JPH111372A - Silicon carbide-based porous body and its production - Google Patents

Silicon carbide-based porous body and its production

Info

Publication number
JPH111372A
JPH111372A JP9173208A JP17320897A JPH111372A JP H111372 A JPH111372 A JP H111372A JP 9173208 A JP9173208 A JP 9173208A JP 17320897 A JP17320897 A JP 17320897A JP H111372 A JPH111372 A JP H111372A
Authority
JP
Japan
Prior art keywords
silicon carbide
slurry
porous body
alkoxide
based porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173208A
Other languages
Japanese (ja)
Inventor
Koichi Shiraishi
耕一 白石
Kenji Takahashi
研司 高橋
Yushi Horiuchi
雄史 堀内
Masatoshi Onishi
正俊 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP9173208A priority Critical patent/JPH111372A/en
Publication of JPH111372A publication Critical patent/JPH111372A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce high-purity and homogeneous silicon carbide-based porous body in various forms, high yield and relative short arbitrary process days. SOLUTION: A binder comprising a silicon alkoxide, an aluminum alkoxide, water adjusted to pH<=3 and at least one kind of organic solvent soluble in water and having >=120 deg.C boiling point is added and mixed with silicon carbide powder having 1-500 μm average particle diameter to form slurry. The slurry is subjected to gelation and formed. The resultant formed product is dried and baked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素質多孔体
及びその製造方法に関し、更に詳しくはゲル化を利用し
て成形する炭化珪素質多孔体及びその製造方法に関す
る。
The present invention relates to a silicon carbide porous body and a method for producing the same, and more particularly to a silicon carbide porous body formed by utilizing gelation and a method for producing the same.

【0002】[0002]

【従来の技術】セラミック多孔体は、電子部品焼成用多
孔質部材、床や壁等建築用軽量構造材、冷蔵庫や建築物
の断熱部材、人工骨材等の生体用材料やエアー、水等の
フィルター材として各種用途に用いられている。従来、
半導体製造プロセスにおけるフィルター材として使用さ
れる場合、セラミック多孔質体が静電気を帯びやすいた
めダストを付着して、半導体の汚染源になり易く問題と
なっていた。そのため、導電性をもつ炭化珪素を原料と
して、炭化珪素の多孔体を形成して用いることが行われ
ていた。
2. Description of the Related Art Porous ceramics are porous materials for firing electronic components, lightweight structural materials such as floors and walls, heat insulating materials for refrigerators and buildings, biological materials such as artificial aggregates, and filters for air, water and the like. It is used for various purposes as a material. Conventionally,
When used as a filter material in a semiconductor manufacturing process, there is a problem in that a ceramic porous body is liable to be charged with static electricity and easily adheres to dust and becomes a contamination source of a semiconductor. For this reason, it has been practiced to form a silicon carbide porous body using conductive silicon carbide as a raw material.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来か
ら行われている炭化珪素粉末を原料する多孔体の形成方
法においては、特に、得られる多孔質炭化珪素の純度に
ついて検討しているものはなく、更に成形可能な形状も
限られていた。例えば、押し出し成形では、管の成形は
行えても、大型平板の成形は困難であった。また、成形
に際して高分子バインダーを多量に使用するので、結果
的には不純物の混入が多くなり、脱脂等後処理が煩雑に
なり、半導体の汚染源を構成することになる。上記のよ
うに、従来法で製造した炭化珪素の多孔体を実際に使用
するには、種々の問題があった。本発明は、上記炭化珪
素質多孔質体に係る現況に鑑み、いかなる形状、特に平
板状炭化珪素質多孔体であれば、大きさや形状によら
ず、高精度、高純度で、且つ、比較的短期の工程日数
で、高歩留で製造することを目的とする。
However, in the conventional method of forming a porous body using silicon carbide powder as a raw material, there has been no study on the purity of the obtained porous silicon carbide. Further, the shape that can be formed has been limited. For example, in extrusion molding, it was difficult to form a large flat plate, even though a tube could be formed. In addition, since a large amount of a polymer binder is used in molding, impurities are contaminated as a result, and post-treatment such as degreasing becomes complicated, thereby constituting a semiconductor contamination source. As described above, there are various problems in actually using the porous body of silicon carbide manufactured by the conventional method. The present invention, in view of the current state of the silicon carbide-based porous body, any shape, particularly if it is a flat silicon carbide-based porous body, regardless of the size and shape, high precision, high purity, and relatively The purpose is to produce at a high yield in a short number of process days.

