JPH05343755A - Superconductive element - Google Patents
Superconductive elementInfo
- Publication number
- JPH05343755A JPH05343755A JP4150558A JP15055892A JPH05343755A JP H05343755 A JPH05343755 A JP H05343755A JP 4150558 A JP4150558 A JP 4150558A JP 15055892 A JP15055892 A JP 15055892A JP H05343755 A JPH05343755 A JP H05343755A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- oxide superconductor
- oxide
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、酸化物超電導体薄膜を
利用した超電導素子に係り、特に大きい超電導電流を流
せる方向を基板と垂直方向に設定した積層型の超電導素
子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device using an oxide superconducting thin film, and more particularly to a laminated superconducting device in which a direction in which a large superconducting current can flow is set in a direction perpendicular to a substrate.
【0002】[0002]
【従来の技術】超電導素子としては、従来から、Pbある
いはNb等の金属超電導体を用いて、超電導電子対がトン
ネルできる程度の薄い絶縁層を挟み込んだ積層構造のト
ンネル型ジョセフソン接合素子等が知られている。この
ような従来のトンネル型ジョセフソン素子は、液体ヘリ
ウム温度に近い極低温での動作が必要とされている。ま
た、トンネル型ジョセフソン接合に特有なヒステリシス
を持つ電流−電圧特性を示すために、回路構成が複雑に
なる等の問題を有しており、広く実用に供されるまでに
は至っていない。2. Description of the Related Art Conventionally, as a superconducting element, a tunnel-type Josephson junction element or the like having a laminated structure in which a metal superconductor such as Pb or Nb is used and a thin insulating layer capable of tunneling a superconducting conductor pair is sandwiched is used. Are known. Such a conventional tunnel type Josephson element is required to operate at an extremely low temperature close to the temperature of liquid helium. Further, since it exhibits a current-voltage characteristic having a hysteresis peculiar to the tunnel type Josephson junction, there is a problem that the circuit configuration becomes complicated, and it has not been widely put into practical use.
【0003】一方、金属超電導体を用いた、ヒステリシ
ス特性を持たないジョセフソン接合素子として、金属超
電導体からなる主電極間を、これと積層した薄い金属に
よって接続した、いわゆるブリッジ型接合の開発も進め
られている。しかし、このようなブリッジ型接合は、上
述したトンネル型接合の場合と同様に、液体ヘリウム温
度に近い極低温での動作が必要であると共に、ブリッジ
部の抵抗が小さく、かつ金属超電導体の超電導ギャップ
自体も小さいために、大きな出力電圧を得ることが困難
であった。On the other hand, as a Josephson junction element using a metal superconductor and having no hysteresis characteristic, a so-called bridge-type junction in which main electrodes made of a metal superconductor are connected by a thin metal laminated on the main electrodes is also developed. It is being advanced. However, such a bridge-type junction needs to operate at an extremely low temperature close to the temperature of liquid helium, has a low resistance in the bridge portion, and has a superconducting property of a metal superconductor, as in the case of the tunnel-type junction described above. Since the gap itself is small, it is difficult to obtain a large output voltage.
【0004】このような状況の下で、最近、液体窒素温
度以上の高温で超電導特性を示す酸化物超電導材料が発
見され、大きな注目を集めている。この酸化物超電導体
を用いて、積層型のトンネルジョセフソン接合、あるい
はブリッジ型接合を作製することが可能になれば、上述
した従来の金属超電導体を用いて構成したジョセフソン
接合に比べ、少なくとも極低温動作の必要がなくなるこ
とから、広範囲な応用が期待される。Under these circumstances, an oxide superconducting material which exhibits superconducting properties at a temperature higher than the liquid nitrogen temperature has recently been discovered and has been attracting a great deal of attention. If it becomes possible to fabricate a stacked tunnel Josephson junction or a bridge junction using this oxide superconductor, at least as compared with the Josephson junction configured using the conventional metal superconductor described above. A wide range of applications is expected because there is no need for cryogenic operation.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、酸化物
超電導体はその特性に大きな異方性を持ち、コヒーレン
ス長の短いc軸方向を基板に垂直とした積層構造では、
実用上十分な超電導電流を積層界面を通して流すことが
できないという本質的な問題を有している。However, the oxide superconductor has a large anisotropy in its characteristics, and in the laminated structure in which the c-axis direction having a short coherence length is perpendicular to the substrate,
There is an essential problem that a superconducting current that is practically sufficient cannot flow through the laminated interface.
【0006】一方、酸化物超電導体のc軸を基板と平行
とし、これと平行な界面を持つ積層構造を作製すること
によって、積層界面を通して実用的な超電導電流を流す
ことが可能となるものの、酸化物超電導体固有のc軸方
向の熱膨脹率が異常に大きいという性質により、高温で
の製膜後の冷却時に、基板結晶との間に大きな歪みが生
じ、酸化物超電導体薄膜にクラックが生じ易いという問
題があった。On the other hand, by making the c-axis of the oxide superconductor parallel to the substrate and producing a laminated structure having an interface parallel to this, it becomes possible to flow a practical superconducting current through the laminated interface. Due to the unusually large coefficient of thermal expansion in the c-axis direction specific to the oxide superconductor, a large strain is generated between the oxide superconductor and the substrate crystal at the time of cooling after film formation at high temperature, causing cracks in the oxide superconductor thin film. There was a problem that it was easy.
