JPH05343664A - Static induction thyristor - Google Patents

Static induction thyristor

Info

Publication number
JPH05343664A
JPH05343664A JP15096292A JP15096292A JPH05343664A JP H05343664 A JPH05343664 A JP H05343664A JP 15096292 A JP15096292 A JP 15096292A JP 15096292 A JP15096292 A JP 15096292A JP H05343664 A JPH05343664 A JP H05343664A
Authority
JP
Japan
Prior art keywords
region
gate
semiconductor substrate
cathode
gate region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15096292A
Other languages
Japanese (ja)
Inventor
Takashi Kishida
貴司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP15096292A priority Critical patent/JPH05343664A/en
Publication of JPH05343664A publication Critical patent/JPH05343664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gate breakdown voltage and to switch a static induction thyristor with low driving power in the thyristor having a driving gate region and a ground gate region. CONSTITUTION:A first gate region 13 formed on one surface of a semiconductor substrate is connected to a cathode electrode 16, and short-circuited to a cathode region 14. A second gate region 15 is buried, and connected to a gate electrode 17. An anode region 18 is formed on the other surface of the substrate. A distance between the region 15 of the buried structure and the region 13 formed on the surface is obtained to enhance a gate breakdown voltage, power loss of driving the gate is reduced to simplify a driving circuit. Further, injection of carrier at the time of turning OF is suppressed, and carrier storage time is short, and hence a high speed switching is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低駆動電力で大電力
を制御可能な静電誘導サイリスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic induction thyristor capable of controlling large electric power with low driving electric power.

【0002】[0002]

【従来の技術】従来、電力制御用半導体素子の一つとし
て、静電誘導サイリスタが知られている。静電誘導サイ
リスタはターンオフ時に残留キャリアをゲートから引き
抜くために、大きなゲート電流が流れるものであり、し
たがって、ゲート駆動回路に工夫を必要としていた。そ
こで、例えばゲート領域近傍の素子構造に改良を加えた
ものが提案されている。本発明者らは、そのような静電
誘導サイリスタの一例として、図2に示すような表面型
分割ゲート構造の静電誘導サイリスタ21を考案した
(特願平3−110647号参照)。
2. Description of the Related Art Conventionally, an electrostatic induction thyristor has been known as one of power control semiconductor elements. In the electrostatic induction thyristor, a large gate current flows because residual carriers are extracted from the gate at the time of turn-off, and therefore, the gate drive circuit needs to be devised. Therefore, for example, an improved element structure near the gate region has been proposed. The present inventors have devised an electrostatic induction thyristor 21 having a surface type split gate structure as shown in FIG. 2 as an example of such an electrostatic induction thyristor (see Japanese Patent Application No. 3-110647).

【0003】図2の構造の静電誘導サイリスタ21は、
N型半導体基板22の一方の表面にカソード領域用のN
型不純物拡散領域24を形成し、これを狭むように駆動
ゲート領域用のP型不純物拡散領域23と、接地ゲート
領域用のP型不純物拡散領域25とを独立に形成し、駆
動ゲート領域23の表面にはゲート電極27を設け、接
地ゲート領域25とカソード領域24の表面をカソード
電極26で短絡し、また、半導体基板22の内部にN型
とP型の接合面を形成し、半導体基板22の他方の表面
にアノード領域用のP型不純物領域28を形成し、その
表面にアノード電極29を設けたものである。
The electrostatic induction thyristor 21 having the structure shown in FIG.
On one surface of the N-type semiconductor substrate 22, N for the cathode region is formed.
A type impurity diffusion region 24 is formed, and a P type impurity diffusion region 23 for the drive gate region and a P type impurity diffusion region 25 for the ground gate region are independently formed so as to narrow the region, and the surface of the drive gate region 23 is formed. Is provided with a gate electrode 27, the surfaces of the ground gate region 25 and the cathode region 24 are short-circuited by the cathode electrode 26, and an N-type and P-type bonding surface is formed inside the semiconductor substrate 22. A P-type impurity region 28 for an anode region is formed on the other surface, and an anode electrode 29 is provided on the surface.

【0004】[0004]

【発明が解決しようとする課題】図2の従来例では、ゲ
ート領域を駆動ゲート領域23と接地ゲート領域25と
に分割し、接地ゲート領域25をカソード領域24に直
結することで過度のキャリア注入を抑制したので、ター
ンオフ時のゲート引き抜き電流を減少させることがで
き、高速スイッチング動作を実現できるものである。し
かしながら、駆動ゲート領域23と接地ゲート領域25
の間のパンチスルー耐圧が低いことにより、ゲート耐圧
が低いため、ゲート駆動電力が大きくなり、ゲート駆動
性が悪いという問題点があった。
In the conventional example of FIG. 2, the gate region is divided into a driving gate region 23 and a ground gate region 25, and the ground gate region 25 is directly connected to the cathode region 24, whereby excessive carrier injection is performed. Since the current is suppressed, the gate extraction current at turn-off can be reduced, and high-speed switching operation can be realized. However, the drive gate region 23 and the ground gate region 25
Since the punch-through withstand voltage during the period is low, the gate withstand voltage is low, resulting in a large gate drive power and poor gate driveability.