【0004】[0004]

【課題を解決するための手段】本発明によれば、炭化珪
素質多孔体であって、炭化珪素粒子間にムライト粒子が
均一に分散してなることを特徴とする炭化珪素質多孔体
が提供される。更に、本発明は(1)平均粒径1〜50
0μmの炭化珪素粉末に対し、シリコンアルコキシド、
アルミニウムアルコキシド、pH3以下に調整した水及
び水に可溶で沸点が120℃以上の少なくとも1種類の
有機溶媒からなる結合剤を、30〜100重量部添加し
て混合してスラリーを形成するスラリー生成工程、
(2)前記スラリー生成工程で生成したスラリーをゲル
化して成形する成形工程、及び(3)前記成形工程で得
られた成形体を乾燥後、減圧下、不活性ガス雰囲気下及
び還元性ガス雰囲気下のいずれかにおいて1600〜2
000℃で焼成する焼成工程からなることを特徴とする
炭化珪素質多孔体の製造方法を提供する。
According to the present invention, there is provided a silicon carbide-based porous body characterized in that mullite particles are uniformly dispersed between silicon carbide particles. Is done. Further, the present invention provides (1) an average particle size of 1 to 50.
0 μm silicon carbide powder, silicon alkoxide,
30-100 parts by weight of aluminum alkoxide, water adjusted to pH 3 or less and water-soluble and at least one organic solvent having a boiling point of 120 ° C. or more are added and mixed to form a slurry by mixing and forming a slurry. Process,
(2) a shaping step of gelling and shaping the slurry generated in the slurry generating step; and (3) drying the shaped body obtained in the shaping step, under reduced pressure, in an inert gas atmosphere, and in a reducing gas atmosphere. 1600-2 in any of the following
A method for producing a silicon carbide-based porous body, comprising a firing step of firing at 000 ° C.

【0005】本発明は上記のように構成され、炭化珪素
粉末に所定のアルコキシドを含有する結合剤を添加して
スラリーを生成し、得られたスラリーを所定形状に成形
し、スラリー中のアルコキシドを加水分解してゲル化成
形して成形体を得た後、焼成することにより多孔体とす
るため、いかなる形状の多孔成形体を得ることができ
る。また、高分子バインダーを用いないため、高純度で
多孔体を得ることができる。更に、スラリーのゲル化
は、炭化珪素粒子とアルコキシドの加水分解で得られる
ムライト粒子のゲル分子とが均一に分散された状態でゲ
ル化成形されると共に、スラリーのpH値を調整するこ
とによりゲル化時間を調節し、比較的短期の工程日数で
ゲル成形することができ、また、水より高沸点の有機溶
媒を含有するため、乾燥、焼成時にも亀裂等が発生する
ことなく、高歩留でゲル分子中の水分を円滑に蒸発揮散
させ、均質な炭化珪素質多孔体を得ることができる。
[0005] The present invention is constituted as described above, a binder containing a predetermined alkoxide is added to silicon carbide powder to form a slurry, the obtained slurry is formed into a predetermined shape, and the alkoxide in the slurry is removed. Since a porous body is obtained by hydrolyzing and gel-forming to obtain a molded body and then firing, a porous molded body of any shape can be obtained. Further, since a polymer binder is not used, a porous body with high purity can be obtained. Further, the gelation of the slurry is performed by gel-forming while silicon carbide particles and gel molecules of mullite particles obtained by hydrolysis of alkoxide are uniformly dispersed, and by adjusting the pH value of the slurry, the gel is formed. The gelation time can be adjusted by adjusting the aging time, and the gel can be formed in a relatively short process time.Also, since it contains an organic solvent with a higher boiling point than water, it does not crack even during drying and firing, and has a high yield. Thus, moisture in the gel molecules is smoothly evaporated and evaporated, and a uniform porous silicon carbide body can be obtained.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳しく説明する。本発明の出発原料である炭化珪素粉
末は、平均粒径が1〜500μm、好ましくは10〜1
00μmであるものが用いられる。平均粒径が1μmよ
り小さいと成形体の細孔径が小さくなるため、仮焼中に
気泡が発散しにくく好ましくない。また、平均粒径が5
00μmより大きいとスラリーの均質性や流動性が低下
し、スラリーを型に流し込むのが困難となる。
Embodiments of the present invention will be described below in detail. The silicon carbide powder as a starting material of the present invention has an average particle size of 1 to 500 μm, preferably 10 to 1 μm.
What is 00 μm is used. If the average particle size is smaller than 1 μm, the pore diameter of the molded product becomes small, so that it is not preferable that bubbles are hardly emitted during calcination. In addition, the average particle size is 5
If it is larger than 00 μm, the homogeneity and fluidity of the slurry decrease, making it difficult to pour the slurry into a mold.