【0007】このように、臨界温度の高い酸化物超電導
体を用いたジョセフソン接合等の超電導素子の開発は、
産業上大きな効果をもたらすものと期待されているが、
現状では流し得る超電導電流が不十分であったり、ある
いは酸化物超電導体薄膜を安定に形成することができな
い等の難点を有することから、十分に実用に供するまで
には至っていない。よって、酸化物超電導体を用いた超
電導素子を実用に供し得る積層構造およびその製造方法
の開発が急務とされている。Thus, the development of a superconducting element such as a Josephson junction using an oxide superconductor having a high critical temperature is
It is expected to bring great effects to the industry,
At present, the superconducting current that can be flowed is insufficient, or the oxide superconductor thin film cannot be stably formed. Therefore, it has not been sufficiently put to practical use. Therefore, there is an urgent need to develop a laminated structure and a manufacturing method thereof that can be put to practical use for a superconducting element using an oxide superconductor.
【0008】本発明は、このような課題に対処するため
になされたもので、c軸が基板面と平行となる酸化物超
電導体薄膜ならびにその積層構造を、クラック等の発生
を防止して再現性よく得ることができ、かつ制御性に優
れると共に、大きい出力電圧が得られる超電導素子を提
供することを目的としている。The present invention has been made in order to solve such a problem, and reproduces an oxide superconductor thin film and its laminated structure in which the c-axis is parallel to the substrate surface while preventing the occurrence of cracks and the like. It is an object of the present invention to provide a superconducting element that can be obtained with good performance, is excellent in controllability, and can obtain a large output voltage.
【0009】[0009]
【課題を解決するための手段】本発明の超電導素子は、
酸化物材料からなる基板と、REBa2 Cu3 O 7 (REは希土
類元素から選ばれた少なくとも 1種の元素を示す)で実
質的に表される組成を有し、その単位格子のc軸が前記
基板の製膜面と平行となるように配向された酸化物超電
導体薄膜とを具備する超電導素子において、前記基板と
酸化物超電導体薄膜との間に、RE(Ba2-x REx )Cu3 O
7 (0< x<1)で表される組成を有する中間層を設けたこ
とを特徴としている。The superconducting element of the present invention comprises:
It has a composition substantially represented by a substrate made of an oxide material and REBa 2 Cu 3 O 7 (RE represents at least one element selected from rare earth elements), and the c-axis of its unit cell is In a superconducting element comprising an oxide superconductor thin film oriented so as to be parallel to the film forming surface of the substrate, between the substrate and the oxide superconductor thin film, RE (Ba 2-x RE x ) Cu 3 O
It is characterized in that an intermediate layer having a composition represented by 7 (0 <x <1) is provided.
【0010】本発明の超電導素子における酸化物超電導
体薄膜は、 化学式:REBa2 Cu3 O 7 ………(1) (式中、REは Y、La、Sc、Nd、Sm、Eu、Gd、Dy、Ho、E
r、Tm、Yb、Lu等の希土類元素から選ばれた少なくとも
1種の元素を示す)で実質的に表される組成を有してい
る。ただし、各元素のモル比は厳密に上記比率を満足さ
せなければならないものではなく、超電導特性が得られ
る範囲であれば多少の変動は許容される。そして、本発
明の酸化物超電導体薄膜は、その単位格子のc軸が基板
の製膜面と平行となるように配向させた薄膜であり、基
板面と垂直な方向(膜の積層方向)に大きな超電導電流
を流すことが可能な、いわゆるa軸配向膜である。The oxide superconductor thin film in the superconducting element of the present invention has a chemical formula: REBa 2 Cu 3 O 7 (1) (where RE is Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, E
At least selected from rare earth elements such as r, Tm, Yb, and Lu
(Indicating one kind of element). However, the molar ratio of each element does not have to strictly satisfy the above ratio, and some variation is allowed as long as the superconducting characteristics can be obtained. The oxide superconductor thin film of the present invention is a thin film oriented so that the c-axis of its unit cell is parallel to the film forming surface of the substrate, and is oriented in the direction perpendicular to the substrate surface (the film stacking direction). It is a so-called a-axis alignment film capable of flowing a large superconducting current.
【0011】本発明の超電導素子においては、酸化物基
板とa軸配向させた酸化物超電導体薄膜との間に、 化学式:RE(Ba2-x REx )Cu3 O 7 ………(2) (式中、REは Y、La、Sc、Pr、Nd、Sm、Eu、Gd、Dy、H
o、Er、Tm、Yb、Lu等の希土類元素から選ばれた少なく
とも 1種の元素を示し、 xは 0< x< 1を満足する数で
ある)で組成が表される中間層を介在させている。この
中間層の構成化合物は、酸化物超電導体と同じ結晶構造
を有するが、結晶格子中のBaの一部が希土類原子で置換
されており、そのc軸方向の格子定数が酸化物超電導体
に比べて小さいと共に、室温以上での熱膨張率も小さ
く、酸化物基板と酸化物超電導体との中間的な熱膨張率
を有するものである。これら格子定数や熱膨張率は、希
土類原子によるBaの置換量(xの値)に基くものである。
ただし、 xの値が 1以上となると、結晶構造が変化する
ため、上記 (2)式における xの値は 1未満とする。In the superconducting device of the present invention, the chemical formula: RE (Ba 2 -x RE x ) Cu 3 O 7 ..... (2) is provided between the oxide substrate and the a-axis oriented oxide superconductor thin film. ) (Where RE is Y, La, Sc, Pr, Nd, Sm, Eu, Gd, Dy, H
an at least one element selected from rare earth elements such as o, Er, Tm, Yb, and Lu, where x is a number satisfying 0 <x <1) and an intermediate layer having a composition represented by ing. The constituent compound of this intermediate layer has the same crystal structure as that of the oxide superconductor, but part of Ba in the crystal lattice is replaced with a rare earth atom, and the lattice constant in the c-axis direction of the oxide superconductor is the same as that of the oxide superconductor. In addition to being small, the thermal expansion coefficient at room temperature or higher is also small, and the thermal expansion coefficient is intermediate between that of the oxide substrate and that of the oxide superconductor. These lattice constants and coefficients of thermal expansion are based on the substitution amount (value of x) of Ba with rare earth atoms.
