JPH05345620A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPH05345620A
JPH05345620A JP4180507A JP18050792A JPH05345620A JP H05345620 A JPH05345620 A JP H05345620A JP 4180507 A JP4180507 A JP 4180507A JP 18050792 A JP18050792 A JP 18050792A JP H05345620 A JPH05345620 A JP H05345620A
Authority
JP
Japan
Prior art keywords
mold
quartz glass
time
parts
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4180507A
Other languages
Japanese (ja)
Other versions
JP3213384B2 (en
Inventor
Koichi Shiraishi
耕一 白石
Noriaki Ito
紀明 伊東
Kuniko Andou
久爾子 安藤
Kenji Takahashi
研司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP18050792A priority Critical patent/JP3213384B2/en
Publication of JPH05345620A publication Critical patent/JPH05345620A/en
Application granted granted Critical
Publication of JP3213384B2 publication Critical patent/JP3213384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PURPOSE:To produce a quartz glass material, e.g. a large-sized tool material for a semiconductor process in high purity for a short time. CONSTITUTION:Crystalline or amorphous silica having >=1 to <=500mum average grain diameter is mixed with 'a mixture composed of a silicic acid ester, water regulated to pH<=3 and a water-soluble organic solvent having >=120 deg.C boiling point' in 300-100 pts.wt. total amount thereof and the resultant mixture is gelatinized in a mold, released from the mold and then thermally sintered at 1400-1850 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体プロセス
などで使用される石英ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silica glass used in, for example, a semiconductor process.

【0002】[0002]

【従来の技術】例えば半導体プロセスなどで使用される
石英ガラス製道具材の製造は、一般に次のように行われ
ている。
2. Description of the Related Art Generally, a quartz glass tool material used in a semiconductor process or the like is manufactured as follows.

【0003】(1)管や板など単純な形状の素材を作
る。
(1) A material having a simple shape such as a pipe or a plate is made.

【0004】(2)素材を溶接したり、機械加工し、目
的形状を得る。
(2) A material is welded or machined to obtain a target shape.

【0005】ただし、比較的単純な形状の道具材では、
直接成形する方法も実用化されている。例えば、単結晶
引上げルツボは、原料粉末をアーク溶融して直接ルツボ
に加工される。
However, in a tool material having a relatively simple shape,
A direct molding method has also been put into practical use. For example, a single crystal pulling crucible is directly processed into a crucible by arc melting raw material powder.

【0006】近年、直接成形により石英ガラスを製造す
る方法として、ゾルゲル法が注目され、開発が行われて
いる。ゾルゲル法では、乾燥工程、焼成工程が非常に難
しい。これらの工程で、時間がかかり、歩留が悪いとい
う欠点がある。このような欠点を解消するために、さま
ざまな改良が提案されている。
In recent years, the sol-gel method has attracted attention and has been developed as a method for producing quartz glass by direct molding. In the sol-gel method, the drying process and the firing process are very difficult. These steps have the disadvantages of being time-consuming and having a poor yield. Various improvements have been proposed to eliminate such drawbacks.

【0007】[0007]

【発明が解決しようとする課題】上述した一般的な製造
方法では、加工に時間がかかり、熟練を必要とし、ま
た、材料的に無駄が多かった。
In the general manufacturing method described above, it takes a long time for processing, requires skill, and is wasteful in terms of materials.

【0008】また、上述した直接成形方法での製造で
は、多量の不純物の混入が起こりやすいという問題があ
る。
Further, in the production by the above-mentioned direct molding method, there is a problem that a large amount of impurities are likely to be mixed.

【0009】さらに上述したゾルゲル法では、単純形状
のものが中心であり、大型で複雑な形状の道具材に適用
することは困難である。
Further, in the sol-gel method described above, a simple shape is mainly used, and it is difficult to apply it to a large-sized and complicated-shaped tool material.

【0010】本発明は、近年ますます高純度化、複雑化
する例えば大型半導体プロセス用道具材のようなものを
短時間に高材料歩留で高純度に製造できる石英ガラスの
製造方法を提供することを目的とする。
The present invention provides a method for producing quartz glass, which is capable of producing highly purified and complicated materials such as large-scale semiconductor process tool materials in a short time with a high material yield and a high purity. The purpose is to

【0011】[0011]

【課題を解決するための手段】本発明は、平均粒径1μ
m以上500μm以下の結晶質もしくは非晶質シリカ
に、珪酸エステル、pH3以下に調整した水、および水
に可溶な沸点120℃以上の有機溶媒からなる第1混合
物を混合して第2混合物を作りその第2混合物を型中で
ゲル化させ、離型した後、加熱することを特徴とする石
英ガラスの製造方法を要旨としている。
The present invention has an average particle size of 1 μm.
m or more and 500 μm or less of crystalline or amorphous silica is mixed with a first mixture consisting of a silicate ester, water adjusted to pH 3 or less, and an organic solvent soluble in water and having a boiling point of 120 ° C. or more to form a second mixture. The gist is a method for producing quartz glass, which is characterized in that the second mixture is gelled in a mold, released from the mold, and then heated.