【0007】本発明の結合剤は、シリコンアルコキシ
ド、アルミニウムアルコキシド、pH3以下に調整した
水、及び水に可溶で沸点が120℃以上の有機溶媒を均
一に混合して得られた混合物を用い、結合剤及び分散媒
の両機能を兼ね備えさせることができる。またシリコン
アルコキシド及びアルミニウムアルコキシドは水との相
溶性はなく、要すれば、例えばアルコール等の相溶性溶
媒を更に添加混合してもよい。本発明の結合剤を構成す
るシリコンアルコキシド及びアルミニウムアルコキシド
は、特に限定されるものではなく容易に入手できるもの
から適宜選択することができる。通常、Si(OCH
3 )4、Si(OC25 )4、Si(i−OC37)4、A
l(OCH3 )3、Al( OC25 )3、Al( i−OC
37 )3等が好適に用いられる。結合剤におけるシリコ
ンアルコキシドとアルミニウムアルコキシドは、ムライ
ト組成、即ち原子比でSi:Al=1:3となる比率で
添加するのが好ましい。また、結合剤の構成成分の水
は、シリコンアルコキシド及びアルミニウムアルコキシ
ドを加水分解するため、pH3以下に適宜酸により調整
して添加混合する。pH調整用の酸は、特に限定される
ものではないが、好ましくは塩酸、硝酸、酢酸等の加熱
中に揮発し残留しにくいものがよい。結合剤中の水分量
は、アルコキシドの加水分解当量以上で、その30倍以
下の添加量が好ましい。アルコキシドの加水分解当量よ
り少ないと加水分解が十分に進まないためである。また
当量の30倍より多いと、ゲル化が遅くなり、生成した
ゲルの強度が低下し作業上支障が生じる。
The binder of the present invention uses a mixture obtained by uniformly mixing a silicon alkoxide, an aluminum alkoxide, water adjusted to pH 3 or less, and an organic solvent soluble in water and having a boiling point of 120 ° C. or more. It can have both functions of a binder and a dispersion medium. Further, silicon alkoxide and aluminum alkoxide are not compatible with water, and if necessary, a compatible solvent such as alcohol may be further added and mixed. The silicon alkoxide and the aluminum alkoxide constituting the binder of the present invention are not particularly limited, and can be appropriately selected from readily available ones. Usually, Si (OCH
3 ) 4 , Si (OC 2 H 5 ) 4 , Si (i-OC 3 H 7 ) 4 , A
l (OCH 3 ) 3 , Al (OC 2 H 5 ) 3 , Al (i-OC
3 H 7 ) 3 and the like are preferably used. It is preferable that the silicon alkoxide and the aluminum alkoxide in the binder are added in a mullite composition, that is, in a ratio of Si: Al = 1: 3 in atomic ratio. In addition, water as a component of the binder is added and mixed by appropriately adjusting the pH to 3 or less with an acid in order to hydrolyze the silicon alkoxide and the aluminum alkoxide. The acid for pH adjustment is not particularly limited, but preferably an acid such as hydrochloric acid, nitric acid or acetic acid which volatilizes during heating and hardly remains. The amount of water in the binder is preferably equal to or greater than the hydrolysis equivalent of the alkoxide and equal to or less than 30 times the same. If the amount is less than the hydrolysis equivalent of the alkoxide, the hydrolysis does not proceed sufficiently. On the other hand, if it is more than 30 times the equivalent, gelation is slowed down, the strength of the formed gel is reduced, and there is a problem in work.