However, if the value of x is 1 or more, the crystal structure changes, so the value of x in the above formula (2) is set to less than 1.
【0012】このような中間層を介在させることによっ
て、酸化物基板と酸化物超電導体薄膜との熱膨脹率の差
に起因して生じる歪みを緩和することができる。なお、
中間層となる化合物中の希土類元素(RE)は、適用した酸
化物超電導体の希土類元素と同一であっても、また異な
るものでもよく、基板表面の被覆性や成長の均一性等を
考慮して決定すればよい。なお、 1種類の希土類元素を
用いる代わりに、 2種以上の希土類元素を混在させて用
いた方が効果が顕著になる場合もある。By interposing such an intermediate layer, the strain caused by the difference in thermal expansion coefficient between the oxide substrate and the oxide superconductor thin film can be relaxed. In addition,
The rare earth element (RE) in the compound to be the intermediate layer may be the same as or different from the rare earth element of the applied oxide superconductor, and in consideration of the coverage of the substrate surface and the growth uniformity. And decide. In some cases, the effect may be more remarkable when two or more kinds of rare earth elements are mixed and used instead of using one kind of rare earth element.
【0013】上記したような中間層の具体的な構成とし
ては、 (1) 酸化物基板との界面側から酸化物超電導体薄膜との
界面側に向けて、厚さ方向にBaの置換率(xの値)を徐々
に減少させた、 xの値が連続的に変化する化合物層。The specific structure of the intermediate layer as described above is as follows: (1) From the interface side with the oxide substrate to the interface side with the oxide superconductor thin film, the Ba substitution rate ( A compound layer in which the value of x is continuously changed by gradually decreasing the value of x.
【0014】(2) Baの置換率(xの値)が異なる複数の化
合物層を積層すると共に、これら複数の化合物層の xの
値を酸化物基板との界面側から酸化物超電導体薄膜との
界面側に向けて減少するように設定したもの。(2) A plurality of compound layers having different Ba substitution rates (values of x) are laminated, and the value of x of the plurality of compound layers is changed from the interface side with the oxide substrate to the oxide superconductor thin film. Set to decrease toward the interface side of.
【0015】等が好ましい。このように、中間層内のBa
置換率を基板側では大きくし、かつ酸化物超電導体薄膜
側では零に近似させることによって、高温での製膜時に
おける酸化物基板および酸化物超電導体薄膜両者の結晶
格子の整合性が改善される。従って、製膜後の冷却過程
での歪みの集積が緩和され、それに伴うクラックの発生
等を防止することができる。ただし、本発明において
は、単一のBa置換率を有する (2)式の化合物からなる中
間層を除くものではない。Etc. are preferred. Thus, Ba in the middle layer
By increasing the substitution rate on the substrate side and making it close to zero on the oxide superconductor thin film side, the matching of the crystal lattices of both the oxide substrate and the oxide superconductor thin film during film formation at high temperature is improved. It Therefore, the accumulation of strain in the cooling process after film formation is alleviated, and it is possible to prevent the occurrence of cracks and the like. However, the present invention does not exclude the intermediate layer composed of the compound of the formula (2) having a single Ba substitution ratio.
【0016】また、酸化物超電導体のc軸方向の大きい
熱膨脹率は、超電導性の発現の条件である斜方晶構造に
結び付いているものであることから、酸化物基板との界
面では正方晶、酸化物超電導体薄膜との界面では斜方晶
となるように、 (2)式におけるBaの置換率を設定するこ
とが好ましく、これによってより大きな効果が期待でき
る。Further, the large coefficient of thermal expansion in the c-axis direction of the oxide superconductor is linked to the orthorhombic structure, which is a condition for manifestation of superconductivity, so that it is tetragonal at the interface with the oxide substrate. It is preferable to set the Ba substitution ratio in the formula (2) so that an orthorhombic crystal is formed at the interface with the oxide superconductor thin film, and a larger effect can be expected.
