JPH05343399A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05343399A
JPH05343399A JP4171588A JP17158892A JPH05343399A JP H05343399 A JPH05343399 A JP H05343399A JP 4171588 A JP4171588 A JP 4171588A JP 17158892 A JP17158892 A JP 17158892A JP H05343399 A JPH05343399 A JP H05343399A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
insulating film
contact hole
polycide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4171588A
Other languages
Japanese (ja)
Other versions
JP3252980B2 (en
Inventor
Hideaki Kuroda
英明 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP17158892A priority Critical patent/JP3252980B2/en
Publication of JPH05343399A publication Critical patent/JPH05343399A/en
Application granted granted Critical
Publication of JP3252980B2 publication Critical patent/JP3252980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form contact holes which are smaller than the limit of lithography while preventing that yield of interlayer dielectric strength of an insulation film covering wirings is lowered. CONSTITUTION:A polycide film 13, an interlayer insulation film 24 and a polycrystalline Si film 25 are processed into the patterns of gate electrode and the interlayer insulation film 26 and polycrystalline Si film 27 are sequentially deposited on the entire part. The entire part of the polycrystalline Si film 27 is etched back, leaving polycrystalline Si film 27 in the form of a side wall. The interlayer insulation film 26 is etched using the polycrystalline Si film 27 as the mask and contact holes 17 are opened. In this case, the interlayer insulation film 26 is masked with the polycrystalline Si film 27 and the interlayer insulation film 24 is also masked by the Si film 25. Therefore, quality of interlayer insulation films 26, 24 is not deteriorated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配線とコンタクト孔と
を有する半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having wiring and contact holes.

【0002】[0002]

【従来の技術】図3(a)は、配線としてのゲート電極
とコンタクト孔とを有する半導体装置であって、自己整
合コンタクト方式と称されている本発明の第1従来例で
製造したものを示している。この第1従来例では、Si
基板11の素子活性領域の表面にゲート酸化膜としての
SiO2 膜12を形成した後、ポリサイド膜13または
多結晶Si膜とオフセット用のSiO2 膜14とを順次
に積層させ、これらのSiO2 膜14とポリサイド膜1
3等とをゲート電極のパターンに加工する。
2. Description of the Related Art FIG. 3A shows a semiconductor device having a gate electrode as a wiring and a contact hole, which is manufactured by a first conventional example of the present invention called a self-aligned contact method. Shows. In this first conventional example, Si
After forming the SiO 2 film 12 as a gate oxide film on the surface of the element active region of the substrate 11, and a SiO 2 film 14 for the polycide film 13 or polycrystalline Si film and the offset are sequentially stacked, these SiO 2 Membrane 14 and polycide membrane 1
3 and the like are processed into a pattern of a gate electrode.

【0003】その後、SiO2 膜15を全面に堆積さ
せ、このSiO2 膜15の全面をエッチバックして、S
iO2 膜15から成る側壁をポリサイド膜13及びSi
2 膜14の側面に形成すると同時に、Si基板11中
の拡散層16に達するコンタクト孔17を開孔する。そ
して、コンタクト孔17を介して拡散層16にコンタク
トする上層の配線を多結晶Si膜18で形成する。
After that, a SiO 2 film 15 is deposited on the entire surface, and the entire surface of the SiO 2 film 15 is etched back to obtain S
The side wall made of the iO 2 film 15 is covered with the polycide film 13 and Si.
At the same time as being formed on the side surface of the O 2 film 14, a contact hole 17 reaching the diffusion layer 16 in the Si substrate 11 is opened. Then, an upper wiring that contacts the diffusion layer 16 through the contact hole 17 is formed of the polycrystalline Si film 18.

【0004】この様な第1従来例では、コンタクト孔1
7の開孔に際してマスクが不要であり、コンタクト孔1
7をポリサイド膜13に対して自己整合的に開孔するこ
とができる。このため、ポリサイド膜13同士の間隔を
リソグラフィの限界程度にしておけば、リソグラフィの
限界よりも小さなコンタクト孔17を形成することがで
きるので、集積度の高い半導体装置を製造することがで
きる。
In the first conventional example as described above, the contact hole 1
No mask is required for opening 7 and contact hole 1
7 can be formed in self-alignment with the polycide film 13. Therefore, if the distance between the polycide films 13 is set to the limit of lithography, the contact hole 17 smaller than the limit of lithography can be formed, so that a highly integrated semiconductor device can be manufactured.