【0008】本発明の結合剤を構成する有機溶媒は、水
に可溶であり、且つ水とアルコキシドの加水分解で生成
するアルコールが蒸発した後も、成形体中に存在するこ
とができるものから選択される。成形体の乾燥、焼成の
昇温時において、ゲル化成形体中の水等の液体が蒸発す
る際に、表面張力によりクラックが生じることを防止す
るためである。上記したような低級アルコールのアルコ
キシドが加水分解して生成するアルコールは、沸点が水
の沸点より低く、先に蒸発し成形体中に残存することが
ない。そのため、本発明の結合剤中の有機溶媒は、水よ
り高沸点であればよく、理論的には1atm 下で100℃
以上の沸点を有すればよい。しかし、水の沸点100℃
においても成形体中に残存するためには、より蒸気圧が
低く沸点が120℃以上のものが好ましい。通常、エチ
レングリコール、グリセリン等が用いられる。また、有
機溶媒は、上記条件を満足すればよく、2種以上の有機
溶媒を混合添加してもよい。
The organic solvent constituting the binder of the present invention is soluble in water and can be present in the molded article even after the alcohol formed by the hydrolysis of water and alkoxide is evaporated. Selected. This is to prevent cracks due to surface tension when a liquid such as water in the gelled molded body evaporates at the time of elevating the temperature of drying and firing the molded body. The alcohol formed by hydrolysis of the alkoxide of the lower alcohol as described above has a boiling point lower than that of water, and does not evaporate first and remain in the molded body. Therefore, the organic solvent in the binder of the present invention only needs to have a boiling point higher than that of water.
What is necessary is just to have the above boiling point. However, the boiling point of water is 100 ° C
In order to remain in the molded article, it is preferable that the vapor pressure is lower and the boiling point is 120 ° C. or higher. Usually, ethylene glycol, glycerin and the like are used. The organic solvent only needs to satisfy the above conditions, and two or more organic solvents may be mixed and added.

【0009】本発明において、上記した結合剤及び炭化
珪素粉末を所定量添加混合して、成形用のスラリーを調
製することができる。炭化珪素粉末と結合剤の混合比率
は、炭化珪素の粒径に依存するが、炭化珪素粉末に対し
て結合剤を30〜100重量部の範囲で粒径に応じて適
宜調整して混合添加するのが好ましい。30重量部より
少ないと混合が困難となり、100重量部より多いと成
形体の密度が低くなり過ぎて操作上不適当である。一般
に、炭化珪素粉末の粒径が小さいときは、結合剤の添加
量を多くするのが好ましい。比表面積が大きくなるため
である。上記のようにして成形用スラリーを得ることが
できる。なお、本発明において、成形用スラリーの調製
は、炭化珪素粉末、シリコンアルコキシド、アルミニウ
ムアルコキシド、pH3以下の水分、有機溶媒等の各原
料をすべて同時に添加して混合してもよいし、加水分解
されたアルコキシドがゲル化する前に所定の原料を添加
し終えるようにすればよい。
In the present invention, a molding slurry can be prepared by adding and mixing a predetermined amount of the above-mentioned binder and silicon carbide powder. The mixing ratio of the silicon carbide powder and the binder depends on the particle size of the silicon carbide, but the binder is appropriately added to the silicon carbide powder in a range of 30 to 100 parts by weight according to the particle size. Is preferred. If the amount is less than 30 parts by weight, mixing becomes difficult. If the amount is more than 100 parts by weight, the density of the molded article becomes too low, which is inappropriate for operation. Generally, when the particle size of the silicon carbide powder is small, it is preferable to increase the amount of the binder added. This is because the specific surface area increases. A molding slurry can be obtained as described above. In the present invention, the preparation of the slurry for molding may be performed by simultaneously adding and mixing all of the raw materials such as silicon carbide powder, silicon alkoxide, aluminum alkoxide, water having a pH of 3 or less, and an organic solvent. The addition of a predetermined raw material may be completed before the alkoxide gelled.