【0012】[実施例]本発明の石英ガラス製造方法に
おいては、まず平均粒径1μm以上500μm以下、好
ましくは10μm以上100μm以下の結晶質もしくは
非晶質シリカを出発原料として用いる。
EXAMPLES In the method for producing quartz glass of the present invention, crystalline or amorphous silica having an average particle size of 1 μm or more and 500 μm or less, preferably 10 μm or more and 100 μm or less is used as a starting material.

【0013】平均粒径が1μmより小さいと、成形体の
細孔径が小さくなるため、仮焼中に泡が抜けにくくな
り、不適当である。また、平均粒径500μmより大き
いと、平均細孔径が大きくなり、スラリーを型に流し込
むことが困難になる。
If the average particle size is less than 1 μm, the pore size of the molded product will be small, and bubbles will be less likely to escape during calcination, which is unsuitable. On the other hand, if the average particle size is larger than 500 μm, the average pore size becomes large and it becomes difficult to pour the slurry into the mold.

【0014】結合剤として、まず珪酸エステル、pH3
以下に調整した水、および水に可溶な沸点120℃以上
の有機溶媒からなる第1混合物を作りシリカ粉末100
重量部にその第1混合物を総計で30〜100重量部混
合して第2混合物を作り、スラリーとする。この第2混
合物は混合分散媒あるいは分散媒ともいう。
As a binder, first, a silicate ester, pH 3
A first mixture composed of water and an organic solvent having a boiling point of 120 ° C. or higher, which is soluble in water, is prepared to prepare a silica powder 100.
A total of 30 to 100 parts by weight of the first mixture is mixed with parts by weight to form a second mixture, which is made into a slurry. This second mixture is also called a mixed dispersion medium or dispersion medium.

【0015】また、珪酸エステルと水は直接混合しない
(加水分解後には均一溶液となる)ので、これらを混合
するための溶媒、例えば、アルコールを適宜加えても良
い。
Further, since the silicate ester and water are not directly mixed (becomes a homogeneous solution after hydrolysis), a solvent for mixing them, for example, alcohol may be added appropriately.

【0016】上述したシリカ粉末100重量部に添加す
る第2混合物(混合分散媒)は、30〜100重量部が
好適である。第2混合物(混合分散媒)が30重量部よ
り少ないと、混合が困難になり、100重量部より多い
と、成形体の密度が低くなりがちである。
The amount of the second mixture (mixing dispersion medium) added to 100 parts by weight of the above-mentioned silica powder is preferably 30 to 100 parts by weight. When the amount of the second mixture (mixing dispersion medium) is less than 30 parts by weight, mixing becomes difficult, and when it exceeds 100 parts by weight, the density of the molded body tends to be low.

【0017】珪酸エステルは、特に限定されないが、例
えば珪酸エチル、珪酸メチルといった簡単に入手できる
ものが良い。珪酸エステルの添加量は、シリカ粒子の粒
径によって異なり、細かい粒子を使用するときは、添加
量を多くした方が良い。
The silicate ester is not particularly limited, but easily available ones such as ethyl silicate and methyl silicate are preferable. The addition amount of the silicate ester depends on the particle size of the silica particles, and when using fine particles, it is better to increase the addition amount.

【0018】水は、珪酸エステルを加水分解するために
酸によってpHを3以下にして添加する。このときの酸
も、特に限定されないが、例えば塩酸、硝酸、酢酸のよ
うに加熱中に揮発し、残留しにくい酸が好ましい。
Water is added to adjust the pH to 3 or less with an acid in order to hydrolyze the silicate ester. The acid at this time is also not particularly limited, but acids such as hydrochloric acid, nitric acid, and acetic acid that volatilize during heating and do not easily remain are preferable.

【0019】水の添加量は、珪酸エステルの加水分解当
量以上(加水分解当量の)30倍以下が好ましい。水が
珪酸エステルの加水分解当量より少ないと、加水分解が
十分に進まず、30倍より多いと、ゲル化が遅くなり、
また、ゲルの強さが落ちるので取扱いが難しくなる。
The amount of water added is preferably not less than 30 times the hydrolysis equivalent of the silicate ester (not more than the hydrolysis equivalent). If the amount of water is less than the hydrolysis equivalent of silicate ester, the hydrolysis does not proceed sufficiently, and if it is more than 30 times, gelation becomes slow,
In addition, the strength of the gel decreases, making it difficult to handle.