【0005】本発明は、上述のような点に鑑みてなされ
たものであり、その目的とするところは、ゲート耐圧を
確保し、低駆動電力でスイッチング動作を行える静電誘
導サイリスタを提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide an electrostatic induction thyristor capable of ensuring a gate breakdown voltage and performing a switching operation with low drive power. It is in.

【0006】[0006]

【課題を解決するための手段】本発明の静電誘導サイリ
スタは、上記の課題を解決するために、図1に示すよう
に、一導電型の半導体基板11の一方の表面に、カソー
ド領域用の一導電型の不純物拡散領域14を形成し、こ
のカソード領域14を挟むように第1のゲート領域用の
他導電型の不純物拡散領域13を形成し、前記半導体基
板11の内部に第2のゲート領域用の他導電型の不純物
拡散領域15を形成し、前記カソード領域14と第1の
ゲート領域13の表面にカソード電極16を形成し、第
2のゲート領域15の表面にゲート電極17を形成し、
前記半導体基板11の内部に一導電型と他導電型の接合
面を形成し、半導体基板11の他方の表面にアノード領
域用の他導電型の不純物領域18を形成し、前記アノー
ド領域18の表面にアノード電極19を形成したことを
特徴とするものである。
In order to solve the above-mentioned problems, an electrostatic induction thyristor of the present invention is provided, as shown in FIG. 1, on one surface of a semiconductor substrate 11 of one conductivity type for a cathode region. One conductivity type impurity diffusion region 14 is formed, another conductivity type impurity diffusion region 13 for the first gate region is formed so as to sandwich the cathode region 14, and the second conductivity type impurity diffusion region 13 is formed inside the semiconductor substrate 11. An impurity diffusion region 15 of another conductivity type for the gate region is formed, a cathode electrode 16 is formed on the surfaces of the cathode region 14 and the first gate region 13, and a gate electrode 17 is formed on the surface of the second gate region 15. Forming,
A junction surface of one conductivity type and another conductivity type is formed inside the semiconductor substrate 11, an impurity region 18 of another conductivity type for an anode region is formed on the other surface of the semiconductor substrate 11, and a surface of the anode region 18 is formed. The anode electrode 19 is formed on the anode.

【0007】[0007]

【作用】本発明の構成では、駆動ゲート領域15を埋め
込み構造とし、接地ゲート領域13を表面構造としたこ
とで、駆動ゲート領域15と接地ゲート領域13の間の
距離を離すことができ、したがって、ゲート耐圧が確保
でき、駆動ゲート領域15の間隔でノーマリオン・オフ
特性を決定できる。これにより、ゲート耐圧特性とノー
マリオン・オフ特性を独立に決定できる。また、接地ゲ
ート領域13をカソード領域14と短絡させたゲート短
絡構造を採用したことで、ゲート順バイアス時には埋め
込み駆動ゲート領域15から半導体基板11への適度な
キャリア注入が起こり、電導率変調により順方向電圧降
下は低く抑えることが可能である。さらに、ターンオフ
時にはカソード領域14と接地ゲート領域13を通じて
速やかにキャリアがはき出される。このとき、キャリア
の蓄積が少ないため、蓄積時間を短くすることが可能で
あり、高速スイッチング動作が可能となる。また、埋め
込み駆動ゲート領域15はゲート抵抗が表面の接地ゲー
ト領域13よりも大きい(〜10Ω)ので、ゲート引き
抜き電流のピーク値を低減できる。さらに、カソード電
極16を大面積化できることで板状のボンディングが可
能になり、従来のワイヤーボンディングに比べると、配
線のインダクタンスを低減することが可能であり、高速
スイッチング動作が可能となる。以上のような作用によ
り、ゲート駆動電力が小さく、駆動が容易で、高速スイ
ッチング動作が可能な素子を提供できるものである。
In the structure of the present invention, the drive gate region 15 has the buried structure and the ground gate region 13 has the surface structure, so that the distance between the drive gate region 15 and the ground gate region 13 can be increased. The gate breakdown voltage can be secured, and the normally-on / off characteristics can be determined at the intervals of the drive gate regions 15. As a result, the gate breakdown voltage characteristic and the normally-on / off characteristic can be independently determined. Further, by adopting the gate short-circuit structure in which the ground gate region 13 is short-circuited with the cathode region 14, proper carrier injection from the embedded drive gate region 15 to the semiconductor substrate 11 occurs at the time of gate forward bias, and the forward modulation is performed by the conductivity modulation. The directional voltage drop can be kept low. Furthermore, at the time of turn-off, carriers are quickly ejected through the cathode region 14 and the ground gate region 13. At this time, since the carrier is less accumulated, the accumulation time can be shortened and the high speed switching operation can be performed. Moreover, since the gate resistance of the embedded drive gate region 15 is larger than that of the ground gate region 13 on the surface (-10Ω), the peak value of the gate extraction current can be reduced. Furthermore, since the cathode electrode 16 can have a large area, plate-shaped bonding can be performed, and as compared with the conventional wire bonding, the wiring inductance can be reduced and high-speed switching operation can be performed. Due to the above-described actions, it is possible to provide an element which has low gate drive power, is easily driven, and is capable of high-speed switching operation.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1を用いて説明
する。まず、N型半導体基板11の一方の表面に駆動ゲ
ート領域用のP型不純物拡散領域15を形成する。駆動
ゲート領域15の間隔によってノーマリオフ・ノーマリ
オン特性を決めることが出来る。ノーマリオフにするの
であれば、半導体基板11の不純物濃度が6.5×10
13cm-3で、駆動ゲート領域15のP型の不純物濃度が
1×1018cm-3の場合、駆動ゲート領域15の間隔は
3.7μm以下にする必要がある。次に、N型半導体基
板11の一方の表面にN型半導体基板12をエピタキシ
ャル成長させる。このN型半導体基板12の表面に、カ
ソード領域用のN型不純物拡散領域14を形成すると共
に、これを挟むように、接地ゲート領域用のP型不純物
拡散領域13を形成する。そして、各領域13,14の
表面に酸化膜を介してカソード電極16を形成する。こ
のとき、カソード領域14の直下には、埋め込みゲート
領域15が配置されないようにする。また、埋め込まれ
た駆動ゲート領域15については、一方の表面側の端部
にトレンチ溝を形成し、駆動ゲート電極17を形成す
る。N型半導体基板11の他方の表面にはP型アノード
領域18を形成して、半導体基板11の内部にPN接合
面を設ける。このアノード領域18の表面には、アノー
ド電極19を形成して静電誘導サイリスタ10を完成す
るものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. First, the P-type impurity diffusion region 15 for the drive gate region is formed on one surface of the N-type semiconductor substrate 11. The normally-off / normally-on characteristics can be determined by the distance between the drive gate regions 15. If normally off, the impurity concentration of the semiconductor substrate 11 is 6.5 × 10 5.
When the driving gate region 15 is 13 cm -3 and the P-type impurity concentration of the driving gate region 15 is 1 × 10 18 cm -3 , the distance between the driving gate regions 15 needs to be 3.7 μm or less. Next, the N-type semiconductor substrate 12 is epitaxially grown on one surface of the N-type semiconductor substrate 11. An N-type impurity diffusion region 14 for the cathode region is formed on the surface of the N-type semiconductor substrate 12, and a P-type impurity diffusion region 13 for the ground gate region is formed so as to sandwich the N-type impurity diffusion region 14 for the cathode region. Then, the cathode electrode 16 is formed on the surface of each of the regions 13 and 14 via the oxide film. At this time, the buried gate region 15 is not arranged immediately below the cathode region 14. Further, with respect to the embedded drive gate region 15, a trench groove is formed at one end on the front surface side to form a drive gate electrode 17. A P-type anode region 18 is formed on the other surface of the N-type semiconductor substrate 11, and a PN junction surface is provided inside the semiconductor substrate 11. An anode electrode 19 is formed on the surface of the anode region 18 to complete the electrostatic induction thyristor 10.

【0009】[0009]

【発明の効果】本発明の静電誘導サイリスタの構造を用
いれば、半導体基板の表面に形成した第1のゲート領域
をカソード領域と短絡させたことにより、オン時のキャ
リアの注入が抑制されて、ターンオフ時のゲートからの
引き抜き電流を低減することができ、また、第2のゲー
ト領域を埋め込み構造としたことにより、表面に形成し
た第1のゲート領域との距離を確保することができ、こ
れによりゲート耐圧が高くなり、ゲート駆動の電力損失
を小さくできて、駆動回路が簡素になるという効果があ
り、しかもキャリアの蓄積時間が短いので、高速なスイ
ッチング動作が可能になるという効果がある。
According to the structure of the electrostatic induction thyristor of the present invention, the first gate region formed on the surface of the semiconductor substrate is short-circuited with the cathode region, so that the injection of carriers at the time of turning on is suppressed. , The current drawn from the gate at the time of turn-off can be reduced, and the second gate region has a buried structure, so that a distance from the first gate region formed on the surface can be secured. This has the effect of increasing the gate breakdown voltage, reducing the power loss in gate drive, and simplifying the drive circuit. Moreover, since the carrier storage time is short, high-speed switching operation is possible. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による静電誘導サイリスタの断面図であ
る。
FIG. 1 is a sectional view of an electrostatic induction thyristor according to the present invention.

【図2】従来の静電誘導サイリスタの断面図である。FIG. 2 is a cross-sectional view of a conventional static induction thyristor.

【符号の説明】[Explanation of symbols]

10 静電誘導サイリスタ 11 半導体基板 12 半導体基板(エピタキシャル領域) 13 接地ゲート領域 14 カソード領域 15 駆動ゲート領域 16 カソード電極 17 駆動ゲート電極 18 アノード領域 19 アノード電極 10 Electrostatic Induction Thyristor 11 Semiconductor Substrate 12 Semiconductor Substrate (Epitaxial Region) 13 Ground Gate Region 14 Cathode Region 15 Drive Gate Region 16 Cathode Electrode 17 Drive Gate Electrode 18 Anode Region 19 Anode Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板の一方の表面
に、カソード領域用の一導電型の不純物拡散領域を形成
し、このカソード領域を挟むように第1のゲート領域用
の他導電型の不純物拡散領域を形成し、前記半導体基板
の内部に第2のゲート領域用の他導電型の不純物拡散領
域を形成し、前記カソード領域と第1のゲート領域の表
面にカソード電極を形成し、第2のゲート領域の表面に
ゲート電極を形成し、前記半導体基板の内部に一導電型
と他導電型の接合面を形成し、半導体基板の他方の表面
にアノード領域用の他導電型の不純物領域を形成し、前
記アノード領域の表面にアノード電極を形成したことを
特徴とする静電誘導サイリスタ。
1. A one-conductivity-type impurity diffusion region for a cathode region is formed on one surface of a one-conductivity-type semiconductor substrate, and the other-conductivity-type impurity region for the first gate region is sandwiched so as to sandwich the cathode region. An impurity diffusion region is formed, another conductivity type impurity diffusion region for the second gate region is formed inside the semiconductor substrate, and a cathode electrode is formed on the surfaces of the cathode region and the first gate region. A gate electrode is formed on the surface of the second gate region, a junction surface of one conductivity type and another conductivity type is formed inside the semiconductor substrate, and an impurity region of another conductivity type for the anode region is formed on the other surface of the semiconductor substrate. And an anode electrode is formed on the surface of the anode region.
JP15096292A 1992-06-10 1992-06-10 Static induction thyristor Pending JPH05343664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15096292A JPH05343664A (en) 1992-06-10 1992-06-10 Static induction thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15096292A JPH05343664A (en) 1992-06-10 1992-06-10 Static induction thyristor

Publications (1)

Publication Number Publication Date
JPH05343664A true JPH05343664A (en) 1993-12-24

Family

ID=15508245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15096292A Pending JPH05343664A (en) 1992-06-10 1992-06-10 Static induction thyristor

Country Status (1)

Country Link
JP (1) JPH05343664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031212A1 (en) * 2011-08-29 2015-03-23 富士電機株式会社 Bidirectional element, bidirectional element circuit, and power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013031212A1 (en) * 2011-08-29 2015-03-23 富士電機株式会社 Bidirectional element, bidirectional element circuit, and power converter

Similar Documents

Publication Publication Date Title
US5068700A (en) Lateral conductivity modulated mosfet
US5714774A (en) Two-gate semiconductor power switching device
US5304821A (en) MOS-gate-turnoff thyristor
US4969028A (en) Gate enhanced rectifier
US4717940A (en) MIS controlled gate turn-off thyristor
US20020053717A1 (en) Semiconductor apparatus
US9941274B2 (en) Semiconductor device with a switchable and a non-switchable diode region
JP3469967B2 (en) Power device integrated structure
JP3209091B2 (en) Semiconductor device having insulated gate bipolar transistor
IE52758B1 (en) Gate enhanced rectifier
JPH0612828B2 (en) Semiconductor device
JPH03238871A (en) Semiconductor device and manufacture thereof
JPH0575110A (en) Semiconductor device
JPH0778978A (en) Vertical mosfet transistor
JPH01218067A (en) Bipolar-type semiconductor switching device
JP3206395B2 (en) Semiconductor device
JP3163815B2 (en) Semiconductor device
JPH05343664A (en) Static induction thyristor
JPH0430476A (en) Insulated gate bipolar transistor
WO1991017570A1 (en) Insulated gate bipolar transistor
JP3110094B2 (en) Insulated gate thyristor
JP2724204B2 (en) Conduction modulation type MOSFET
JPH04320377A (en) Insulated gate bipolar transistor
JP3271396B2 (en) Insulated gate bipolar transistor
JPH0416443Y2 (en)