【0010】本発明において、上記のようにして調製さ
れた成形用スラリーは、pHを3.5〜5.5に調整す
るのが好ましい。スラリーのpH値によりゲル化に要す
る時間が変化し、例えば、20℃下でpH3.5のとき
のゲル化時間は30時間程度であり、これは多孔質体の
製造としては作業性が高い合理的な時間である。一般に
pH値が高くなるとゲル化に要する時間は短縮できる。
しかし、pH値が5.5より高くなると、例えば1時間
以下となるためゲル化時間が短かすぎて作業上不都合と
なる。従って、成形用スラリーのpH値を3.5〜5.
5の範囲に調整することにより、多孔質体製造作業に好
適なゲル化時間を得ることができ好ましい。成形用スラ
リーのpH調整は、通常、塩基性水溶液を添加して行
う。この場合、好ましくは加熱中に揮発し残留しにくい
アンモニア等の有機性塩基の水溶液を用い、水酸化ナト
リウムや水酸化カリウム等は好ましくない。
In the present invention, the pH of the molding slurry prepared as described above is preferably adjusted to 3.5 to 5.5. The time required for gelation varies depending on the pH value of the slurry. For example, the gelation time at pH 3.5 at 20 ° C. is about 30 hours, which is high in workability for producing a porous body. Time. Generally, the higher the pH value, the shorter the time required for gelation.
However, when the pH value is higher than 5.5, for example, it is 1 hour or less, and the gelation time is too short, which is inconvenient in operation. Accordingly, the pH value of the molding slurry is adjusted to 3.5 to 5.
Adjustment to the range of 5 is preferable because a gel time suitable for a porous body production operation can be obtained. The pH of the molding slurry is usually adjusted by adding a basic aqueous solution. In this case, it is preferable to use an aqueous solution of an organic base such as ammonia which evaporates and hardly remains during heating, and sodium hydroxide and potassium hydroxide are not preferred.

【0011】上記pH調整された成形用スラリーは、成
形型に鋳込んで、その後密閉状態で静置しゲル化成形す
る。ゲル化時間は前記のようにスラリーのpH値等によ
って異なる。成形型の材質は、特に限定されるものでは
ないが、スラリー中の有機溶媒が吸収されにくい材質、
また有機溶媒との接触角が大きい材質が好ましい。更
に、精密仕上げの可能な材質であればより好ましい。成
形型の材質としては、具体的には、フッ素樹脂や超高分
子量ポリエチレン樹脂またはこれらの樹脂を金属等の表
面にコーティングしたもの等を挙げることができる。ス
ラリーのゲル化は時間と共に収縮するので、ゲル化完了
後は離型するのが好ましい。少なくとも収縮方向にある
成形型部品は離型するのが好ましい。ゲル化完了直後の
成形体は強度が低く、離型時の短時間の開放雰囲気に曝
される以外は、成形体の露出時間は極力短くするのが望
ましく、密閉状態で3時間以上静置して強度を高めるこ
とが好ましい。また、密閉状態の静置時に、加熱して昇
温することにより強度発現時間を短縮することができ
る。加熱昇温する場合、成形体から有機溶媒が揮発しな
いように加熱温度等に留意すると共に、成形体を静置す
る収容容器は、加熱下の蒸気圧に耐えられる耐圧性のも
のとする必要がある。
The pH-adjusted molding slurry is cast into a molding die and then left in a sealed state to form a gel. The gelation time varies depending on the pH value of the slurry as described above. The material of the molding die is not particularly limited, but a material that hardly absorbs the organic solvent in the slurry,
Further, a material having a large contact angle with an organic solvent is preferable. Further, a material that can be precision finished is more preferable. Specific examples of the material of the mold include a fluororesin, an ultra-high molecular weight polyethylene resin, and a resin or the like coated on the surface of a metal or the like. Since the gelation of the slurry shrinks with time, it is preferable to release the mold after the gelation is completed. It is preferable that at least the mold part in the shrinking direction is released. Immediately after the completion of gelation, the molded body has low strength, and it is desirable to minimize the exposure time of the molded body, except that it is exposed to an open atmosphere for a short time during mold release. It is preferable to increase the strength. In addition, by heating and raising the temperature at the time of standing in a sealed state, the strength development time can be shortened. When heating and raising the temperature, it is necessary to pay attention to the heating temperature and the like so that the organic solvent does not volatilize from the molded body, and the container in which the molded body is allowed to stand still needs to have a pressure resistance that can withstand the vapor pressure under heating. is there.