【0020】有機溶媒は、水に可溶なもので水や珪酸エ
チルの加水分解生成物であるアルコールが蒸発した後も
成形体中に存在するものとすることで、昇温中の液体蒸
発にともなうクラックを防止するという役割を持つ。通
常入手できる珪酸エステルから生成するアルコールの沸
点は水の沸点より低いので、使用する有機溶媒の沸点は
100℃(1atm)より高ければ良いが、水の沸点に
おいても蒸気圧が低いものが好ましく、沸点120℃以
上の有機溶媒が好適である。2種類以上の有機溶媒を用
いても良い。
The organic solvent is soluble in water and is present in the molded body even after evaporation of water or the hydrolysis product of ethyl silicate, alcohol, so that liquid evaporation during temperature rise can be prevented. It has a role of preventing accompanying cracks. Since the boiling point of the alcohol produced from commonly available silicate ester is lower than the boiling point of water, the boiling point of the organic solvent used may be higher than 100 ° C. (1 atm), but the boiling point of water is preferably low. An organic solvent having a boiling point of 120 ° C. or higher is suitable. You may use 2 or more types of organic solvents.

【0021】加水分解時に全てを混合した例を説明した
が、加水分解された珪酸エステルがゲル化する前に全て
を混合すれば良く、その混合手順は、特に限定されな
い。
Although an example in which everything is mixed at the time of hydrolysis has been described, it is sufficient to mix everything before the hydrolyzed silicate ester gels, and the mixing procedure is not particularly limited.

【0022】また、加水分解後のスラリー中のpHを
3.5〜5.5に調整することによって、ゲル化時間を
早めることができる。スラリーのpHが3.5より小さ
いと、ゲル化時間が遅く実用的でない。スラリーのpH
が高いとき、ゲル化時間は早くなる。配合組成によって
異なるが、pH=3.5(20℃)では、30時間
(h)程度であり、実用的な範囲となる。一方、pHが
5.5より高くなると、ゲル化時間が非常に短くなり、
作業が困難になる。
Further, the gelation time can be shortened by adjusting the pH of the slurry after hydrolysis to 3.5 to 5.5. When the pH of the slurry is less than 3.5, the gelation time is long and not practical. PH of slurry
The higher the, the faster the gel time. At pH = 3.5 (20 ° C.), it is about 30 hours (h), which is a practical range, although it depends on the composition. On the other hand, when the pH is higher than 5.5, the gelation time becomes very short,
Work becomes difficult.

【0023】pHの調整に用いる塩基水溶液は、加熱中
に揮発し、残留しにくい塩基が好ましく、アンモニアな
どの有機性塩基が好適であり、NaOH,KOHなどは
不適である。
The base aqueous solution used for adjusting the pH is preferably a base that volatilizes during heating and does not easily remain, an organic base such as ammonia is suitable, and NaOH, KOH and the like are not suitable.

【0024】こうして調整されたスラリーは、型中に流
し込まれ、密閉された状態で静置され、型中でゲル化す
る。スラリーのpHによってゲル化時間は異なる。
The thus-prepared slurry is poured into a mold and allowed to stand in a sealed state to gel in the mold. The gelation time depends on the pH of the slurry.

【0025】ゲルは、時間と共に収縮するので、ゲル化
後、離型することが好ましい。少なくとも収縮方向にあ
る型部品のみでも離型することが好ましい。
Since the gel shrinks with time, it is preferable to release it after gelling. It is preferable to release only the mold parts that are at least in the contraction direction.

【0026】また、ゲル化直後のゲルは強度が弱いの
で、強度を発現させるために、密閉状態で少なくとも3
時間上静置もしくは保持することが好ましい。ただし、
離型の際などに短時間に解放雰囲気にさらされる程度の
ことは問題ないが、この時間は極力短い方が良い。さら
に、このときの温度を高めることによって、強度発現時
間を早めることができる。このとき、成形体からの揮発
を防ぐことが好適であり、その温度での蒸気圧に耐えら
れるような耐圧容器中に置くことが好ましい。
Further, the strength of the gel immediately after gelation is weak, and therefore, in order to exert the strength, at least 3 gels are required in the closed state.
It is preferable to stand or hold for a time. However,
There is no problem in exposing to the release atmosphere in a short time at the time of releasing the mold, but this time is preferably as short as possible. Further, by increasing the temperature at this time, the strength development time can be shortened. At this time, it is preferable to prevent volatilization from the molded body, and it is preferable to place it in a pressure resistant container that can withstand the vapor pressure at that temperature.

