正確に測定することは不可能であった。
However, even while the above device makes one revolution around the rod-shaped steel (1), the rod-shaped steel (1)
Since it is moving in the longitudinal direction, it was impossible to accurately measure the cross-sectional shape of a specific portion of the rod-shaped steel material (1).

【0004】[0004]

【課題を解決するための手段】本発明は上記従来の課題
を解決するための手段として、長手方向に移動する長尺
材料(1) の断面形状を測定するに際し、所定位置におい
て該長尺材料(1) の周囲に所定個のスリット光投射装置
(6A,6B,6C)と所定個の反射光検出装置(7A,7B,7C)とを配
置し、該スリット光投射装置(6A,6B,6C)から夫々該長尺
材料(1) に向けて投射された光の反射光を該反射光検出
装置(7A,7B,7C)よって夫々該長尺材料(1) の輪郭部分
(A,B,C) として検出し、夫々の反射光検出装置(7A,7B,7
C)よって検出された輪郭部分(A,B,C) を合成することに
よって該長尺材料(1) の断面形状を測定する断面形状測
定方法を提供し、更に基準軸と長尺材料(1) の軸とのず
れを検出して該断面形状の補正を行なう断面形状測定方
法を提供するものである。
Means for Solving the Problems The present invention is, as a means for solving the above-mentioned conventional problems, at the time of measuring the cross-sectional shape of a long material (1) which moves in the longitudinal direction, the long material at a predetermined position. A specified number of slit light projection devices around (1)
(6A, 6B, 6C) and a predetermined number of reflected light detection devices (7A, 7B, 7C) are arranged, and the slit light projection device (6A, 6B, 6C) is directed toward the long material (1), respectively. The reflected light of the projected light is reflected by the reflected light detecting device (7A, 7B, 7C), and the contour portion of the long material (1) is
(A, B, C), and each reflected light detector (7A, 7B, 7)
(C) provides a cross-sectional shape measuring method for measuring the cross-sectional shape of the long material (1) by synthesizing the contour portion (A, B, C) detected by The present invention provides a cross-sectional shape measuring method for detecting a deviation from the axis of (1) and correcting the cross-sectional shape.

【0005】[0005]

【作用】長手方向に移動する長尺材料(1) の所定個所に
対してスリット光投射装置(6A,6B,6C)の夫々からスリッ
ト光を投射し、その反射光を反射光検出装置(7A,7B,7C)
によって夫々該長尺材料(1) の輪郭部分(A,B,C) として
検出する。該検出された輪郭部分(A,B,C) を合成すれば
長尺材料(1) の断面形状を測定することが出来る。
[Operation] Slit light is projected from each of the slit light projection devices (6A, 6B, 6C) onto a predetermined portion of the long material (1) moving in the longitudinal direction, and the reflected light is reflected by the reflected light detection device (7A , 7B, 7C)
Are detected as contour portions (A, B, C) of the long material (1), respectively. By synthesizing the detected contour portions (A, B, C), the cross-sectional shape of the long material (1) can be measured.

【0006】しかし該長尺材料(1) の軸と基準軸とがず
れている場合は測定された断面形状に誤差を生ずるか
ら、該ずれを検出して該断面形状を補正する。
However, when the axis of the long material (1) is deviated from the reference axis, an error occurs in the measured cross-sectional shape. Therefore, the deviation is detected and the cross-sectional shape is corrected.

【0007】[0007]

【実施例】本発明を図1〜図3に示す一実施例によって
説明すれば、(1) は連続鋳造によって製造され、所定の
断面円形形状に圧延された棒状の鋼材であり、図1矢印
方向に移動している。所定位置において該長尺材料の周
囲には三個のスリット光投射装置(6A,6B,6C)と、三個の
反射光検出装置(7A,7B,7C)とが配置されている。該スリ
ット光投射装置(6A,6B,6C)は夫々半導体レーザー発信素
子(61)、スリット光生成レンズ(62,63) およびスリット
(64)とからなり、反射光検出装置(7A,7B,7C)は夫々レン
ズ(71)とCCDセンサー(72)とからなる。そして該スリ
ット光投射装置(6A,6B,6C)および反射光検出装置(7A,7
B,7C)は基準軸としての鋼材(1) 移動方向に平行なy軸
と直交するx軸を含む同一面内に配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to one embodiment shown in FIGS. 1 to 3. (1) is a bar-shaped steel material manufactured by continuous casting and rolled into a predetermined circular cross section. Is moving in the direction. Three slit light projection devices (6A, 6B, 6C) and three reflected light detection devices (7A, 7B, 7C) are arranged around the elongated material at predetermined positions. The slit light projection device (6A, 6B, 6C) includes a semiconductor laser oscillator (61), a slit light generation lens (62, 63) and a slit, respectively.
(64), and the reflected light detection devices (7A, 7B, 7C) each include a lens (71) and a CCD sensor (72). And the slit light projection device (6A, 6B, 6C) and reflected light detection device (7A, 7A
B, 7C) are arranged in the same plane including the y-axis parallel to the moving direction of the steel material (1) as the reference axis and the x-axis orthogonal to the y-axis.

【0008】更にずれ検出装置としてx方向において鋼
材(1) の上列にはランプ(2) 、投光レンズ(3) 、下側に
は受光レンズ(4) 、CCDセンサー(5) が配置され、y
方向において鋼材(1) の前方にはランプ(8) 、投光レン
ズ(9) 、後方には受光レンズ(10)、CCDセンサー(11)
が配置されている。
Further, as a deviation detecting device, a lamp (2), a light projecting lens (3), a light receiving lens (4) and a CCD sensor (5) are arranged on the upper row of the steel material (1) in the x direction. , Y
Lamp (8), light projecting lens (9) in front of steel material (1), light receiving lens (10), CCD sensor (11) in the rear direction
Are arranged.

【0009】上記装置において、スリット光投射装置(6
A,6B,6C)から夫々スリット光を鋼材(1) に投射すると、
該スリット光は鋼材(1) 周面で反射して反射光検出装置
(7A,7B,7C)によって夫々図2に示す弧状の輪郭部分A,
B,Cとして検出される。
In the above device, the slit light projection device (6
When slit light is projected onto the steel material (1) from (A, 6B, 6C) respectively,
The slit light is reflected on the peripheral surface of the steel material (1) and a reflected light detection device
By (7A, 7B, 7C), respectively, the arc-shaped contour portion A shown in FIG. 2,
It is detected as B and C.

【0010】同時にランプ(2,8) の光を投光レンズ(3,
9) によって平行光束として受光レンズ(4,10)側に投射
し、鋼材(1) をx方向およびy方向から夫々CCDセン
サー(5,11)に投影して鋼材(1) の軸Aと基準軸としての
x軸およびy軸とのずれを測定する。
At the same time, the light from the lamp (2, 8) is projected onto the lens (3,
9) It is projected as a parallel light flux on the light receiving lens (4, 10) side, and the steel material (1) is projected on the CCD sensor (5, 11) from the x direction and the y direction, respectively, and the axis A of the steel material (1) is used as a reference. The deviation from the x-axis and the y-axis as axes is measured.

【0011】そして例えば図3に示すように鋼材(1) の
軸Aがx軸あるいはy軸と角度θだけずれていたとすれ
ば、測定された輪郭P'(点線)における二点間距離D’
と実際の輪郭P(実線)における二点間距離Dとの関係
はD=D'/ cosθとなる。したがってx方向、y方向か
らの鋼材(1) の軸Aのずれを測定し、上式によって測定
された輪郭部分A,B,Cを補正し図2に示す実際の輪
郭Pを信号処理によって合成する。
If, for example, the axis A of the steel material (1) is deviated from the x axis or the y axis by an angle θ as shown in FIG. 3, the distance D'between the two points on the measured contour P '(dotted line).
And the actual distance P between the two points on the contour P (solid line) is D = D ′ / cos θ. Therefore, the deviation of the axis A of the steel material (1) from the x direction and the y direction is measured, the contour portions A, B and C measured by the above equation are corrected, and the actual contour P shown in FIG. 2 is synthesized by signal processing. To do.

【0012】上記実施例以外、スリット光投射装置と反
射光検出装置は二個あるいは三個以上配置されてもよい
が、長尺材料の全周にわたって輪郭が検出されなければ
ならない。またx軸および/またはy軸と、長尺材料の
軸Aとのずれが小さい場合はx方向および/またはy方
向のずれ検出装置は必要ではない。また基準軸としては
必ずしも長尺材料の移動方向に平行にy軸をとる必要は
ない。
Other than the above embodiment, two or three or more slit light projection devices and reflected light detection devices may be arranged, but the contour must be detected over the entire circumference of the long material. Further, when the deviation between the x-axis and / or y-axis and the axis A of the long material is small, the deviation detecting device in the x-direction and / or the y-direction is not necessary. The reference axis does not necessarily have to be the y-axis parallel to the moving direction of the long material.

【0013】[0013]

【発明の効果】したがって、本発明においては、長尺材
料の所定個所の断面形状が正確に測定出来る。
Therefore, in the present invention, the cross-sectional shape of a predetermined portion of a long material can be accurately measured.

【図面の簡単な説明】 図1〜図3は本発明の一実施例に関するものである。BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 relate to an embodiment of the present invention.

【図1】装置説明図FIG. 1 is an explanatory diagram of the apparatus

【図2】信号処理説明図FIG. 2 is an explanatory diagram of signal processing.

【図3】ずれ補正説明図FIG. 3 is an explanatory diagram of deviation correction

【図4】従来の説明図FIG. 4 is a conventional explanatory diagram.

【符号の説明】[Explanation of symbols]

1 鋼材(長尺材料) 6A,6B,6C スリット光投射装置 7A,7B,7C 反射光検出装置 1 Steel (long material) 6A, 6B, 6C Slit light projection device 7A, 7B, 7C Reflected light detection device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】長手方向に移動する長尺材料の断面形状を
測定するに際し、所定位置において該長尺材料の周囲に
所定個のスリット光投射装置と所定個の反射光検出装置
とを配置し、該スリット光投射装置から夫々該長尺材料
に向けて投射された光の反射光を該反射光検出装置よっ
て夫々該長尺材料の輪郭部分として検出し、夫々の反射
光検出装置よって検出された輪郭部分を合成することに
よって該長尺材料の断面形状を測定することを特徴とす
る断面形状測定方法
1. When measuring the cross-sectional shape of a long material moving in the longitudinal direction, a predetermined number of slit light projection devices and a predetermined number of reflected light detection devices are arranged around the long material at predetermined positions. , The reflected light of the light respectively projected from the slit light projection device toward the elongated material is detected as the contour portion of the elongated material by the reflected light detection device, and is detected by each reflected light detection device. A cross-sectional shape measuring method, characterized in that the cross-sectional shape of the long material is measured by synthesizing the contoured portions.
【請求項2】基準軸と長尺材料の軸とのずれを検出して
該断面形状の補正を行なう請求項1に記載の断面形状測
定方法
2. The cross-sectional shape measuring method according to claim 1, wherein a deviation between the reference axis and the axis of the long material is detected to correct the cross-sectional shape.
JP17933392A 1992-06-12 1992-06-12 Cross-sectional-shape measuring method Withdrawn JPH05346313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17933392A JPH05346313A (en) 1992-06-12 1992-06-12 Cross-sectional-shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17933392A JPH05346313A (en) 1992-06-12 1992-06-12 Cross-sectional-shape measuring method

Publications (1)

Publication Number Publication Date
JPH05346313A true JPH05346313A (en) 1993-12-27

Family

ID=16064009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17933392A Withdrawn JPH05346313A (en) 1992-06-12 1992-06-12 Cross-sectional-shape measuring method

Country Status (1)

Country Link
JP (1) JPH05346313A (en)

Similar Documents

Publication Publication Date Title
JP3197529B2 (en) Non-contact measurement method of wheel alignment characteristics and its measurement device
JPS60185108A (en) Method and device for measuring body in noncontacting manner
JP2008107194A (en) Wheel alignment measuring device for vehicle
JPH05346313A (en) Cross-sectional-shape measuring method
JPS6341402B2 (en)
KR0131526B1 (en) Optical measuring device and its measuring method
JPH1194700A (en) Measuring device and method for lens
JPH09229638A (en) Method and device for measuring thickness and tilt angle of material having rectangular section
JPS62272107A (en) Inspecting method for packaging component
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JPH0735515A (en) Device for measuring diameter of object
JP2574720Y2 (en) Position adjustment device for scratch inspection optical device
JPH01242905A (en) Method for measuring actual size of visual device
JPS5855804A (en) Body detecting device
JP2006189390A (en) Optical displacement measuring method and device
JPH0894318A (en) Optical position measuring method
JP3068694B2 (en) Measuring method of roof surface shape
JP2621179B2 (en) Alignment method
JP2643270B2 (en) Interval measuring device
JP2950226B2 (en) Height measuring device
JPH0452504A (en) Measuring apparatus of length of linear body
JP4230758B2 (en) Non-contact sectional shape measuring method and apparatus
US6320659B1 (en) Clearance measuring device and method for exposure
JPH10122837A (en) Correcting method and equipment of online measuring equipment of die steel, and rest for mounting correction jig
JP2857515B2 (en) Optical position measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831