【0012】上記のようにして得られたゲル化、強度発
現された成形体は、例えば大気のような酸素含有ガス雰
囲気中で約100〜600℃で加熱乾燥する。乾燥時の
加熱のスラリー中の有機溶媒の沸点に至るまでの昇温速
度は、好ましくは200℃/時以下、更に好ましくは1
00℃/時以下とするのがよい。200℃/時を超える
と有機溶媒が急速に揮発し成形体にクラックが生ずるた
めである。本発明において、上記乾燥を、ゲル化、強度
発現され生成された成形体を粗い炭化珪素粉末や炭素粉
末等の詰め粉中に埋没させて行うことにより、変形を防
止し純度を保つことができる。次いで、乾燥後の成形体
を、減圧下またはアルゴン等の不活性ガス雰囲気中もし
くは還元性ガス雰囲気中で焼成する。焼成温度は炭化珪
素粉末の粒径によっても異なるが約1600〜2000
℃の範囲である。焼成工程での昇温速度は、好ましくは
1000℃/時以下、更に好ましくは600℃/時以下
とするのがよい。昇温速度が1000℃/時を超えると
急速に閉気孔化が起こり、焼結体に膨れが生じるため好
ましくない。
The molded body obtained as described above, which has been formed into a gel and exhibits strength, is dried by heating at about 100 to 600 ° C. in an oxygen-containing gas atmosphere such as the atmosphere. The rate of temperature rise until the boiling point of the organic solvent in the slurry during heating during drying is preferably 200 ° C./hour or less, more preferably 1 ° C./hour or less.
The temperature is preferably set to 00 ° C./hour or less. If the temperature exceeds 200 ° C./hour, the organic solvent is rapidly volatilized to cause cracks in the molded product. In the present invention, the drying can be prevented and the purity can be maintained by performing the drying by burying the formed body formed by gelation and strength development in a filling powder such as a coarse silicon carbide powder or a carbon powder. . Next, the dried compact is fired under reduced pressure, in an inert gas atmosphere such as argon, or in a reducing gas atmosphere. The firing temperature varies depending on the particle size of the silicon carbide powder, but is about 1600 to 2000.
It is in the range of ° C. The rate of temperature rise in the firing step is preferably 1000 ° C./hour or less, more preferably 600 ° C./hour or less. If the rate of temperature rise exceeds 1000 ° C./hour, closed pores rapidly occur, and the sintered body swells, which is not preferable.

【0013】本発明において、上記スラリーのゲル化が
完了して得られる成形体は、通常、ゲル化中に炭化珪素
粒子とムライト粒子とが沈降するため、炭化珪素粒子等
セラミック粒子の殆どない上部ゲル部分と、沈降した炭
化珪素粒子等セラミック粒子が接触しあう下部ゲル部分
から成る。従って、本発明の成形型は、ゲル化によりセ
ラミック粒子のない上部ゲル部分の形成を、予め勘案し
て設計するのが好ましい。セラミック粒子のない上部ゲ
ル部分は、乾燥工程前に切断除去してもよいし、そのま
ま加熱乾燥、焼成する場合は、それらの工程中に上下部
の収縮率の差により分離除去することができる。
In the present invention, the formed body obtained by the completion of the gelation of the slurry usually has an upper part that has almost no ceramic particles such as silicon carbide particles because silicon carbide particles and mullite particles settle during the gelation. It consists of a gel portion and a lower gel portion where ceramic particles such as precipitated silicon carbide particles contact each other. Therefore, the mold of the present invention is preferably designed in consideration of the formation of the upper gel portion without ceramic particles due to gelation in advance. The upper gel portion without ceramic particles may be cut and removed before the drying step, or when heated and dried and fired as it is, it can be separated and removed during those steps due to the difference in shrinkage ratio between the upper and lower parts.