【0017】[0017]
【作用】一般に、良好な酸化物超電導体膜を製膜するた
めには、薄膜形成に必要な 700℃前後の温度で酸化物超
電導体と反応せず、かつ結晶格子の寸法が近い材料から
なる基板を用いる必要がある。このような基板として
は、 SrTiO3 やこれと類似のペロブスカイト構造の酸化
物が広く用いられている。これらの基板は、図2に示す
ように、室温では酸化物超電導体のc軸とよい格子整合
性を示すが、製膜が行われるような高温ではその整合性
が悪い。これは、酸化物超電導体のc軸方向の熱膨張率
が特異な温度依存性を示すためである。この特異な温度
依存性は、酸化物超電導体中の銅と酸素原子が 1次元の
秩序構造を作り、結晶系が高温での正方晶から、低温で
の斜方晶に変化する現象と対応している。従って、酸化
物超電導体のc軸が基板面と平行となるように配向させ
て製膜する場合、高温での製膜時には、基板上の酸化物
超電導体膜は圧縮力を受けながら成長することになる。
また、製膜が終了した後に基板を冷却していくと、酸化
物超電導体膜は収縮し、圧縮力が引張り力に変化する。
この結果、室温まで冷却する過程で、酸化物超電導体膜
にはクラックが発生する。酸化物超電導体は、c面に沿
ってへき開性が強いため、このクラックは酸化物超電導
体膜が薄くても防止することが難しい。[Function] Generally, in order to form a good oxide superconductor film, it is made of a material that does not react with the oxide superconductor at a temperature of about 700 ° C. necessary for thin film formation and has a crystal lattice size close to that of the material. It is necessary to use a substrate. As such a substrate, SrTiO 3 or a similar oxide having a perovskite structure is widely used. As shown in FIG. 2, these substrates show good lattice matching with the c-axis of the oxide superconductor at room temperature, but have poor matching at high temperatures where film formation is performed. This is because the coefficient of thermal expansion of the oxide superconductor in the c-axis direction exhibits a unique temperature dependence. This peculiar temperature dependence corresponds to the phenomenon that the copper and oxygen atoms in the oxide superconductor form a one-dimensional ordered structure, and the crystal system changes from tetragonal at high temperature to orthorhombic at low temperature. ing. Therefore, when a film is formed by orienting so that the c-axis of the oxide superconductor is parallel to the substrate surface, the oxide superconductor film on the substrate should grow while receiving a compressive force when the film is formed at a high temperature. become.
Further, when the substrate is cooled after the film formation is completed, the oxide superconductor film contracts, and the compressive force changes to the tensile force.
As a result, cracks occur in the oxide superconductor film during the process of cooling to room temperature. Since the oxide superconductor has a strong cleavage property along the c-plane, it is difficult to prevent this crack even if the oxide superconductor film is thin.
【0018】一方、RE-Ba-Cu-O系の化合物では、REのモ
ル比を 1より大きく、Baのモル比を2より小さくする
と、希土類原子が一部バリウム原子の位置に入り、結晶
構造には大きな変化を起こすことなく結晶が成長する。
この場合、希土類原子の大きさはバリウムに比較して小
さいために格子定数が小さくなる。また、酸素原子の占
める位置も一部変化し、酸化物超電導体の持つc軸方向
の大きな熱膨脹率の原因であった銅と酸素の 1次元鎖構
造が形成されなくなる。この結果、熱膨脹率も図2に見
られるような大きな値をとらなくなる。このような変化
は、バリウム位置を占める希土類原子の量に依存する。
また、希土類原子のモル比を 1.3以上(すなわちバリウ
ム原子のモル比を 1.7以下)とすることで、室温でも正
方晶が維持されるようにすることができる。On the other hand, in the RE-Ba-Cu-O system compound, when the RE molar ratio is larger than 1 and the Ba molar ratio is smaller than 2, some of the rare earth atoms enter the barium atom positions and the crystal structure The crystal grows without significant change.
In this case, since the size of the rare earth atom is smaller than that of barium, the lattice constant is small. Further, the position occupied by oxygen atoms also partly changes, and the one-dimensional chain structure of copper and oxygen, which was the cause of the large coefficient of thermal expansion in the c-axis direction of the oxide superconductor, is not formed. As a result, the coefficient of thermal expansion does not take a large value as seen in FIG. Such changes depend on the amount of rare earth atoms occupying the barium position.
Further, by setting the molar ratio of rare earth atoms to 1.3 or more (that is, the molar ratio of barium atoms to 1.7 or less), it is possible to maintain a tetragonal crystal even at room temperature.
【0019】本発明の超電導素子は、上述したような現
象を利用したものであり、基本的には酸化物基板と酸化
物超電導体薄膜との間に、これらの中間的な格子定数お
よび熱膨張率を有する中間層を介在させることによっ
て、熱膨張差等に起因する歪みを緩和したものである。
さらには、例えば酸化物基板に接して中間層を成長させ
る段階では、酸化物超電導体膜を得る場合に比べて、希
土類原子を過剰に、バリウム原子を少なく供給して製膜
し、徐々に組成比を超電導組成に変化させることで、薄
膜の格子定数および熱膨脹率を変化させることができ、
これにより上部に形成される酸化物超電導体膜に蓄積さ
れる歪みエネルギーをより一層小さくすることができ
る。このようなことから、酸化物基板上にc軸が基板面
と平行となるように配向させたREBa2 Cu3 O 7 組成の酸
化物超電導体薄膜中には大きな応力が残存せず、その結
果、クラックの発生や超電導転移温度の低下等を防止す
ることができ、よってこの酸化物超電導体薄膜上に良好
な特性を示す積層型素子を形成することが可能となる。The superconducting element of the present invention utilizes the above-mentioned phenomenon, and basically, an intermediate lattice constant and thermal expansion between the oxide substrate and the oxide superconductor thin film are provided between them. By interposing an intermediate layer having a coefficient, strain caused by a difference in thermal expansion or the like is relaxed.