【0005】図4は、配線としてのゲート電極とコンタ
クト孔とを有する半導体装置であって、整合コンタクト
方式と称されている本発明の第2従来例で製造したもの
を示している。この第2従来例では、ポリサイド膜13
でゲート電極を形成した後、層間絶縁膜21と減圧CV
D法によるSiN膜22とを順次に積層させる。そし
て、レジスト(図示せず)をマスクにしたエッチングで
SiN膜22及び層間絶縁膜21にコンタクト孔17を
開孔し、多結晶Si膜18で上層の配線を形成する。
FIG. 4 shows a semiconductor device having a gate electrode as a wiring and a contact hole, which is manufactured by a second conventional example of the present invention called a matching contact system. In the second conventional example, the polycide film 13 is used.
After forming the gate electrode with, the interlayer insulating film 21 and the reduced pressure CV
The SiN film 22 by the D method is sequentially laminated. Then, a contact hole 17 is formed in the SiN film 22 and the interlayer insulating film 21 by etching using a resist (not shown) as a mask, and an upper wiring layer is formed by the polycrystalline Si film 18.

【0006】[0006]

【発明が解決しようとする課題】ところが、図3(a)
に示した第1従来例では、ポリサイド膜13と多結晶S
i膜18との間の層間分離膜の殆どは、エッチバックで
形成されたために膜質が劣っている側壁状のSiO2
15であり、このSiO2 膜15を介してポリサイド膜
13と多結晶Si膜18とが対向している面積が広い。
このため、この第1従来例では、ポリサイド膜13と多
結晶Si膜18との間の層間耐圧の歩留りが低く、半導
体装置を高い歩留りでは製造することができなかった。
However, as shown in FIG.
In the first conventional example shown in, the polycide film 13 and the polycrystalline S
Most of the interlayer isolation film between the i layer 18, a SiO 2 film 15 sidewall-shaped film quality is inferior to that formed by etching back polycrystalline polycide film 13 via the SiO 2 film 15 The area where the Si film 18 faces is large.
Therefore, in the first conventional example, the yield of the interlayer breakdown voltage between the polycide film 13 and the polycrystalline Si film 18 was low, and the semiconductor device could not be manufactured with a high yield.

【0007】しかも、図3(b)に示す様に、ポリサイ
ド膜13に突起13aやパターン異常があると、エッチ
バックで形成した側壁状のSiO2 膜15の膜厚がこの
部分で薄くなり、ポリサイド膜13と多結晶Si膜18
との間の層間耐圧の歩留りがこの部分で特に低くなる。
Moreover, as shown in FIG. 3B, when the polycide film 13 has a protrusion 13a or a pattern abnormality, the film thickness of the side wall-shaped SiO 2 film 15 formed by etching back becomes thin at this portion, Polycide film 13 and polycrystalline Si film 18
The yield of the interlayer withstand voltage between and is particularly low in this portion.

【0008】一方、図4に示した第2従来例では、Si
N膜22の膜質が緻密であり、しかもSiN膜22と層
間絶縁膜21とが積層されている部分ではピンホールが
生じにくい。このため、層間絶縁膜21のうちで膜質が
劣る部分は、エッチングで開孔されたコンタクト孔17
に臨む部分だけである。しかし、この部分の面積は狭い
ので、ポリサイド膜13と多結晶Si膜18との間の層
間耐圧の歩留りは高い。
On the other hand, in the second conventional example shown in FIG.
The film quality of the N film 22 is dense, and pinholes are unlikely to occur in the portion where the SiN film 22 and the interlayer insulating film 21 are laminated. For this reason, the portion of the interlayer insulating film 21 having poor film quality has contact holes 17 opened by etching.
It is only the part facing. However, since the area of this portion is small, the yield of the interlayer breakdown voltage between the polycide film 13 and the polycrystalline Si film 18 is high.

【0009】ところが、この第2従来例では、レジスト
をマスクにしたエッチングでコンタクト孔17を開孔し
ているので、コンタクト孔17をリソグラフィの限界よ
りも小さくすることができず、しかもポリサイド膜13
とコンタクト孔17との間に位置合わせのための余裕が
必要である。このため、この第2従来例では、集積度の
高い半導体装置を製造することができなかった。
However, in the second conventional example, since the contact hole 17 is opened by etching using a resist as a mask, the contact hole 17 cannot be made smaller than the limit of lithography, and moreover, the polycide film 13 is used.
A margin for alignment is required between the contact hole 17 and the contact hole 17. Therefore, in the second conventional example, it was not possible to manufacture a semiconductor device having a high degree of integration.