【0014】[0014]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例 平均粒径30μmの原料炭化珪素粉末に、アルコキシド
として珪酸エチル25重量部、アルミニウムプロポキシ
ドシリコン37重量部、pH3以下に調整した水として
0.01規定の塩酸水溶液20重量部、有機溶媒として
5重量部のエチレングリコール(沸点197.5℃)を
それぞれ添加し、1時間の攪拌して、成形用スラリーを
得た。得られた成形用スラリーをテフロン製の図1に示
される円筒形状の成形型に流し込み、蓋体3によって密
閉し、5日間そのまま保持して成形型中のスラリーをゲ
ル化成形した。尚、この密閉容器は外型1と、前記外型
1の内部に収納される内型2と、内部を密閉するための
蓋体3とから構成されている。その後、セラミックス粒
子のない上部ゲル部分5を除去し、更に、密閉容器内で
10時間保持してゲル強度の発現を行った。得られた強
度を高めたゲル成形体を、80メッシュの炭化珪素粉末
の詰め粉中に埋没させ、電気炉内で大気雰囲気中乾燥し
溶媒を揮発させた。このとき、室温から600℃までは
6時間で昇温し、600℃で3時間保持してから、自然
放冷して、電気炉から成形乾燥体をとりだした。この乾
燥体を真空焼結炉内で、0.3torr減圧雰囲気下、30
0℃/時の昇温速度で1850℃まで昇温し、1850
℃で3時間の保持して焼結した。この結果、平均細孔径
10μmで、気孔率32%の炭化珪素質多孔体が得られ
た。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 25 parts by weight of ethyl silicate as an alkoxide, 37 parts by weight of aluminum propoxide, 20 parts by weight of a 0.01 N hydrochloric acid aqueous solution as water adjusted to pH 3 or less, and 20 parts by weight of an organic solvent as raw material silicon carbide powder having an average particle diameter of 30 μm 5 parts by weight of ethylene glycol (boiling point: 197.5 ° C.) was added, and the mixture was stirred for 1 hour to obtain a molding slurry. The obtained slurry for molding was poured into a cylindrical mold shown in FIG. 1 made of Teflon, sealed with the lid 3 and kept as it was for 5 days to gel-form the slurry in the mold. The closed container includes an outer mold 1, an inner mold 2 housed inside the outer mold 1, and a lid 3 for sealing the inside. Thereafter, the upper gel portion 5 without ceramic particles was removed, and the gel was further maintained in a closed container for 10 hours to develop the gel strength. The resulting gel compact having increased strength was buried in an 80-mesh silicon carbide powder filling, dried in an air atmosphere in an electric furnace to evaporate the solvent. At this time, the temperature was raised from room temperature to 600 ° C. in 6 hours, kept at 600 ° C. for 3 hours, allowed to cool naturally, and the molded dried body was taken out of the electric furnace. The dried body is placed in a vacuum sintering furnace at a reduced pressure of 0.3 torr for 30 minutes.
The temperature was raised to 1850 ° C. at a rate of 0 ° C./hour, and 1850 ° C.
Sintering was carried out at a temperature of 3 ° C. for 3 hours. As a result, a silicon carbide porous body having an average pore diameter of 10 μm and a porosity of 32% was obtained.

【0015】[0015]

【発明の効果】本発明の炭化珪素質多孔体は、高分子バ
インダーを含まず高純度で、均一に炭化珪素粒子とムラ
イト粒子とが均一に分散され、均質な多孔質である。ま
た、本発明の炭化珪素質多孔体の製造方法は、成形用原
料スラリーを生成し、鋳込成形するため、種々の形状に
も対応することができる。また、スラリーのpH値を調
整することによりゲル化形成に要する処理日数を調節す
ることができ、各条件に応じて所望の工程日数、比較的
短い処理工程日数で製造することができる。更に、スラ
リー中には、原料炭化珪素粉末と共に混合する結合剤中
に沸点120℃以上の有機溶媒を共存させるため、乾
燥、焼成時の割れ、亀裂等欠陥の発生がなく、高歩留で
製造することができる。
The silicon carbide porous body of the present invention has a high purity and does not contain a polymer binder, and is uniformly porous with silicon carbide particles and mullite particles being uniformly dispersed. In addition, the method for producing a silicon carbide porous body of the present invention generates a raw material slurry for molding and cast-molds it, so that it can correspond to various shapes. Further, by adjusting the pH value of the slurry, it is possible to adjust the number of treatment days required for the formation of the gel, and it is possible to produce a desired number of process days and a relatively short number of treatment process days according to each condition. Furthermore, since the slurry contains an organic solvent having a boiling point of 120 ° C. or higher in a binder mixed with the raw material silicon carbide powder, there is no occurrence of defects such as cracks and cracks during drying and firing, and a high yield is produced. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の製造方法に用いられる成形型
の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of a molding die used in the production method of the present invention.