Further, for example, in the step of growing the intermediate layer in contact with the oxide substrate, as compared with the case of obtaining the oxide superconductor film, the rare earth atoms are excessively supplied, the barium atoms are supplied in a small amount, and the film is gradually formed. By changing the ratio to a superconducting composition, the lattice constant and the coefficient of thermal expansion of the thin film can be changed,
This makes it possible to further reduce the strain energy accumulated in the oxide superconductor film formed above. Therefore, no large stress remains in the oxide superconductor thin film of REBa 2 Cu 3 O 7 composition oriented on the oxide substrate so that the c-axis is parallel to the substrate surface. Further, it is possible to prevent the occurrence of cracks, the reduction of the superconducting transition temperature, and the like, and thus it becomes possible to form the laminated element having good characteristics on the oxide superconductor thin film.
【0020】なお、上記中間層における組成の変化は連
続的に行ってもよいが、制御の容易さを考慮すれば、組
成を変化させる中間層を多層構造とし、層間での組成に
若干の不連続を持たせながら段階的に変化させる方法が
好ましい。中間層の基板側界面では、結晶構造が室温に
おいても正方晶に保たれるよう、組成比を制御すること
が、基板と中間層間の歪みを小さくするために有効であ
ることは、上述した議論から明らかである。The composition of the intermediate layer may be changed continuously, but in view of easiness of control, the intermediate layer of which the composition is changed has a multi-layer structure, and the composition between the layers is slightly different. A method of gradually changing while maintaining continuity is preferable. At the interface of the intermediate layer on the substrate side, controlling the composition ratio so that the crystal structure is kept tetragonal even at room temperature is effective for reducing the strain between the substrate and the intermediate layer. Is clear from.
【0021】[0021]
【実施例】以下、本発明の実施例について図面を参照し
て説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0022】図1は、本発明の超電導素子を適用した一
実施例のジョセフソン接合素子の構造を示す断面図であ
る。同図において、1は SrTiO3 (100)単結晶体からな
る基板であり、この SrTiO3 (100)基板1上には中間層
2として、前述した (2)式で表される化合物膜、例えば
Pr(Ba2-x Prx )Cu3 O 7 膜(以下、 Pr-(Ba,Pr)-Cu-O
膜と記す)が形成されている。この Pr-(Ba,Pr)-Cu-O膜
2は、基板1側ではPrの過剰量が大きくなり(例えば x
の値が 1.5)、かつ後述する YBa2 Cu3 O 7 膜3側では
Prのモル比が 1に近似するように、膜の厚さ方向にPrと
Baのモル比(すなわち xの値)を変化させたものであ
る。FIG. 1 is a sectional view showing the structure of a Josephson junction element of an embodiment to which the superconducting element of the present invention is applied. In the figure, 1 is a substrate made of a SrTiO 3 (100) single crystal, and a compound film represented by the above formula (2), for example, an intermediate layer 2 on the SrTiO 3 (100) substrate 1,
Pr (Ba 2-x Pr x ) Cu 3 O 7 film (hereinafter Pr- (Ba, Pr) -Cu-O
(Hereinafter referred to as a film) is formed. The Pr- (Ba, Pr) -Cu-O film 2 has a large Pr excess on the substrate 1 side (for example, x
Is 1.5), and on the YBa 2 Cu 3 O 7 film 3 side described later,
In order to approximate the Pr molar ratio to 1, Pr and Pr
It is the one that changes the molar ratio of Ba (that is, the value of x).
【0023】また、上記 Pr-(Ba,Pr)-Cu-O膜2は、基板
1として SrTiO3 (100)単結晶体を用いていると共に、
その製膜条件を制御することによって、単位格子のc軸
が基板1の製膜面に対して平行となるように配向された
膜である。Further, the Pr- (Ba, Pr) -Cu-O film 2 uses the SrTiO 3 (100) single crystal as the substrate 1, and
By controlling the film forming conditions, the film is oriented so that the c-axis of the unit lattice is parallel to the film forming surface of the substrate 1.
【0024】上記Pr-Ba-Cu-O層2上には、厚さ 300nmの
YBa2 Cu3 O 7 膜(以下、 Y-Ba-Cu-O膜と記す)からな
る下部電極3、厚さ25nmのPrBa2 Cu3 O 7 膜(以下、Pr
-Ba-Cu-O膜と記す)からなるバリア層4、厚さ 100nmの
Y-Ba-Cu-O膜からなる上部電極5が順に積層形成されて
いる。下部電極3および上部電極5を構成する Y-Ba-Cu
-O膜は、いずれもその単位格子のc軸が基板1の製膜面
に対して平行となるように配向された膜、すなわちa軸
配向された膜である。また、上部電極5上には、厚さ 1
00nmの金蒸着膜からなる表面保護層6が設けられてい
る。On the Pr-Ba-Cu-O layer 2 having a thickness of 300 nm,
Lower electrode 3 consisting of YBa 2 Cu 3 O 7 film (hereinafter referred to as Y-Ba-Cu-O film), PrBa 2 Cu 3 O 7 film with a thickness of 25 nm (hereinafter Pr
-Ba-Cu-O film), a barrier layer 4 having a thickness of 100 nm
An upper electrode 5 made of a Y-Ba-Cu-O film is sequentially laminated. Y-Ba-Cu forming the lower electrode 3 and the upper electrode 5
Each of the -O films is a film oriented such that the c-axis of its unit cell is parallel to the film-forming surface of the substrate 1, that is, an a-axis oriented film. In addition, the thickness of 1
A surface protection layer 6 made of a 00 nm gold vapor deposition film is provided.