【0010】[0010]

【課題を解決するための手段】本発明による半導体装置
の製造方法は、順次に積層させた導電膜13と第1の絶
縁膜24と第1の被覆膜25とを配線のパターンに加工
する工程と、この加工の後に、前記第1の被覆膜25と
はエッチング特性が異なる第2の絶縁膜26を全面に形
成する工程と、前記パターンを覆っている前記第2の絶
縁膜26の側部に、この第2の絶縁膜26とはエッチン
グ特性が異なる第2の被覆膜27を側壁状に形成する工
程と、前記第1及び第2の被覆膜25、27をマスクに
して前記第2の絶縁膜26をエッチングして、この第2
の絶縁膜26にコンタクト孔17を形成する工程とを有
している。
In the method of manufacturing a semiconductor device according to the present invention, the conductive film 13, the first insulating film 24 and the first coating film 25, which are sequentially stacked, are processed into a wiring pattern. A step of forming a second insulating film 26 having a different etching characteristic from that of the first coating film 25 on the entire surface after this processing, and a step of forming the second insulating film 26 covering the pattern. A step of forming a side wall of a second coating film 27 having a different etching characteristic from that of the second insulating film 26 on the side portion, and using the first and second coating films 25 and 27 as a mask By etching the second insulating film 26,
And the step of forming the contact hole 17 in the insulating film 26.

【0011】[0011]

【作用】本発明による半導体装置の製造方法では、コン
タクト孔17を形成するための第2の絶縁膜26のエッ
チング時に、配線の側部における第2の絶縁膜26は第
2の被覆膜27でマスクし、配線上の第1の絶縁膜24
も第1の被覆膜25でマスクしている。従って、コンタ
クト孔17を形成する際に、第1及び第2の絶縁膜2
4、26のうちで配線を覆っている部分はエッチングさ
れず、これら第1及び第2の絶縁膜24、26の膜質を
維持して、層間耐圧の歩留りが低下するのを防止するこ
とができる。
In the method of manufacturing a semiconductor device according to the present invention, when the second insulating film 26 for forming the contact hole 17 is etched, the second insulating film 26 on the side of the wiring is covered with the second coating film 27. Masked with, and the first insulating film 24 on the wiring
Is also masked by the first coating film 25. Therefore, when forming the contact hole 17, the first and second insulating films 2 are formed.
The portions of the wirings 4 and 26 that cover the wirings are not etched, and the film quality of the first and second insulating films 24 and 26 can be maintained to prevent the yield of interlayer breakdown voltage from decreasing. ..

【0012】しかも、側壁状の第2の被覆膜27は堆積
後の全面エッチバック等によって配線に対して自己整合
的に形成することが可能であり、コンタクト孔17は側
壁状の第2の被覆膜27等をマスクにしたエッチングに
よって形成しているので、このコンタクト孔17も配線
に対して自己整合的に形成することができる。従って、
配線同士の間隔をリソグラフィの限界程度にしておけ
ば、リソグラフィの限界よりも小さなコンタクト孔17
を形成することができる。
Moreover, the side wall-shaped second coating film 27 can be formed in a self-aligned manner with respect to the wiring by etching back the entire surface after deposition, and the contact hole 17 is formed in the side wall-shaped second coating film 27. Since the contact hole 17 is formed by etching using the coating film 27 and the like as a mask, the contact hole 17 can also be formed in self-alignment with the wiring. Therefore,
If the distance between the wirings is set to the limit of lithography, the contact hole 17 smaller than the limit of lithography can be formed.
Can be formed.

【0013】[0013]

【実施例】以下、DRAMの製造に適用した本発明の一
実施例を、図1、2を参照しながら説明する。なお、図
3、4に示した第1及び第2従来例と対応する構成部分
には、同一の符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to the manufacture of DRAM will be described below with reference to FIGS. The components corresponding to those of the first and second conventional examples shown in FIGS. 3 and 4 are designated by the same reference numerals.