【符号の説明】[Explanation of symbols]

1 外型 2 内型 3 蓋体 4 成形体 5 ゲル部 DESCRIPTION OF SYMBOLS 1 Outer die 2 Inner die 3 Lid 4 Molded body 5 Gel part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 正俊 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Masatoshi Onishi 30 Soya, Hadano-shi, Kanagawa Prefecture Toshiba Ceramics Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素質多孔体であって、炭化珪素粒
子間にムライト粒子が均一に分散してなることを特徴と
する炭化珪素質多孔体。
1. A silicon carbide-based porous body characterized in that mullite particles are uniformly dispersed between silicon carbide particles.
【請求項2】 (1)平均粒径1〜500μmの炭化珪
素粉末に対し、シリコンアルコキシド、アルミニウムア
ルコキシド、pH3以下に調整した水及び水に可溶で沸
点が120℃以上の少なくとも1種類の有機溶媒からな
る結合剤を30〜100重量部添加して混合してスラリ
ーを形成するスラリー生成工程、 (2)前記スラリー生成工程で生成したスラリーをゲル
化して成形する成形工程、及び (3)前記成形工程で得られた成形体を乾燥後、減圧
下、不活性ガス雰囲気下及び還元性ガス雰囲気下のいず
れかにおいて1600〜2000℃で焼成する焼成工程
から成ることを特徴とする炭化珪素質多孔体の製造方
法。
2. (1) Silicon alkoxide, aluminum alkoxide, water adjusted to pH 3 or less, and at least one organic compound soluble in water and having a boiling point of 120 ° C. or more with respect to silicon carbide powder having an average particle diameter of 1 to 500 μm. A slurry forming step of forming a slurry by adding and mixing 30 to 100 parts by weight of a binder composed of a solvent, (2) a forming step of gelling and forming the slurry generated in the slurry forming step, and (3) the forming step A silicon carbide-based porous body characterized by comprising a firing step of drying the molded body obtained in the molding step and then firing at 1600 to 2000 ° C. under reduced pressure, under an inert gas atmosphere or under a reducing gas atmosphere. How to make the body.
【請求項3】 前記成形工程で得られた成形体を、耐熱
性詰め粉中で乾燥する請求項2記載の炭化珪素質多孔体
の製造方法。
3. The method for producing a silicon carbide-based porous body according to claim 2, wherein the molded body obtained in the molding step is dried in a heat-resistant packing powder.
JP9173208A 1997-06-12 1997-06-12 Silicon carbide-based porous body and its production Pending JPH111372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173208A JPH111372A (en) 1997-06-12 1997-06-12 Silicon carbide-based porous body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173208A JPH111372A (en) 1997-06-12 1997-06-12 Silicon carbide-based porous body and its production

Publications (1)

Publication Number Publication Date
JPH111372A true JPH111372A (en) 1999-01-06

Family

ID=15956129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173208A Pending JPH111372A (en) 1997-06-12 1997-06-12 Silicon carbide-based porous body and its production

Country Status (1)

Country Link
JP (1) JPH111372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238744A (en) * 2007-03-28 2008-10-09 Toshiba Corp Multilayer porous material and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238744A (en) * 2007-03-28 2008-10-09 Toshiba Corp Multilayer porous material and its production process

Similar Documents

Publication Publication Date Title
KR100668574B1 (en) Core Compositions and Articles with Improved Performance for Use in Castings for Gas Turbine Applications
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
CN106348736A (en) Method for rapidly curing ceramic slurry
KR100419346B1 (en) Method for preparing porous yttria stabilized zirconia
KR100491022B1 (en) Microporous Ceramics materials and The producing method the same
RU2141928C1 (en) Method of preparing monolithic quartz glass using sol-gel process
AU764586B2 (en) Sol-gel process using porous mold
JPH01239056A (en) Alumina pipe and its production
JPH111372A (en) Silicon carbide-based porous body and its production
JPH05345685A (en) Production of siliceous porous material
CN106946454B (en) Method for producing a composite of materials having a high silicic acid content
JP2002037682A (en) Porous silicon carbide sintered body and its manufacturing method
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP3213384B2 (en) Manufacturing method of quartz glass
CN107352781B (en) Preparation method for silicon nitride porous ceramic material through rapid curing molding
JP2968939B2 (en) Freezing molding method of ceramics using polyvinyl alcohol solution
JPS6310118B2 (en)
RU2013889C1 (en) Material for electric heating elements and method of it manufacturing
JPH02281769A (en) Manufacture of porous piezoelectric material
WO2022200629A1 (en) Material and process for fabricating and shaping of transparent ceramics
JPH0340959A (en) Method for forming superconductive ceramic and product obtained thereby
KR100258217B1 (en) Fabricaion method of silica glass by sol-gel process
JP2007277030A (en) Silicon carbide sintered compact for heater and method of manufacturing the same
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051222