【0027】成形体の状態で、石英ガラス製の切削工具
によって穴加工、径合わせなどの加工が簡単にできる。
さらに好ましくは、2つ以上の部品を組み合わせて1つ
の成形体とすることができる。
In the state of the molded body, it is possible to easily perform processing such as drilling and diameter matching by using a cutting tool made of quartz glass.
More preferably, two or more parts can be combined into one molded body.

【0028】このように複数部品を組み合わせて得られ
た成形体は、加熱焼結され、石英ガラス製品となる。こ
のとき、特に成形体の乾燥工程は必要ではなく、加熱工
程に回される。この点が、乾燥に長時間を要した通常の
ゾルゲル法とは大きく異なる点である。
The compact thus obtained by combining a plurality of parts is heat-sintered to form a quartz glass product. At this time, the drying step of the molded body is not particularly required, and the molding step is sent to the heating step. This is a significant difference from the usual sol-gel method, which requires a long drying time.

【0029】加熱温度はシリカ粉末の粒径によって異な
るが、透明体は、1400℃〜1850℃で得られる。
また、粒径によって異なるが、加熱温度を透明体が得ら
れる温度より低温に保つことによって多孔体を得ること
ができる。
The heating temperature varies depending on the particle size of the silica powder, but a transparent body can be obtained at 1400 ° C to 1850 ° C.
Although it depends on the particle size, a porous body can be obtained by keeping the heating temperature lower than the temperature at which a transparent body is obtained.

【0030】昇温速度は、スラリー調整時に混合した有
機溶媒の沸点までは、比較的低速、すなわち200℃/
h以下、好ましくは100℃/hが好適であり、これ以
降は、1000℃/h以下、好ましくは600℃/h以
下が好適である。1000℃/hよりも高速の昇温を行
うと、溶媒の急速な揮発により成形体にクラックが生じ
たり、急速な閉気孔化により、焼成体に膨れが生じ、不
適である。
The heating rate is relatively low up to the boiling point of the organic solvent mixed during slurry preparation, that is, 200 ° C. /
h or less, preferably 100 ° C./h is suitable, and thereafter, 1000 ° C./h or less, preferably 600 ° C./h or less is suitable. When the temperature is raised at a rate higher than 1000 ° C./h, the molded body is cracked due to the rapid volatilization of the solvent, and the fired body is swollen due to the rapid closed pores, which is not suitable.

【0031】また、直接上述した透明化温度1400℃
〜1850℃まで加熱して良いが、粒径によっても異な
るが、1200℃〜1600℃で仮焼を行い、その後、
透明化温度1400℃〜1850℃まで加熱するという
方法をとることもできる。
Also, the above-mentioned clearing temperature of 1400 ° C.
˜1850 ° C., but depending on the particle size, calcination is performed at 1200 ° C. to 1600 ° C., then
A method of heating to a clearing temperature of 1400 ° C to 1850 ° C can also be used.

【0032】仮焼では、粗い結晶質シリカ粉末中を詰め
粉とすることによって、変形を防止することができ、か
つ高純度を保つことができる。
In calcination, deformation can be prevented and high purity can be maintained by using coarse crystalline silica powder as a filling powder.

【0033】さらに、この仮焼状態でも、石英ガラス製
の切削工具によって穴加工、径合わせなどの加工が簡単
にできる。さらに2つ以上の部品を組み合わせて1つの
仮焼体とすることができる。また、仮焼後、2個以上の
成形体を組み合わせて1つの成形体にしたのちに加熱焼
成することができる。
Further, even in this calcination state, the processing such as drilling and diameter matching can be easily performed by the cutting tool made of quartz glass. Furthermore, two or more parts can be combined into one calcined body. Further, after calcination, it is possible to combine two or more molded bodies into one molded body and then heat and sinter.

【0034】また、仮焼後の本焼成では、雰囲気を減圧
することで、低OHの石英ガラス製品にすることができ
る。Cl2 含有雰囲気中で焼成処理をすると、金属不純
物の非常に少ない石英ガラス製品を得ることができる。
Further, in the main firing after the calcination, a low OH quartz glass product can be obtained by reducing the pressure of the atmosphere. By performing the firing treatment in a Cl 2 -containing atmosphere, it is possible to obtain a quartz glass product containing very few metal impurities.

【0035】以下、本発明の好適な実施例と比較例を説
明する。
Hereinafter, preferred examples and comparative examples of the present invention will be described.

【0036】実施例1 平均粒径30μmの石英粉末100重量部に、珪酸エチ
ル25重量部、0.01N塩酸20重量部、エチレング
リコール5重量部を加え、1時間撹拌し、スラリーとし
た。
Example 1 25 parts by weight of ethyl silicate, 20 parts by weight of 0.01N hydrochloric acid and 5 parts by weight of ethylene glycol were added to 100 parts by weight of quartz powder having an average particle size of 30 μm, and the mixture was stirred for 1 hour to form a slurry.

【0037】一方、図1に示す型を用いた。この型は、
外型1と内型2,3から成る。この形状の型の隙間4に
前述のスラリーを流し込み、密閉し、保持した。
On the other hand, the mold shown in FIG. 1 was used. This type is
It consists of an outer mold 1 and inner molds 2, 3. The above-mentioned slurry was poured into the gap 4 of the mold having this shape, sealed and held.

【0038】5日後にスラリーがゲル化したので、成型
体を離型し、密閉して10時間保持した。
The slurry gelled after 5 days, so the molded body was released from the mold, sealed and held for 10 hours.

【0039】その後、それを電気炉にいれ、400℃ま
で昇温速度100℃/hで昇温し、それ以降、昇温速度
600℃/hで昇温して、1850℃で30分加熱し
た。すると、透明な石英ガラスが得られた。
Then, it was placed in an electric furnace and heated up to 400 ° C. at a heating rate of 100 ° C./h, thereafter heated at a heating rate of 600 ° C./h and heated at 1850 ° C. for 30 minutes. .. Then, transparent quartz glass was obtained.

【0040】実施例2 実施例1と同様な条件で、原料粒径を変え、試作を行っ
た。その結果を表1に示す。歩留は20個中の良品数の
割合を示した。表1は原料粒径の効果を示している。
Example 2 Under the same conditions as in Example 1, trial production was carried out while changing the raw material particle size. The results are shown in Table 1. The yield indicated the ratio of the number of non-defective products among 20 products. Table 1 shows the effect of raw material particle size.

【0041】表1から明らかなように、本発明の実施例
では成形工程と焼成工程の両方とも歩留が良好であっ
た。しかし、平均粒径が500μmより大きい比較例で
は、成形性が悪く、成形工程の歩留がゼロ%であり、不
適であった。また、1μmより小さい比較例では焼成時
に泡が発生したり、割れが発生し、焼成工程の歩留が低
いかゼロ%であり、不適であった。
As is clear from Table 1, in the examples of the present invention, the yield was good in both the molding step and the firing step. However, in the comparative example having an average particle size of more than 500 μm, the moldability was poor and the yield of the molding process was 0%, which was not suitable. Further, in Comparative Examples smaller than 1 μm, bubbles were generated or cracks were generated during firing, and the yield in the firing process was low or 0%, which was not suitable.

【0042】[0042]

【表1】 実施例3 実施例1と同様な条件で、添加する有機溶媒のみを変
え、試作を行った。この結果を表2に示す。歩留は20
個中の良品数を示した。表2は添加する有機溶媒の効果
を示している。
[Table 1] Example 3 Under the same conditions as in Example 1, only an organic solvent to be added was changed and a trial production was performed. The results are shown in Table 2. Yield is 20
The number of non-defective products in each product is shown. Table 2 shows the effect of the added organic solvent.

【0043】表2に示されているように本発明の実施例
ではいずれも焼成歩留が良好であったが、有機溶媒の沸
点が120℃以下の1−プロパノールの比較例や、1−
ブタノールの比較例では、焼成中に割れが起こり、焼成
歩留が悪く、不適であった。
As shown in Table 2, in all the examples of the present invention, the firing yield was good, but the comparative examples of 1-propanol in which the boiling point of the organic solvent was 120 ° C. or less, and 1-propanol
In the comparative example of butanol, cracking occurred during firing, the firing yield was poor, and it was not suitable.

【0044】[0044]

【表2】 実施例4 実施例1と同様な条件で、石英粉末に対する添加する分
散媒の量を変え、試作を行った。この結果を表3に示
す。添加する分散媒の組成比は、重量比で、珪酸エチ
ル:0.01N塩酸:エチレングリコールを25:2
0:5とした。歩留は20個中の良品数の割合を示し
た。表3は添加する分散媒の割合の効果を示している。
[Table 2] Example 4 Under the same conditions as in Example 1, the amount of the dispersion medium to be added to the quartz powder was changed and trial production was performed. The results are shown in Table 3. The composition ratio of the dispersion medium to be added is 25: 2 by weight ratio of ethyl silicate: 0.01N hydrochloric acid: ethylene glycol.
It was set to 0: 5. The yield indicated the ratio of the number of non-defective products among 20 products. Table 3 shows the effect of the ratio of the dispersion medium added.

【0045】このような組成比においては、シリカ10
0重量部に対し、分散媒が30〜100重量部の時が好
適であり、30重量部よりも低いとき、成形が困難にな
り、成形歩留がゼロ%であった。また、100重量部よ
り多いとき、粉末の割合が低くなり、成形体の取扱いが
難しくなり、焼成時に割れが生じ、焼成歩留がゼロ%で
あり、良品を得ることができなかった。
With such a composition ratio, silica 10
When the dispersion medium is 30 to 100 parts by weight with respect to 0 parts by weight, molding is difficult when the dispersion medium is lower than 30 parts by weight, and the molding yield is 0%. On the other hand, when the amount was more than 100 parts by weight, the powder ratio was low, the molded body was difficult to handle, cracking occurred during firing, and the firing yield was 0%, so that a good product could not be obtained.

【0046】[0046]

【表3】 実施例5 実施例1と同様な条件で、成形体を離型後に密閉状態で
保持する時間を変え、試作を行った。この結果を表4に
示した。歩留は20個中の良品数の割合を示した。表4
はゲル化後の保持時間の効果(25℃において)を示し
ている。
[Table 3] Example 5 Under the same conditions as in Example 1, trial production was carried out by changing the time period for keeping the molded body in a sealed state after releasing from the mold. The results are shown in Table 4. The yield indicated the ratio of the number of non-defective products among 20 products. Table 4
Indicates the effect of holding time after gelling (at 25 ° C.).

【0047】このような条件の場合、保持時間が3時間
以上が好適であり、3時間よりも低いとき、焼成中に割
れが生じやすく、焼成歩留が悪かった。
Under these conditions, the holding time is preferably 3 hours or longer, and when the holding time is shorter than 3 hours, cracks are likely to occur during firing and the firing yield is poor.

【0048】[0048]

【表4】 ここで、保持時間とは、成形体を解放雰囲気に出した時
間からゲル化時間を差引いた時間である。ゲル化時間と
は、スラリーを傾けても流動しなくなった時間である。
実施例1のときの保持時間は5時間(h)である。
[Table 4] Here, the holding time is the time obtained by subtracting the gelling time from the time when the molded body is exposed to the release atmosphere. The gelation time is the time when the slurry stopped flowing even when tilted.
The holding time in Example 1 is 5 hours (h).

【0049】実施例6 平均粒径30μmの石英ガラス粉末100重量部に、珪
酸エチル25重量部、0.01N塩酸20重量部、エチ
レングリコール5重量部を加え、1時間撹拌し、スラリ
ーとした。
Example 6 25 parts by weight of ethyl silicate, 20 parts by weight of 0.01N hydrochloric acid and 5 parts by weight of ethylene glycol were added to 100 parts by weight of silica glass powder having an average particle size of 30 μm, and the mixture was stirred for 1 hour to form a slurry.

【0050】一方、図1に示したような形状の型を使用
してその隙間4にスラリーを流し込み、密閉し、保持し
た。
On the other hand, using a mold having a shape as shown in FIG. 1, the slurry was poured into the gap 4, sealed, and held.

【0051】5日後にゲル化したので、成形体を離型
し、密閉して10時間保持した。
The gel was gelated after 5 days, so the molded product was released from the mold, sealed and held for 10 hours.

【0052】その後、成形体を電気炉にいれ、400℃
まで昇温速度100℃/hで昇温し、それ以降は昇温速
度600℃/hで昇温し、1850℃で30分加熱する
と、透明な石英ガラスが得られた。
Then, the molded body is put in an electric furnace and heated to 400 ° C.
Then, the temperature was raised at a temperature rising rate of 100 ° C./h, and thereafter, the temperature was raised at a temperature rising rate of 600 ° C./h and heated at 1850 ° C. for 30 minutes to obtain transparent quartz glass.

【0053】実施例7 実施例6と同様な方法で成形体を作製した。この成形体
の側面からドリルで直径25mmの貫通穴をあけた。こ
こに同様な方法で作製した外径25mm,内径20m
m,長さ200mmの管状の成形体をはめ込んだ。
[0053]Example 7  A molded body was produced in the same manner as in Example 6. This molded body
A through hole having a diameter of 25 mm was drilled from the side surface of the. This
An outer diameter of 25 mm and an inner diameter of 20 m manufactured by the same method.
A tubular molded body of m and 200 mm in length was fitted.