【0014】本実施例では、図1(a)に示す様に、L
OCOS法等でSi基板11の表面に素子分離用のSi
2 膜23を形成し、SiO2 膜23に囲まれている素
子活性領域の表面にゲート酸化膜としてのSiO2 膜1
2を形成する。そして、ポリサイド膜13または多結晶
Si膜と、膜厚が1000Å程度で不純物を含有しない
SiO2 膜である層間絶縁膜24と、膜厚が1000〜
3000Å程度の多結晶Si膜25とを、順次に堆積さ
せる。
In this embodiment, as shown in FIG.
Si for element isolation is formed on the surface of the Si substrate 11 by the OCOS method or the like.
The O 2 film 23 is formed, and the SiO 2 film 1 as a gate oxide film is formed on the surface of the element active region surrounded by the SiO 2 film 23.
Form 2. Then, the polycide film 13 or the polycrystalline Si film, the interlayer insulating film 24 which is a SiO 2 film having a film thickness of about 1000 Å and containing no impurities, and a film thickness of 1000 to
A polycrystalline Si film 25 of about 3000 Å is sequentially deposited.

【0015】その後、多結晶Si膜25と層間絶縁膜2
4とポリサイド膜13とに対して、ゲート電極のパター
ンの同一のレジスト(図示せず)をマスクにして、連続
的にRIEを行う。そして、ゲート電極のパターンのポ
リサイド膜13と層間絶縁膜24と多結晶Si膜25と
をマスクにして、例えばリンを20〜40keV程度の
エネルギで1×1013〜5×1013cm-2程度のドーズ
量にイオン注入して、N型の拡散層16をSi基板11
の素子活性領域に形成する。
After that, the polycrystalline Si film 25 and the interlayer insulating film 2
4 and the polycide film 13 are continuously subjected to RIE using a resist (not shown) having the same gate electrode pattern as a mask. Then, using the polycide film 13 having the pattern of the gate electrode, the interlayer insulating film 24, and the polycrystalline Si film 25 as a mask, for example, phosphorus is applied at an energy of about 20 to 40 keV to about 1 × 10 13 to 5 × 10 13 cm −2. To the Si substrate 11 by implanting ions at a dose of
Is formed in the element active region.

【0016】次に、PSG膜かまたは不純物を含有しな
いSiO2 膜をCVD法で数百〜数千Åの膜厚に堆積さ
せ、更にSiN膜を減圧CVD法で数百Åの膜厚に堆積
させ、これら2層の膜で、図1(b)に示す様に、層間
絶縁膜26を形成する。そして、多結晶Si膜27を減
圧CVD法で数百〜数千Åの膜厚に堆積させる。但し、
集積度を高めるためは、多結晶Si膜27の膜厚は薄い
方がよい。
Next, a PSG film or a SiO 2 film containing no impurities is deposited by the CVD method to a film thickness of several hundred to several thousand Å, and a SiN film is further deposited by the low pressure CVD method to a film thickness of several hundred Å. Then, the interlayer insulating film 26 is formed of these two layers as shown in FIG. Then, the polycrystalline Si film 27 is deposited by the low pressure CVD method to a film thickness of several hundred to several thousand Å. However,
In order to increase the degree of integration, the film thickness of the polycrystalline Si film 27 is preferably thin.

【0017】次に、層間絶縁膜26が露出するまでRI
Eで多結晶Si膜27に対する異方性エッチングを行っ
て、ポリサイド膜13等を覆っている層間絶縁膜26の
側部に、図1(c)に示す様に多結晶Si膜27を側壁
状に残す。
Next, RI is applied until the interlayer insulating film 26 is exposed.
The polycrystal Si film 27 is anisotropically etched by E to form a side wall of the polycrystal Si film 27 on the side portion of the interlayer insulating film 26 covering the polycide film 13 and the like as shown in FIG. 1C. Leave on.

【0018】そして、多結晶Si膜27をマスクにして
層間絶縁膜26に対するRIEを行って、拡散層16に
達するコンタクト孔17をポリサイド膜13等に対して
自己整合的に開孔する。この時、多結晶Si膜25上の
層間絶縁膜26がエッチングされても、多結晶Si膜2
5がストッパになって、層間絶縁膜24がエッチングさ
れることはない。つまり、多結晶Si膜25が層間絶縁
膜24に対するマスクになっている。
Then, RIE is performed on the interlayer insulating film 26 by using the polycrystalline Si film 27 as a mask to open the contact hole 17 reaching the diffusion layer 16 in a self-aligned manner with respect to the polycide film 13 and the like. At this time, even if the interlayer insulating film 26 on the polycrystalline Si film 25 is etched, the polycrystalline Si film 2
The interlayer insulating film 24 is not etched because 5 serves as a stopper. That is, the polycrystalline Si film 25 serves as a mask for the interlayer insulating film 24.