【0025】また、上記バリア層4、上部電極5および
金保護層6は、接合面積が10μm 角となるようにパター
ニングされている。そして、これらによる積層部および
下部電極3は、絶縁膜7により覆われており、この絶縁
膜7に設けられたコンタクトホール7aを介して、上部
電極5へのAu配線層8が接続されて、積層型ジョセフソ
ン接合素子が構成されている。The barrier layer 4, the upper electrode 5 and the gold protective layer 6 are patterned so that the bonding area is 10 μm square. The laminated portion and the lower electrode 3 formed by them are covered with the insulating film 7, and the Au wiring layer 8 is connected to the upper electrode 5 through the contact hole 7a provided in the insulating film 7. A stacked Josephson junction element is constructed.
【0026】上記実施例のジョセフソン接合素子は、a
軸配向させた健全な酸化物超電導体薄膜により積層型の
接合を形成しているため、積層界面を通して実用的な超
電導電流を流すことができ、さらには大きな出力電圧を
得ることが可能となる。The Josephson junction device of the above embodiment is a
Since a layered junction is formed by a healthy oxide superconductor thin film that is axially oriented, a practical superconducting current can be passed through the layer interface, and a large output voltage can be obtained.
【0027】上記実施例によるジョセフソン接合素子
は、例えば以下のようにして作製される。この実施例の
ジョセフソン接合素子の製造工程を図3を参照して述べ
る。The Josephson junction device according to the above embodiment is manufactured, for example, as follows. The manufacturing process of the Josephson junction device of this embodiment will be described with reference to FIG.
【0028】まず、図1(a)に示すように、 SrTiO3
(100)基板1の上に多元反応性スパッタ法で中間層であ
る Pr-(Ba,Pr)-Cu-O層2を製膜する。この製膜にあたっ
ては、Pr、Cu、Ba2 CuO 3 の各ターゲットを用い、薄膜
作製過程でPrターゲットとBa2 CuO 3 ターゲットに印加
する高周波電力を徐々に変えることで、PrとBaの組成比
を変化させた。この実施例においては、基板1側の界面
でのPrおよびBaのモル比はそれぞれ 1.5とし、 100nmの
厚さの範囲で徐々に Pr:Ba=1:2まで変化させた。次い
で、この中間層2上に、同一真空容器中で Y、Cu、Ba2
CuO 3 の各ターゲットを使用し、下部電極3として厚さ
300nmの Y-Ba-Cu-O膜、バリア層4として厚さ25nmのPr
-Ba-Cu-O膜、上部電極5として厚さ 100nmの Y-Ba-Cu-O
膜を順次成長させた。製膜時の温度は 680℃とし、作製
した薄膜はいずれもc軸が基板面に平行なa軸配向して
いることをX線回折によって確認した。First, as shown in FIG. 1 (a), SrTiO 3
An Pr- (Ba, Pr) -Cu-O layer 2 which is an intermediate layer is formed on the (100) substrate 1 by a multi-reactive sputtering method. In this film formation, Pr, Cu, and Ba 2 CuO 3 targets were used, and the composition ratio of Pr and Ba was gradually changed by gradually changing the high-frequency power applied to the Pr target and Ba 2 CuO 3 target during the thin film formation process. Was changed. In this example, the molar ratios of Pr and Ba at the interface on the substrate 1 side were each set to 1.5 and gradually changed to Pr: Ba = 1: 2 within the thickness range of 100 nm. Then, on this intermediate layer 2, in the same vacuum container, Y, Cu, Ba 2
Using each target of CuO 3 , thickness as the lower electrode 3
300nm Y-Ba-Cu-O film, 25nm Pr as barrier layer 4
-Ba-Cu-O film, Y-Ba-Cu-O with a thickness of 100 nm as the upper electrode 5
The film was grown sequentially. The temperature during film formation was set at 680 ° C., and it was confirmed by X-ray diffraction that the c-axis of each of the prepared thin films was a-axis oriented parallel to the substrate surface.
【0029】得られた積層膜の超電導転移温度は 83Kで
あった。この転移温度が理想的なY-Ba-Cu-O膜の持つ 92
Kに比べて若干低いのは、製膜時の基板温度が低いため
である。a軸配向を維持して転移温度を高めるには、配
向性が決定される中間層2の作製時には上記温度とし、
酸化物超電導体膜作製時には基板温度を高めればよい。
作製された積層膜の表面は極めて平滑であり、高分解能
の電子顕微鏡によってもクラック等の発生は一切観察さ
れなかった。The superconducting transition temperature of the obtained laminated film was 83K. This transition temperature is ideal for Y-Ba-Cu-O films.
It is slightly lower than K because the substrate temperature during film formation is low. In order to maintain the a-axis orientation and raise the transition temperature, the above temperature is set when the intermediate layer 2 whose orientation is determined is produced,
The substrate temperature may be raised during the production of the oxide superconductor film.
The surface of the produced laminated film was extremely smooth, and cracks and the like were not observed even by a high-resolution electron microscope.
【0030】また、本発明との比較として、中間層2を
用いない積層膜、ならびにPrBa2 Cu3 O 7 の組成の単純
な中間層を用いた積層膜をそれぞれ作製したところ、い
ずれも微小なクラック構造が認められ、超電導転移温度
は 70K前後であった。このことは、本発明の効果を明瞭
に示すものである。Further, as a comparison with the present invention, a laminated film not using the intermediate layer 2 and a laminated film using a simple intermediate layer having a composition of PrBa 2 Cu 3 O 7 were prepared. A crack structure was observed and the superconducting transition temperature was around 70K. This clearly shows the effect of the present invention.
【0031】上記積層膜を形成した後の加工工程は、通
常の半導体素子の作製に用いられるものと同様である。
すなわち、図3(b)に示すように、表面の保護のため
に厚さ 100nmの金蒸着膜6を形成した後、光学露光法で
接合部のパターンをレジスト膜に転写し、次いでレジス
トをマスクとしてイオンミリング法により、上部電極と
なる Y-Ba-Cu-O膜5とバリア層となる中間のPr-Ba-Cu-O
膜4をエッチングする。接合面積は10μm 角とした。The processing steps after forming the above-mentioned laminated film are the same as those used in the manufacture of ordinary semiconductor elements.
That is, as shown in FIG. 3 (b), after forming a 100 nm-thick gold vapor deposition film 6 to protect the surface, the pattern of the bonding portion is transferred to the resist film by an optical exposure method, and then the resist is masked. As a result of the ion milling method, the Y-Ba-Cu-O film 5 serving as the upper electrode and the intermediate Pr-Ba-Cu-O serving as the barrier layer
The film 4 is etched. The joint area was 10 μm square.
【0032】次に、図3(c)に示すように、上部電極
5および下部電極3への配線を互いに絶縁するための絶
縁膜7を積層し、接合部上部のみに穴(コンタクトホー
ル7a)のあいた形に加工する。この絶縁膜7として
は、種々のものが利用できるが、この実施例では工程を
簡略化する目的でネガレジストを利用した。この後、上
部 Y-Ba-Cu-O膜5への配線8をAuによって形成すること
で、積層型ジョセフソン素子が完成する。Next, as shown in FIG. 3 (c), an insulating film 7 for insulating the wirings to the upper electrode 5 and the lower electrode 3 from each other is laminated, and a hole (contact hole 7a) is formed only in the upper portion of the junction. It is processed into a shape with a blank. Various materials can be used as the insulating film 7, but in this embodiment, a negative resist is used for the purpose of simplifying the process. After that, the wiring 8 to the upper Y-Ba-Cu-O film 5 is formed of Au to complete the stacked Josephson element.
【0033】図4は、この実施例で得られた超電導素子
の液体ヘリウム温度における電流−電圧特性である。臨
界電流として 1.2mA、素子の出力電圧であるIc ・Rn
積として 4mVが得られた。酸化物超電導体に期待される
出力電圧20mVに比べて低いのは、Pr-Ba-Cu-O膜4の厚さ
が最適化されていないためであり、Pr-Ba-Cu-O膜4を薄
くすることで、さらに良好な特性を得ることができる。FIG. 4 shows current-voltage characteristics of the superconducting element obtained in this example at the temperature of liquid helium. The critical current is 1.2 mA, and the output voltage of the device is I c · R n
A product of 4 mV was obtained. The output voltage lower than 20 mV expected for the oxide superconductor is because the thickness of the Pr-Ba-Cu-O film 4 is not optimized. By making the thickness thinner, better characteristics can be obtained.
【0034】また図5は、この実施例の超電導素子が実
際に均一なジョセフソン特性を示すことを確認するため
に行った臨界電流の印加磁界依存性を示す図である。こ
の図から分かるように、作製した素子は理想的なフラウ
ンホファーパターンを示した。このようなジョセフソン
特性は液体窒素温度でも確認され、本発明による超電導
素子が高温で動作し得ることを検証できた。FIG. 5 is a diagram showing the dependence of the critical current on the applied magnetic field, performed to confirm that the superconducting element of this example actually exhibits uniform Josephson characteristics. As can be seen from this figure, the fabricated device showed an ideal Fraunhofer pattern. Such Josephson characteristics were confirmed even at the liquid nitrogen temperature, and it was verified that the superconducting device according to the present invention could operate at a high temperature.
【0035】なお、上記実施例のジョセフソン接合素子
においては、中間層2として、Pr-(Ba,Pr)-Cu-O膜を用
いた例について説明したが、本発明はこれに限定される
ものではなく、中間層の組成制御性や中間層と酸化物超
電導体膜間の希土類元素の拡散防止が満たされれば、他
の希土類元素を用いた場合おいても同様な効果が期待で
きる。ただし、 Pr-(Ba,Pr)-Cu-O膜は酸化物基板との濡
れ性に優れることから、本発明に好適な材料といえる。In the Josephson junction device of the above embodiment, an example in which a Pr- (Ba, Pr) -Cu-O film is used as the intermediate layer 2 has been described, but the present invention is not limited to this. However, if the composition controllability of the intermediate layer and the prevention of diffusion of the rare earth element between the intermediate layer and the oxide superconductor film are satisfied, the same effect can be expected when other rare earth elements are used. However, since the Pr- (Ba, Pr) -Cu-O film has excellent wettability with the oxide substrate, it can be said to be a material suitable for the present invention.
【0036】[0036]
【発明の効果】以上に説明したように本発明によれば、
酸化物高温超電導体を利用した高温で動作し得るジョセ
フソン接合素子をはじめとして、積層構造を有する各種
の超電導素子の安定性、再現性を大幅に高めることがで
き、産業上多大な寄与をすることが期待される。As described above, according to the present invention,
The stability and reproducibility of various superconducting devices with a laminated structure, including Josephson junction devices that can operate at high temperatures using oxide high-temperature superconductors, can be greatly improved, making a great contribution to the industry. It is expected.
【図1】本発明の一実施例による超電導素子の構成を示
す断面図である。FIG. 1 is a sectional view showing a structure of a superconducting element according to an embodiment of the present invention.
【図2】Y-Ba-Cu-O系酸化物超電導体および基板用酸化
物の熱膨張率の温度依存性を示す図である。FIG. 2 is a diagram showing the temperature dependence of the thermal expansion coefficient of a Y-Ba-Cu-O-based oxide superconductor and an oxide for a substrate.
【図3】本発明の一実施例による超電導素子の製造工程
を示す断面図である。FIG. 3 is a cross-sectional view showing a manufacturing process of a superconducting element according to an embodiment of the present invention.
【図4】本発明の一実施例により得た超電導素子の電流
−電圧特性を示す図である。FIG. 4 is a diagram showing current-voltage characteristics of a superconducting element obtained according to an example of the present invention.
【図5】本発明の一実施例により得た超電導素子の臨界
電流の印加磁界依存性を示す図である。FIG. 5 is a diagram showing applied magnetic field dependence of a critical current of a superconducting device obtained according to an example of the present invention.
1…… SrTiO3 (100)基板 2…… Pr-(Ba,Pr)-Cu-O膜からなる中間層 3…… Y-Ba-Cu-O膜からなる下部電極 4……Pr-Ba-Cu-O膜からなるバリア層 5…… Y-Ba-Cu-O膜からなる上部電極1 …… SrTiO 3 (100) substrate 2 …… Intermediate layer consisting of Pr- (Ba, Pr) -Cu-O film 3 …… Lower electrode consisting of Y-Ba-Cu-O film 4 …… Pr-Ba- Barrier layer composed of Cu-O film 5 ... Upper electrode composed of Y-Ba-Cu-O film
Claims (1)
O 7 (REは希土類元素から選ばれた少なくとも 1種の元
素を示す)で実質的に表される組成を有し、その単位格
子のc軸が前記基板の製膜面と平行となるように配向さ
れた酸化物超電導体薄膜とを具備する超電導素子におい
て、 前記基板と酸化物超電導体薄膜との間に、RE(Ba2-x RE
x )Cu3 O 7 (0< x<1)で表される組成を有する中間層
を設けたことを特徴とする超電導素子。1. A substrate made of an oxide material, and REBa 2 Cu 3
It has a composition substantially represented by O 7 (RE represents at least one element selected from rare earth elements), and the c-axis of its unit cell is parallel to the film-forming surface of the substrate. In a superconducting device comprising an oriented oxide superconductor thin film, RE (Ba 2-x RE) is provided between the substrate and the oxide superconductor thin film.
x ) A superconducting device provided with an intermediate layer having a composition represented by Cu 3 O 7 (0 <x <1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4150558A JP2883493B2 (en) | 1992-06-10 | 1992-06-10 | Superconducting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4150558A JP2883493B2 (en) | 1992-06-10 | 1992-06-10 | Superconducting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05343755A true JPH05343755A (en) | 1993-12-24 |
JP2883493B2 JP2883493B2 (en) | 1999-04-19 |
Family
ID=15499510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4150558A Expired - Fee Related JP2883493B2 (en) | 1992-06-10 | 1992-06-10 | Superconducting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2883493B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008078639A (en) * | 2006-08-23 | 2008-04-03 | Chugoku Electric Power Co Inc:The | Josephson-junction element, method of forming the same, and superconducting junction circuit |
-
1992
- 1992-06-10 JP JP4150558A patent/JP2883493B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008078639A (en) * | 2006-08-23 | 2008-04-03 | Chugoku Electric Power Co Inc:The | Josephson-junction element, method of forming the same, and superconducting junction circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2883493B2 (en) | 1999-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106823A (en) | Josephson junctions made with thin superconductive layers | |
US5552375A (en) | Method for forming high Tc superconducting devices | |
JP4452805B2 (en) | Bismuth oxide superconducting thin film and method for producing the same | |
US5179070A (en) | Semiconductor substrate having a superconducting thin film with a buffer layer in between | |
US5250506A (en) | Superconductive switching element with semiconductor channel | |
EP0341148B1 (en) | A semiconductor substrate having a superconducting thin film | |
JP3189403B2 (en) | Element having superconducting junction and method of manufacturing the same | |
JP2883493B2 (en) | Superconducting element | |
US5468723A (en) | Method for forming a superconducting weak link device | |
JP3425422B2 (en) | Superconducting element manufacturing method | |
JP2831967B2 (en) | Superconducting element | |
JPH07309700A (en) | Oxide thin film, its production and superconducting element using the same | |
JPH02391A (en) | Superconductive field-effect transistor | |
JP2778892B2 (en) | Superconducting element manufacturing method | |
JP3328698B2 (en) | Intrinsic Josephson-type superconducting tunnel junction device | |
JP3696158B2 (en) | Superconducting element and manufacturing method thereof | |
US5362709A (en) | Superconducting device | |
JPH01101677A (en) | Electronic device | |
JP2899287B2 (en) | Josephson element | |
JPH0499078A (en) | Formation of thin film and manufacture of superconducting device using same | |
JPH03242320A (en) | Oxide superconductor thin film | |
JP2809557B2 (en) | Copper oxide material | |
JP2708673B2 (en) | Method of manufacturing superconducting thin film vertical junction device | |
JPH04288885A (en) | Tunnel-type josephson element | |
JPH0829938B2 (en) | Composite oxide superconducting thin film and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990119 |
|
LAPS | Cancellation because of no payment of annual fees |