【0054】その後、その成形体を電気炉にいれ、40
0℃まで昇温速度100℃/hで昇温し、それ以降は昇
温速度600℃/hで昇温して、1850℃で30分加
熱した。すると、透明な石英ガラスが得られた。
Then, the molded body is put in an electric furnace and the
The temperature was raised to 0 ° C. at a temperature rising rate of 100 ° C./h, and thereafter, the temperature was raised at a temperature rising rate of 600 ° C./h and heated at 1850 ° C. for 30 minutes. Then, transparent quartz glass was obtained.

【0055】実施例8 実施例6と同様な方法で仮焼体を作製した。この仮焼体
の側面をドリルで貫通し、直径25mmの貫通穴をあけ
た。ここに同様な方法で作製した外径25mm,内径2
0mm,長さ200mmの管状の仮焼体をはめ込んだ。
Example 8 A calcined body was prepared in the same manner as in Example 6. The side surface of this calcined body was penetrated with a drill to form a through hole having a diameter of 25 mm. An outer diameter of 25 mm and an inner diameter of 2 manufactured by the same method
A tubular calcined body having a length of 0 mm and a length of 200 mm was fitted.

【0056】その後、その成形体を電気炉にいれ、18
50℃で30分加熱した。すると、透明な石英ガラスが
得られた。
After that, the molded body is put in an electric furnace, and
Heated at 50 ° C. for 30 minutes. Then, transparent quartz glass was obtained.

【0057】実施例9 平均粒径30μmの石英粉末100重量部に、珪酸エチ
ル25重量部、0.01N塩酸20重量部、エチレング
リコール5重量部を加え、1時間撹拌した。その後、1
%アンモニア水を加え、pHを4.2に調整し、スラリ
ーとした。
Example 9 To 100 parts by weight of quartz powder having an average particle size of 30 μm, 25 parts by weight of ethyl silicate, 20 parts by weight of 0.01N hydrochloric acid and 5 parts by weight of ethylene glycol were added and stirred for 1 hour. Then 1
% Ammonia water was added to adjust the pH to 4.2 to make a slurry.

【0058】一方、図1に示したような形状の型を使用
して、その隙間4にスラリーを流し込み、密閉し、保持
した。
On the other hand, using a mold having a shape as shown in FIG. 1, the slurry was poured into the gap 4, sealed, and held.

【0059】5時間後にゲル化したので成形体を離型
し、密閉して10時間保持した。
The gel was gelated after 5 hours, so the molded product was released from the mold, sealed and held for 10 hours.

【0060】その後、成形体を電気炉にいれ、400℃
まで昇温速度100℃/hで昇温し、それ以降は600
℃/hで昇温して、1850℃で30分加熱した。する
と、透明な石英ガラスが得られた。
Then, the molded body is put into an electric furnace and heated to 400 ° C.
Up to 100 ° C / h and then 600
The temperature was raised at .degree. C./h and heated at 1850.degree. C. for 30 minutes. Then, transparent quartz glass was obtained.

【0061】実施例10 実施例7と同様な方法で成形体を作製した。 Example 10 A molded body was produced in the same manner as in Example 7.

【0062】成形体を電気炉にいれ、大気中で1400
℃で4時間(昇温時間4時間)仮焼した。仮焼体を真空
焼成炉にいれ、N2 0.5torrの雰囲気中で、18
50℃で30分加熱した。すると、透明な石英ガラスが
得られた。
The molded body is placed in an electric furnace and the temperature is set to 1400 in the atmosphere.
It was calcined at 4 ° C. for 4 hours (heating time 4 hours). The calcined body is placed in a vacuum firing furnace and is placed in an atmosphere of N 2 0.5 torr for 18
Heated at 50 ° C. for 30 minutes. Then, transparent quartz glass was obtained.

【0063】実施例11 実施例7と同様な方法で成形体を作製した。 Example 11 A molded body was produced in the same manner as in Example 7.

【0064】成形体を電気炉にいれ、大気中で1400
℃4時間(昇温時間4時間)仮焼した。仮焼体を真空炉
にいれ、1400℃で1時間、5%Cl2 /95%He
の処理を行った後、N2 0.5torrの雰囲気中で、
1850℃で30分加熱した。すると、透明な石英ガラ
スが得られた。
The molded body is placed in an electric furnace and the temperature is set to 1400 in the atmosphere.
Calcination was performed for 4 hours (temperature rising time 4 hours). The calcined body is put in a vacuum furnace and kept at 1400 ° C. for 1 hour with 5% Cl 2 /95% He.
After performing the treatment of, in an atmosphere of N 2 0.5 torr,
Heated at 1850 ° C. for 30 minutes. Then, transparent quartz glass was obtained.