【0019】その後、拡散層16と多結晶Si膜27、
25とにコンタクトする様に、多結晶Si膜28をCV
D法で数百Åの膜厚に堆積させる。そして、イオン注入
またはプレデポジションで多結晶Si膜28、27、2
5にリンまたはヒ素をドーピングした後、多結晶Si膜
28上でレジスト29を引出し電極のパターンに加工す
る。
After that, the diffusion layer 16 and the polycrystalline Si film 27,
25 so that the polycrystalline Si film 28 is CV
Deposit a thickness of several hundred Å by method D. Then, the polycrystalline Si films 28, 27, 2 are formed by ion implantation or predeposition.
After doping 5 or 5 with phosphorus or arsenic, a resist 29 is processed on the polycrystalline Si film 28 into a pattern of an extraction electrode.

【0020】次に、レジスト29をマスクにして多結晶
Si膜28、27、25に対する十分な異方性エッチン
グを行って、図1(d)に示す様に、メモリセルを構成
するキャパシタの記憶ノード電極用の引出し電極と、ビ
ット線用の引出し電極とを形成する。その後は、従来公
知の工程を経て、DRAMを完成させる。
Next, using the resist 29 as a mask, the polycrystal Si films 28, 27 and 25 are sufficiently anisotropically etched to store the capacitors constituting the memory cells as shown in FIG. 1D. A lead electrode for the node electrode and a lead electrode for the bit line are formed. After that, the DRAM is completed through conventionally known steps.

【0021】以上の様な本実施例では、コンタクト孔1
7を開孔するための層間絶縁膜26に対するRIEに際
して、多結晶Si膜27、25で層間絶縁膜26、24
をマスクしている。このため、ポリサイド膜13を覆っ
ている部分の層間絶縁膜26、24はエッチングされ
ず、この部分の層間絶縁膜26、24の膜質が低下する
ことはない。
In this embodiment as described above, the contact hole 1
When RIE is performed on the inter-layer insulation film 26 for opening the holes 7, the poly-Si films 27, 25 are used as the inter-layer insulation films 26, 24.
Are masked. Therefore, the interlayer insulating films 26 and 24 in the portion covering the polycide film 13 are not etched, and the film quality of the interlayer insulating films 26 and 24 in this portion does not deteriorate.

【0022】また、ポリサイド膜13を覆っている部分
の層間絶縁膜26、24はエッチングされないので、図
2に示す様に、ポリサイド膜13に突起13aやパター
ン異常があっても、層間絶縁膜26の膜厚がこの部分で
薄くなることもない。従って、ポリサイド膜13と多結
晶Si膜28、27、25との間の層間耐圧の歩留りが
高い。
Further, since the interlayer insulating films 26 and 24 covering the polycide film 13 are not etched, as shown in FIG. 2, even if the polycide film 13 has a protrusion 13a or a pattern abnormality, the interlayer insulating film 26 is not etched. The thickness of the film does not become thin at this portion. Therefore, the yield of the interlayer breakdown voltage between the polycide film 13 and the polycrystalline Si films 28, 27, 25 is high.

【0023】[0023]

【発明の効果】本発明による半導体装置の製造方法で
は、コンタクト孔を形成する際に、配線を覆っている絶
縁膜の層間耐圧の歩留りが低下するのを防止しつつ、リ
ソグラフィの限界よりも小さなコンタクト孔を形成する
ことができるので、集積度の高い半導体装置を高い歩留
りで製造することができる。
In the method of manufacturing a semiconductor device according to the present invention, when the contact hole is formed, the yield of the interlayer withstand voltage of the insulating film covering the wiring is prevented from being lowered, and it is smaller than the limit of lithography. Since the contact hole can be formed, a semiconductor device having a high degree of integration can be manufactured with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を順次に示す側断面図であ
る。
FIG. 1 is a side sectional view sequentially showing an embodiment of the present invention.

【図2】一実施例を説明するための側断面図である。FIG. 2 is a side sectional view for explaining one embodiment.

【図3】本発明の第1従来例を示しており、(a)はこ
の第1従来例で製造したDRAMの側断面図、(b)は
第1従来例を説明するための側断面図である。
FIG. 3 shows a first conventional example of the present invention, (a) is a side sectional view of a DRAM manufactured in the first conventional example, and (b) is a side sectional view for explaining the first conventional example. Is.