【0065】ところで、本発明は上述した実施例に限定
されるものではない。
The present invention is not limited to the above embodiment.

【0066】[0066]

【発明の効果】本発明の方法によれば、大型半導体プロ
セス用道具材などの石英ガラスをごく短時間に高純度に
製造することができる。そのため製造コストを低減でき
る。
According to the method of the present invention, quartz glass such as a large-scale semiconductor process tool material can be manufactured with high purity in a very short time. Therefore, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の石英ガラスを製造する際に用いるスラ
リーを成形するための型を示す断面図。
FIG. 1 is a cross-sectional view showing a mold for molding a slurry used in manufacturing the quartz glass of the present invention.

【符号の説明】[Explanation of symbols]

1 外型 2 内型 3 内型 4 隙間 ◆ 1 Outer mold 2 Inner mold 3 Inner mold 4 Gap ◆

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 研司 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Takahashi No. 30 Soya, Hadano City, Kanagawa Prefecture Toshiba Ceramics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1μm以上500μm以下の結
晶質もしくは非晶質シリカに、珪酸エステル、pH3以
下に調整した水、および水に可溶な沸点120℃以上の
有機溶媒からなる第1混合物を混合して第2混合物を作
り、その第2混合物を型中でゲル化させ、離型した後、
加熱することを特徴とする石英ガラスの製造方法。
1. A first mixture comprising crystalline or amorphous silica having an average particle size of 1 μm or more and 500 μm or less, silicate ester, water adjusted to pH 3 or less, and an organic solvent soluble in water and having a boiling point of 120 ° C. or more. To form a second mixture, which is then gelled in the mold and demolded,
A method for producing quartz glass, which comprises heating.
JP18050792A 1992-06-16 1992-06-16 Manufacturing method of quartz glass Expired - Lifetime JP3213384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18050792A JP3213384B2 (en) 1992-06-16 1992-06-16 Manufacturing method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18050792A JP3213384B2 (en) 1992-06-16 1992-06-16 Manufacturing method of quartz glass

Publications (2)

Publication Number Publication Date
JPH05345620A true JPH05345620A (en) 1993-12-27
JP3213384B2 JP3213384B2 (en) 2001-10-02

Family

ID=16084455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18050792A Expired - Lifetime JP3213384B2 (en) 1992-06-16 1992-06-16 Manufacturing method of quartz glass

Country Status (1)

Country Link
JP (1) JP3213384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242129A (en) * 2008-03-28 2009-10-22 Tosoh Quartz Corp Producing method of glass components, and glass components
JP2010222235A (en) * 2009-02-17 2010-10-07 Ngk Insulators Ltd Quartz luminous tube and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242129A (en) * 2008-03-28 2009-10-22 Tosoh Quartz Corp Producing method of glass components, and glass components
JP2010222235A (en) * 2009-02-17 2010-10-07 Ngk Insulators Ltd Quartz luminous tube and method for manufacturing the same

Also Published As

Publication number Publication date
JP3213384B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JPH07149597A (en) Ceramic composite material
US4940675A (en) Method for making low-expansion glass article of complex shape
KR100294312B1 (en) Synthetic quartz glass powder and its manufacturing method
JP3213384B2 (en) Manufacturing method of quartz glass
JP2002239682A (en) Method for forming film onto mold, and method for producing mold and polycrystalline silicon ingot
JP2005271058A (en) Method for manufacturing vessel with mold releasing layer for melting silicon, and vessel for melting silicon
JPH02289446A (en) Production of complete and dense half- solid parts from appropriate sol-gel induction powder as ring laser gyro parts
US6193926B1 (en) Process for making molded glass and ceramic articles
KR100722377B1 (en) A method of preparing transparent silica glass
JPH111372A (en) Silicon carbide-based porous body and its production
JPH03159923A (en) Production of quartz glass
JPH10279318A (en) Production of quartz glass
KR100258217B1 (en) Fabricaion method of silica glass by sol-gel process
JPH01270530A (en) Production of formed glass body
JP3582093B2 (en) Method for producing silica glass
JPS6310118B2 (en)
KR100824985B1 (en) A composition for transparent silica glass and a method of preparing silica glass using the same
JPH02141433A (en) Production of glass
KR20030022956A (en) A method of preparing transparent silica glass
JPH05262513A (en) Production of amorphous silica form
JPS6150908B2 (en)
JPH0986918A (en) Production of synthetic quartz glass powder
KR20040056547A (en) A method of preparing transparent silica glass
JPH07207379A (en) Manufacture of preform for forming composite material
JPS643812B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

EXPY Cancellation because of completion of term