【図4】本発明の第2従来例で製造したDRAMの側断
面図である。
FIG. 4 is a side sectional view of a DRAM manufactured in a second conventional example of the present invention.

【符号の説明】 13 ポリサイド膜 17 コンタクト孔 24 層間絶縁膜 25 多結晶Si膜 26 層間絶縁膜 27 多結晶Si膜[Explanation of Codes] 13 Polycide Film 17 Contact Hole 24 Interlayer Insulating Film 25 Polycrystalline Si Film 26 Interlayer Insulating Film 27 Polycrystalline Si Film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/90 D 7735−4M 27/108 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/90 D 7735-4M 27/108

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 順次に積層させた導電膜と第1の絶縁膜
と第1の被覆膜とを配線のパターンに加工する工程と、 この加工の後に、前記第1の被覆膜とはエッチング特性
が異なる第2の絶縁膜を全面に形成する工程と、 前記パターンを覆っている前記第2の絶縁膜の側部に、
この第2の絶縁膜とはエッチング特性が異なる第2の被
覆膜を側壁状に形成する工程と、 前記第1及び第2の被覆膜をマスクにして前記第2の絶
縁膜をエッチングして、この第2の絶縁膜にコンタクト
孔を形成する工程とを有する半導体装置の製造方法。
1. A step of processing a conductive film, a first insulating film, and a first coating film, which are sequentially laminated, into a wiring pattern, and, after this processing, the first coating film is A step of forming a second insulating film having different etching characteristics on the entire surface, and a step of forming a second insulating film on the side surface of the second insulating film covering the pattern,
A step of forming a second coating film having a different etching characteristic from that of the second insulating film in a sidewall shape; and etching the second insulating film using the first and second coating films as a mask. And a step of forming a contact hole in the second insulating film.
JP17158892A 1992-06-05 1992-06-05 Method for manufacturing semiconductor device Expired - Fee Related JP3252980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17158892A JP3252980B2 (en) 1992-06-05 1992-06-05 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17158892A JP3252980B2 (en) 1992-06-05 1992-06-05 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05343399A true JPH05343399A (en) 1993-12-24
JP3252980B2 JP3252980B2 (en) 2002-02-04

Family

ID=15925944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17158892A Expired - Fee Related JP3252980B2 (en) 1992-06-05 1992-06-05 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3252980B2 (en)

Also Published As

Publication number Publication date
JP3252980B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
US5227855A (en) Semiconductor memory device having a ferroelectric substance as a memory element
JPH0797571B2 (en) Method for forming a contact window in a semiconductor structure
US5498561A (en) Method of fabricating memory cell for semiconductor integrated circuit
US6333233B1 (en) Semiconductor device with self-aligned contact and its manufacture
EP0305055B1 (en) Method of manufacturing a semiconductor device
US5114873A (en) Method for manufacturing a stacked capacitor DRAM cell
US5247197A (en) Dynamic random access memory device having improved contact hole structures
US5104821A (en) Method for fabricating stacked capacitors in a DRAM cell
US6559494B1 (en) Semiconductor device and a method for fabricating the same
US5721152A (en) Method of fabricating a stacked capacitor for a DRAM cell by plasma etching
JP3200974B2 (en) Method for manufacturing semiconductor memory device
JPH02143456A (en) Manufacture of lamination type memory cell
JP3252980B2 (en) Method for manufacturing semiconductor device
EP0315421A1 (en) Semiconductor integrated circuit device having at least two contact holes
JPH1197529A (en) Manufacture of semiconductor device
JP4820978B2 (en) Manufacturing method of semiconductor integrated circuit device
KR0148503B1 (en) Semiconductor memory device and manufacture thereof
US6580175B1 (en) Semiconductor layout structure for a conductive layer and contact hole
JP3120750B2 (en) Semiconductor device and manufacturing method thereof
JP3106549B2 (en) Method for manufacturing semiconductor device
US6400022B1 (en) Semiconductor device and fabrication process therefor and capacitor structure
KR0147636B1 (en) A semiconductor apparatus with wiring structure protecting shallow junction and manufacturing method thereof
JPH0661361A (en) Semiconductor device and manufacture thereof
JPH0870106A (en) Semiconductor device and its fabrication
JP3218633B2 (en) Method of manufacturing MOSRAM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees